The Impact of Ultra-Large-Scale (ULS) Systems on DoD Operations

Tuesday, January 19th, 2010

Dr. Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee

DoD's Software Challenge

"DoD estimates that it spends about 40% of its RDT&E budget on software - \$21B for FY2003" - GAO

F/A-22

DDG

1000

SBIRS High

Joint Tactical Radio Systems (JTRS)

Future Combat System (FCS)

"The software task alone [for FCS] is 5 times larger

- than required for Joint Strike Fighter & 10 times larger than the F-22, which after two decades is finally meeting its software requirements"
 - Congressman Curt Weldon, House Armed Services Committee tactical air & land forces subcommittee hearing April 1, 2004 quoted in <u>Defense News</u> April 12, 2004

DoD Software is Growing in Size & Complexity

"[Software] continues to grow in importance in our weapons systems & remains a significant contributor to program cost, schedule, & performance shortfalls."

— Pete Aldridge, former Under Secretary of Defense, ATL

DoD Software is Growing in Size & Complexity

Total Onboard Computer Capacity for Operational Flight Program

Source: "Avionics Acquisition, Production, & Sustainment: Lessons Learned -- The Hard Way", NDIA Systems Engineering Conference, Mr. D. Gary Van Oss, October 2002.

"[Software] continues to grow in importance in our weapons systems & remains a significant contributor to program cost, schedule, & performance shortfalls."

— Pete Aldridge, former Under Secretary of Defense, ATL

DoD Software Science & Technology Status

Misconception

Reality

The IT industry is a well-populated oasis for DoD programs

IT R&D investment is needed to seed & transform the IT desert for the DoD

Limitations with software contribute significantly to gap between the IT that the DoD *needs* vs. the IT that the DoD can *afford* given

- Current level of technology maturity
- Decade-long tailing off of DoD software R&D investments (especially 6.2 investments)
- Atrophy of government expertise-base

DoD Software Science & Technology Status

Misconception

The IT industry is a well-populated oasis for DoD programs

Reality

IT R&D investment is needed to seed & transform the IT desert for the DoD

Why Industry Alone Won't Solve the DoD Software Problem

- Commercial R&D often inappropriate for DoD problems
 - It's targeted for specific products, not long-term tech improvement
 - Focused on selling products dependability is lower priority
 - Global resourcing/competition for R&D limits applicability to DoD

DoD Software Science & Technology Status

Misconception

The IT industry is a well-populated

oasis for DoD programs

Microsoft Google Cisco Apple **IBM**

Telcordia

Reality

IT R&D investment is needed to seed & transform the IT desert for the DoD

Why Industry Alone Won't Solve the DoD Software Problem

For Defense contractors

Xerox PARC

R&D targeted at company-specific projects

Motorola

- Software enhances competitiveness but not a direct profit driver for many DoD activities
- Less interest in retaining software technologies as company IP

Increasing Scale In DoD Systems

DoD is creating increasingly complex ultra-large-scale, network-centric, real-time, cyber-physical-social systems

- 1,000's of platforms, sensors, decision nodes, weapons, & warfighters
- connected through heterogeneous wired
 & wireless networks

Goal: Information Dominance

- Pervasive resource constraints & failures
- Continuous adaptation
 - changes in mission requirements
 - changes in operating environments
 - changes in force structure
 - perpetual systems' evolution
 - addition of new systems
- Sustainable
 - legally, technically, politically, environmentally, & economically

Overview of DoD Ultra-Large-Scale (ULS) Systems

ULS systems are socio-technical ecosystems comprised of softwareintensive systems, people, policies, cultures, & economics

DoD ULS systems have unprecedented scale in the following dimensions:

- # of lines of software code
- # of connections & interdependencies
- # of hardware elements
- # of computational elements
- # of purposes & user perception of purposes
- # of routine processes & "emergent behaviors"
- # of (overlapping) policy domains & enforceable mechanisms
- # of people involved in some way
- Amount of data stored, accessed, & manipulated
- ... etc ...

ULS systems report & related information available from www.sei.cmu.edu/uls

Scale Changes Everything in DoD ULS Systems

Characteristics of DoD ULS systems that arise because of their scale include

- Decentralization
- Inherently conflicting, unknowable,
 & diverse requirements
- Continuous evolution & deployment
- Heterogeneous, inconsistent, & changing elements
- Erosion of the people/system boundary
- "Normal" failures
- New paradigms for acquisition & policy

These characteristics appear in some of today's DoD systems, but in ULS systems they dominate, undermining assumptions that underlie today's technologies, rendering incremental solutions inadequate

DoD ULS Systems: A Cause for Concern

DoD ULS systems are becoming larger & more complex than any seen before

- very serious technical challenges, some obvious & some to be discovered
- many vendors, many technologies, many systems, etc.
- evolving doctrine + evolving technology + ill-defined requirements

"Our soldiers depend on software & will depend more on software in the future.

The Army's success depends on software & the software industry.

We need better tools to meet future challenges, & neither industry nor government is working on how to do things light-years faster & cheaper.

How can future systems, which are likely to be a billion lines of code, be built reliably *if we can't even get today's* systems right?"

