The Command Pattern

Other Considerations

Douglas C. Schmidt

Learning Objectives in This Lesson

« Be aware of other considerations when applying the Command pattern.

Douglas C. Schmidt

Other Considerations of
the Command Pattern

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

« Makes programs more
modular & flexible

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

ConcreteCommand
» Makes programs more

modular & flexible, e.q., execute() o-

« Can bundle state &
behavior into an object

_____________ performAction()

| state

Command GoF Object Behavioral

Consequences
+ Abstracts the executor of a

service
C teC d
. Makes programs more oncretecomman
modular & flexibl .d.
e, e.g., execute() O---cmcmcfooana- performAction()
| state
« Can forward behavior
to other objects ConcreteCommand
™N
execute() o-------foan-- target.performAction()
| state

See upcoming lesson on the State pattern for an example of forwarding.

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a User_Command_Impl
service execute()
» Makes programs more A
modular & flexible, e.q., '
Expr
Format Command
Command
Eval
Macro Command
Command
« Can extend behavior
via derived classing Quit
Print Command

Command

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

» Makes programs more
modular & flexible, e.q.,

« Can pass a command
object as a parameter

void handle input() {

Use:_Command command =
make command (input) ;

execute_command(command);

The handle_input() method in Input_Handler plays the role of “invoker.”

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a void handle input() {

service e
User Command command =

« Makes programs more make command (input) ;

modular & flexible, e.g., Call a hook (factory) method to

make a command based on user
input

execute_command(command);

« Can pass a command
object as a parameter

See the next lesson on * 7he Factory Method Patterr’’ for User Command Factory.

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

» Makes programs more
modular & flexible, e.q.,

« Can pass a command
object as a parameter

void handle input() {

Use:_Command command =
make command (input) ;

execute_command(command);

t Call a hook method & pass
a command to execute

See upcoming lesson on * 7he Template Method Pattern” |

Command GoF Object Behavioral

Consequences

+ Composition yields
macro commands

User_Command

execute()

A

commands
Macro_Command [<>

execute() @

for all ¢ in commands N
c.execute()

formatCommand () . execute (),
exprCommand () .execute () ;
evalCommand () .execute () ;

Command GoF Object Behavioral

Consequences

+ Supports arbitrary-level
undo-redo Undo: Redo:

unexecute () execute ()

R '

QO O O O

O O O O
O O

past future past future

Case study doesn’t use unexecute (), but it's a common Command feature.

Command GoF Object Behavioral

Consequences

— Might result in lots of trivial User_Command_Impl
command derived classes execute()
I

A
Expr

Format Command
Command

Eval

Macro Command
Command

Quit
Print Command
Command

Command

GoF Object Behavioral

Consequences

— Excessive memory may
be needed to support

Undo:

undo/redo operations unexecute ()

Q
O

past

2

Q
Q
O

future

e

O
O
O

past

Redo:

execute ()

@
O

future

Command GoF Object Behavioral

Implementation considerations

« Copying a command before
putting it on a history list Undo: Redo:

Boo o
O O

— \ past future past future

)

Command GoF Object Behavioral

Implementation considerations

 Avoiding error accumulation
during undo/redo Undo: Redo:

unexecute () execute ()

2.
¢
-

O O O O
O QO O O
- O O

past future past future

Command GoF Object Behavioral

Implementation considerations

« Supporting transactions
Redo:

execute ()

@
O

Command

GoF Object Behavioral

Known uses

InterViews Actions

MacApp, Unidraw
Commands

JDK's UndoableEdit,
AccessibleAction

GNU Emacs
Microsoft Office tools
Java Runnable interface

java.lang

Interface Runnable

All Known Subinterfaces:
RunnableFuture<V=>, RunnableScheduledFuture<V=

All Known Implementing Classes:
AsyncBoxView.ChildState, FutureTask,
RenderablelmageProducer, SwingWorker, Thread, TimerTask

public interface Runnable

The runnable interface should be implemented by any class whose
instances are intended to be executed by a thread. The class must define
a method of no arguments called run.

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Command GoF Object Behavioral

KI10WI1 uses java.lang
- InterViews Actions Interface Runnable

« MacApp, Unidraw
Commands I
. JDK’s UndoableEdit, |/§
AccessibleAction

All Known Subinterfaces:
RunnableFuture<V=>, RunnableScheduledFuture<V=

All Known Implementing Classes:
AsyncBoxView.ChildState, FutureTask,
RenderableImageProducer, SwingWorker, Thread, TimerTask

o GNU Emacs public interface Runnable

* Microsoft Office tools .The Runnable interface should be implemented by any class whose
instances are intended to be executed by a thread. The class must define

° Java Runnable interface a method of no arguments called run.

 Runnable can also be used to implement the Command Processor pattern

Service Request Component

Command -
Client =
execute Processor

9% execute function_1
I I
- (1) I_ —=| execute request (2) uI —| function_2

Issue request ' Execute request '

Packages a piece of application functionality—as well as its
parameterization in an object—to make it usable in another context

See www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

http://www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

Summary of the Command Pattern

« Command ensures users interact with the expression tree processing app in a
consistent & extensible manner.

Command

Input_Handler

-
-
-

-
-
-Lf

>

-

<< creates >>

A\ 4

User_Command_Impl

A

Format
Command

Command

Expr

Print
Command

Eval
Command

Macro
Command

Quit

Command

-

%

Command provides a uniform means to process all user-requested operations. |

