
The Command Pattern

Other Considerations

Douglas C. Schmidt

Learning Objectives in This Lesson
• Recognize how the Command pattern can be applied to perform user-

requested commands consistently & extensibly in the expression tree
processing app.

• Understand the structure & functionality of the Command pattern.

• Know how to implement the Command pattern in C++.

• Be aware of other considerations when applying the Command pattern.

Other Considerations of
the Command Pattern

Douglas C. Schmidt

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

performAction()

ConcreteCommand

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

• Can forward behavior
to other objects

target.performAction()

ConcreteCommand

Command GoF Object Behavioral

performAction()

ConcreteCommand

See upcoming lesson on the State pattern for an example of forwarding.

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

• Can forward behavior
to other objects

• Can extend behavior
via derived classing

Command GoF Object Behavioral

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

• Can forward behavior
to other objects

• Can extend behavior
via derived classing

• Can pass a command
object as a parameter

Command GoF Object Behavioral

void handle_input() {

...

User_Command command =

make_command(input);

execute_command(command);

The handle_input() method in Input_Handler plays the role of “invoker.”

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

• Can forward behavior
to other objects

• Can extend behavior
via derived classing

• Can pass a command
object as a parameter

Command GoF Object Behavioral

void handle_input() {

...

User_Command command =

make_command(input);

execute_command(command);

Call a hook (factory) method to
make a command based on user
input

See the next lesson on “The Factory Method Pattern” for User_Command_Factory.

Consequences

+ Abstracts the executor of a
service

• Makes programs more
modular & flexible, e.g.,

• Can bundle state &
behavior into an object

• Can forward behavior
to other objects

• Can extend behavior
via derived classing

• Can pass a command
object as a parameter

Command GoF Object Behavioral

void handle_input() {

...

User_Command command =

make_command(input);

execute_command(command);

Call a hook method & pass
a command to execute

See upcoming lesson on “The Template Method Pattern”

execute()

execute()

for all c in commands
c.execute()

Consequences

+ Composition yields
macro commands

User_Command

Command GoF Object Behavioral

Macro_Command

formatCommand().execute();

exprCommand().execute();

evalCommand().execute();

Consequences

+ Supports arbitrary-level
undo-redo Undo: Redo:

unexecute() execute()

Case study doesn’t use unexecute(), but it’s a common Command feature.

Command GoF Object Behavioral

Consequences

– Might result in lots of trivial
command derived classes

Command GoF Object Behavioral

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Consequences

– Excessive memory may
be needed to support
undo/redo operations

Undo: Redo:

unexecute() execute()

Command GoF Object Behavioral

Implementation considerations

• Copying a command before
putting it on a history list Undo: Redo:

unexecute() execute()

Command GoF Object Behavioral

Implementation considerations

• Avoiding error accumulation
during undo/redo Undo: Redo:

unexecute() execute()

Command GoF Object Behavioral

Implementation considerations

• Supporting transactions
Undo: Redo:

unexecute() execute()

Command GoF Object Behavioral

Command GoF Object Behavioral

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Known uses

• InterViews Actions

• MacApp, Unidraw
Commands

• JDK’s UndoableEdit,
AccessibleAction

• GNU Emacs

• Microsoft Office tools

• Java Runnable interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Known uses

• InterViews Actions

• MacApp, Unidraw
Commands

• JDK’s UndoableEdit,
AccessibleAction

• GNU Emacs

• Microsoft Office tools

• Java Runnable interface

• Runnable can also be used to implement the Command Processor pattern

Command GoF Object Behavioral

See www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

Packages a piece of application functionality—as well as its
parameterization in an object—to make it usable in another context

http://www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

Summary of the Command Pattern
• Command ensures users interact with the expression tree processing app in a

consistent & extensible manner.

Command provides a uniform means to process all user-requested operations.

C
o
m

m
a

n
d

<< creates >>

*

Input_Handler

User_Command_Impl

Format

Command

Expr

Command

Eval

Command

Print

Command

Quit

Command

Macro

Command