— Asst Sec Army Claude Bolton, August 16, 2005

Toward a ULS Systems R&D Roadmap Network-Centric Warfare Unmanned Systems Chissile Defense Cyber-Cyber Networking whoodded systems **Physical** Infrastructure Time Critical Target **Engineering** & Protection Autonomous

Autonomous

& Semi-Auto

Software System Network Enablers High Performance Nemoting Embedded Processing Core **Software** Human Computer Interactions **Technologies** Human Intelligent Softwo Dynamic Dimension & Psychological Factors Asymmetric Threats Information **Biometrics** AccessCognitive Social **Sciences Sciences** Interdisciplinary 6.1 & 6.2 R&D is essential

Toward a ULS Systems R&D Roadmap

- The ULS Systems Report presents three possible ways to structure a research program based on
 - Specific DoD missions & capabilities
 - 2. DoD research funding types required
 - 3. Estimates of the relative starting points of the research
- Sponsors with different needs can choose to support different combinations of research

Table 4: Research Areas and Range of Risk/Reward

Research Areas and Topics	Existing Groundwork	Breaking Ground	New Direction
Human Interaction			
6.1.1 Context-Aware Assistive Computing	•		
6.1.2 Understanding Users and Their Contexts	•	•	
6.1.3 Modeling Users and User Communities		•	•
6.1.4 Fostering Non-Competitive Social Collaboration		•	•
6.1.5 Longevity	•	•	•
Computational Emergence			
6.2.1 Algorithmic Mechanism Design	•	•	•
6.2.2 Metaheuristics in Software Engineering	•	•	
6.2.3 Digital Evolution	•	•	
Design			
6.3.1 Design of All Levels	•	•	•
6.3.2 Design Spaces and Design Rules		•	•
6.3.3 Harnessing Economics to Promote Good Design	•	•	•
6.3.4 Design Representation and Analysis		•	•
6.3.5 Assimilation	•	•	•
6.3.6 Determining and Managing Requirements	•	•	•
Computational Engineering			
6.4.1 Expressive Representation Languages	9	•	•
6.4.2 Scaled-Up Specification, Verification, and Certification			

The envisioned outcome of the research is a spectrum of technologies & methods for developing ULS systems, with national-security, economic, & societal benefits that far extend beyond ULS systems themselves

See Chapter 5 of ULS Systems Report available from www.sei.cmu.edu/uls

Problem: the "Valley of Disappointment"

- Corporate R&D developments gapped
- University path to marketplace is not deterministic
- Results often not even available for future R&D programs
- Problem even worse for "community development programs" since more mouths to feed!

This gap is killing IT R&D for the DoD, which hurts researchers, system integrators, & the DoD

Helping Bridge "Valley of Disappointment"

Software & System PRodUcibility Collaboration & Experimentation Environment (SPRUCE) – AFRL/OSD program

- SPRUCE is an open collaborative environment to show how novel tools & methods can yield affordable & predictable production of software-intensive systems
- The SPRUCE portal provides collaborative capabilities to support interaction across researchers, developers, domain experts, & acquisition program offices

https://www.sprucecommunity.org/

SPRUCE Enables Software Producibility Initiative

SPRUCE's goal is to enable more effective technology transitions

- Concept studies co-evolve with challenge problems & customized testbed
- Acquisition programs motivated to get involved much earlier in R&D process
- R&D results/artifacts more likely to solve "real" acquisition problems

Concluding Remarks

- DoD ULS systems require major innovative advances in software tools & platforms
- Not all technologies provide the precision we're accustomed to in traditional smallerscale DoD systems
- Fundamental advances in computing technology & related disciplines needed to address DoD ULS systems challenges
- Significant groundwork from earlier R&D programs

- Much more R&D needed for DoD ULS systems
 - Both 6.1 & 6.2
 R&D investments

Federal investment in software R&D is essential for long-term success

Acknowledgements

Thanks to

- Linda Northrop & her ULS Systems team at the Software Engineering Institute
- Andre Von Tilborg, Principal Deputy, DDR&E
- Rob Gold, Deputy Under Secretary of Defense for Science & Technology
- Shankar Sastry, Dean of Engineering School, University of California, Berkeley
- Janos Stipanovits & Gabor Karsai, Professors of Electrical Engineering & Computer Science, Vanderbilt University

Background on Dr. Douglas C. Schmidt

R&D Focus & Accomplishments

- Professor of Computer Science at Vanderbilt University
- Visiting scientist at the Software Engineering Institute
- Published 9 books & over 425 technical papers on software patterns, optimization techniques, & empirical analyses of object-oriented middleware frameworks & domain-specific modeling environments
- Led the development of ACE & TAO, which are open-source middleware frameworks widely used by DoD & commercial projects

R&D Impact on DoD Acquisition Programs

- R&D on middleware, frameworks, patterns, & model-driven tools has created ACE & TAO
- ACE & TAO have transitioned to 100's of DoD programs & projects, including
- US Navy DDG1000 program with Raytheon, LMCO, & DARPA

 USS Ronald Reagan aircraft carrier advanced tactical displays system with Raytheon

www.dre.vanderbilt.edu/ users.html

US Air Force in collaboration with Boeing

 DMSO HLA/RTI & DISA TENA with SAIC

US Government Service

DARPA ITO/IXO Program Manager & Deputy Director: 2000 – 2003

DARPA PCES Capstone demo, April 14, '05, White Sands Missile Range

US Government Service

- Member of National Academies study on Advanced Software Intensive Systems Producibility
- Member of the Engineering & Methods Technical Advisory Group for the Software Engineering Institute (SEI)
- Member of US Army & SEI study on Ultra Large Scale (ULS) systems
 - ULS systems report available at www.sei.cmu.edu/uls
- Member of Joshua advisory board for Air Force Research Lab (AFRL)
- Co-chair for Software Design & Productivity (SDP) Coordinating Group of the US Information Technology Research & Development (IT R&D) Program

