
The Bridge Pattern

Other Considerations

Douglas C. Schmidt

• Recognize how the Bridge pattern can be applied to make the expression
tree structure easier to access & evolve transparently.

• Understand the structure & functionality of the Bridge pattern.

• Know how to implement the Bridge pattern in C++.

• Be aware of other considerations when applying the Bridge pattern.

Learning Objectives in This Lesson

Other Considerations of
the Bridge Pattern

Douglas C. Schmidt

Consequences

+Abstraction & implementor
hierarchy are decoupled

• Can evolve separately by
applying Open/Closed Principle

Enable software to be open for extension
(via implementor hierarchy), but closed for

modification (via stable abstraction API)

en.wikipedia.org/wiki/Open/closed_principle has info on Open/Closed Principle.

Bridge GoF Object Structural

http://en.wikipedia.org/wiki/Open/closed_principle

Consequences

+Abstraction & implementor
hierarchy are decoupled

• Can evolve separately by
applying Open/Closed Principle

Extend software behavior by adding
new code via derived classing, not by

changing/breaking existing client code.

Bridge GoF Object Structural

en.wikipedia.org/wiki/Open/closed_principle has info on Open/Closed Principle.

http://en.wikipedia.org/wiki/Open/closed_principle

Consequences

+Implementors can vary at
design-time or runtime

Expression_Tree expr_tree

(new Tree_Node

(′+′,

new Tree_Node(3),

new Tree_Node(4)));

Expression_Tree expr_tree

(new Composite_Add_Node

(new Leaf_Node(3),

new Leaf_Node(4)));

versus

Bridge GoF Object Structural

Consequences

– “One-size-fits-all” abstraction
& implementor interfaces

Bridge GoF Object Structural

See en.wikipedia.org/wiki/Procrustes#Cultural_references

https://en.wikipedia.org/wiki/Procrustes#Cultural_references

Consequences

– “One-size-fits-all” abstraction
& implementor interfaces

• Can be alleviated via other patterns, e.g.,

• Adapter—makes existing classes work with others
without modifying code

en.wikipedia.org/wiki/Adapter_pattern has more on Adapter.

request() adaptee.specificRequest()

request() specificRequest()

Bridge GoF Object Structural

https://en.wikipedia.org/wiki/Adapter_pattern

Consequences

– “One-size-fits-all” abstraction
& implementor interfaces

• Can be alleviated via other patterns, e.g.,

• Adapter—makes existing classes work with others
without modifying code

• Strategy—lets the algorithm vary independently from clients that use it

en.wikipedia.org/wiki/Strategy_pattern has more on Strategy.

Bridge GoF Object Structural

https://en.wikipedia.org/wiki/Strategy_pattern

Consequences

– “One-size-fits-all” abstraction
& implementor interfaces

• Can be alleviated via other patterns, e.g.,

• Adapter—makes existing classes work with others
without modifying code

• Strategy—lets the algorithm vary independently from clients that use it

• Extension Interface—allows multiple interfaces to be exported by a
component, to prevent bloating of interfaces & breaking of client code
when developers extend or modify the functionality of the component

See www.laputan.org/pub/sag/extension-interface.pdf

Bridge GoF Object Structural

http://www.laputan.org/pub/sag/extension-interface.pdf

Implementation considerations

• Creating the right abstraction or implementor

• Often addressed by using Creational patterns

• e.g., Factory Method or Builder

class Number : public Expr {

...

Component_Node *build()

{ return new Leaf_Node(item); }

class Multiply : public Operator {

...

Component_Node *build() {

return new Composite_Multiply_Node(left.build(),

right.build());

}

Build corresponding
component nodes

We’ll cover Builder later & show how it creates composite expression trees.

Bridge GoF Object Structural

Implementation considerations

• Sharing implementors & reference counting

• e.g., C++11/Boost shared_ptr

+

Reference
Count: 2

Reference
Count: 1

Reference
Count: 0

+
Shared

Composite

_Add_Node

Expression_Tree instances

Bridge GoF Object Structural

See en.wikipedia.org/wiki/Smart_pointer#shared_ptr_and_weak_ptr

https://en.wikipedia.org/wiki/Smart_pointer#shared_ptr_and_weak_ptr

Implementation considerations

• Dynamic uses of Bridge should be implemented via Decorator.

en.wikipedia.org/wiki/Decorator_pattern has more on Decorator.

Bridge GoF Object Structural

operation()

operation() operation() component.operation()

operation() operation()
super.operation();
addedBehavior();

addedBehavior()

http://en.wikipedia.org/wiki/Decorator_pattern

Implementation considerations

• Dynamic uses of Bridge should be implemented via Decorator.

• Decorator enables client-specified embellishment of a core object by
recursively wrapping it (possibly more than once) dynamically at runtime.

See sourcemaking.com/design_patterns/decorator

Bridge GoF Object Structural

operation()

operation() operation() component.operation()

operation() operation()
super.operation();
addedBehavior();

addedBehavior()

https://sourcemaking.com/design_patterns/decorator

Implementation considerations

• Dynamic uses of Bridge should be implemented via Decorator.

• Decorator enables client-specified embellishment of a core object by
recursively wrapping it (possibly more than once) dynamically at runtime.

• Java I/O is a famous example of the Decorator pattern.

See kymr.github.io/2016/11/27/Decorator-Pattern

Bridge GoF Object Structural

https://kymr.github.io/2016/11/27/Decorator-Pattern/

Known uses

• ET++ Window/WindowPort

• libg++ Set/{LinkedList, HashTable}

• ACE Reactor framework

Bridge is used more in C++ than in C++ (which uses interfaces & factories).

Bridge GoF Object Structural

Known uses

• ET++ Window/WindowPort

• libg++ Set/{LinkedList, HashTable}

• ACE Reactor framework

• AWT Component/ComponentPeer

See www.soberit.hut.fi/tik-76.278/group6/awtpat.html

Bridge GoF Object Structural

http://www.soberit.hut.fi/tik-76.278/group6/awtpat.html

Known uses

• ET++ Window/WindowPort

• libg++ Set/{LinkedList, HashTable}

• ACE Reactor framework

• AWT Component/ComponentPeer

• Java Socket/SocketImpl

See docs.oracle.com/javase/tutorial/networking/sockets

SocketImplSocket

WindowsSocketImpl UNIXSocketImplSSLSocket CompressionSocket

operation()operation()

Variations in how Socket is implemented

Bridge GoF Object Structural

Variations in what service Socket provides

https://docs.oracle.com/javase/tutorial/networking/sockets/index.html

ReentrantLock Sync

FairSync NonFairSync

Decouples synchronizer interface from
its implementation so fair & non-fair

semantics can be supported uniformly

Known uses

• ET++ Window/WindowPort

• libg++ Set/{LinkedList, HashTable}

• ACE Reactor framework

• AWT Component/ComponentPeer

• Java Socket/SocketImpl

• Java synchronizers

See www.baeldung.com/java-concurrent-locks

Bridge GoF Object Structural

http://www.baeldung.com/java-concurrent-locks

Summary of the Bridge Pattern
Bridge decouples the expression tree programming API from its
behavior & implementation to enable transparent extensibility.

CompositeBridge

Expression_Tree
Component_Node

Composite_Binary
Node

Composite_Negate
Node

Composite
Add_Node

Composite
Multiply_Node

Composite
Divide_Node

Composite
Subtract_Node

Leaf_Node

Instrumented
Expression

Tree

Synchronized
Expression

Tree

Composite
Unary_Node

Bridge Composite is an example of a “pattern compound.”

See www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf

http://www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf

