
Battle-Tested Patterns in Android ConcurrencyBattle-Tested Patterns in Android Concurrency

Doug Stevenson
Friday, December 7, 2012 2:00pm

Slides gzip: http://goo.gl/53eVv
Code Samples: http://goo.gl/pL1tK

2

Why Threading and Concurrency?

● Smooth, responsive UI while performing background work
● Speed things up using multiple cores
● Improve your engineering skills

3

Most Important Concerns

Keep I/O and heavy CPU work off the main thread

Why: Avoid ANR!

Includes: File access, database work, network access
(use strict mode to find blocking calls)

All UI updates (changes to the View hierarchy) must be on the
main thread

Why: Android will enforce it (your app will crash)

4

Most Important Concerns

Don’t leak Activity references

Why: Risk of running out of memory

Design for concurrency correctness up front

Why: Or your users will discover the edge cases and give you bad
ratings

5

Possible Solution: Direct Java Threads

What they do:
● Whatever you tell the threads to do

When to use them:
● You need full control over threading behavior
● You fully understand the concurrency behavior of the entirety of your app

What they DO NOT do:
● Handle activity lifecycle and configuration changes
● Facilitate UI updates

6

Direct Java Thread Example

private TextView tv;

protected void onCreate(Bundle) {
 ...
 tv = (TextView) findViewById(...);

 new Thread() {
 public void run() {
 // load the result string from some blocking data source
 final String result = ???;
 runOnUiThread(new Runnable() {
 public void run() {
 tv.setText(result);
 }
 }
 }
 }.start();
}

7

Direct Java Thread Example

What could go wrong here?

● Leaking Activity reference
(non-static inner classes contain an implicit hard reference to
any outer classes)

● tv instance is not longer visible to the user after configuration
change

8

Direct Java Thread Example

Anti-pattern Fix #1:

● Setting the activity’s screenOrientation attribute in the manifest

<activity android:screenOrientation="portrait" />

9

Direct Java Thread Example

Anti-pattern Fix #2:

● Setting the activity’s configChanges attribute in the manifest

<activity android:configChanges="orientation|keyboardHidden" />

<activity android:configChanges="orientation|keyboardHidden|...|..." />

10

Tips for Using Java Threads

#1 Have a strategy for dealing with configuration changes.

Handle Activity start/stop
● Interrupt/quit the thread and save work in onDestroy (or onStop)
● Resume work in onCreate (or onStart) of the new activity.

Rather maintain the running thread?
● Don't do this (but stay tuned!)

11

Tips for Using Java Threads

#2 Minimize the chance of uninterruptible work

● Use connect and read timeouts with socket I/O and HTTP libs
● Check for thread interruption in CPU-bound loops

12

Tips for Using Java Threads

#3 Prevent Activity leaks

● Force a decoupling of Activity/View instances with Thread
instances

● If needed, find a way to do UI updates

13

Summary: Using Java Threads

Do not use threads directly in your activities unless you
absolutely know what you’re doing!

14

Possible Solution: AsyncTask

What it does:
● Provides a mechanism to put one or more uniform units of work in a

separate thread
● Work results are individually published to the main thread

When to use it:
● You have several (small) uniform things to do in an activity that makes

changes to the UI

For example:
● Decoding bitmaps
● Repeated database queries

15

Possible Solution: AsyncTask

What it DOES NOT do:
● Does NOT handle activity lifecycle and configuration changes
● Does NOT behave consistently between different Android

versions
– < 1.6, all AsyncTasks shared a single thread

– 1.6 <=> 2.3, AsyncTasks shared a thread pool of 5 threads max

– >= 3.0, back to single shared thread

– >= 3.0, API to choose an Executor to run AsyncTasks on

16

Possible Solution: AsyncTask

NOT recommended for:
● Long running operations
● Network I/O

17

AsyncTask Usage

AsyncTask must be subclassed specifying its generic types:

public class YourAsyncTask extends AsyncTask<Params, Progress, Result>

● Params is the work unit input data type
● Progress is the work unit progress data type
● Result is the overall result of the task
● Any type may be Void if unused

18

AsyncTask Code Structure

public class SampleAsyncTask extends AsyncTask<Params, Progress, Result> {
 @Override
 protected void onPreExecute() {
 // OPTIONAL: Called on the main thread for init
 }
 @Override
 protected Result doInBackground(final Params... params) {
 // REQUIRED: Iterate and process params on background thread
 // Call publishProgress(Progress...) to send results to main thread
 // Return Result
 }
 @Override
 protected void onProgressUpdate(final Progress... values) {
 // Called on main thread for each call to publishProgress()
 }
 @Override
 protected void onPostExecute(final Result result) {
 // OPTIONAL: Called on the main thread after all background work is done
 }
}

19

AsyncTask Usage

Pass one or more units of work to AsyncTask by calling:
public AsyncTask execute(Params... params)

Cancel an AsyncTask using:
public final boolean cancel(boolean mayInterruptIfRunning)

Check to see if canceled in doInBackground():
public final boolean isCancelled()

20

AsyncTask Summary

● Better than managing Java Threads
● Helps with putting incremental results on the main thread
● Inconsistent behavior on different API levels
● Still can leak an Activity if not careful

21

AsyncTask Demo

See ActivityBasicAsyncTask.java

22

AsyncTask: Avoiding Activity Leaks

● Make the AsyncTask subclass static (if inside the Activity) or a
standalone class

● In the constructor, pass in the Activity object and use a
WeakReference to hold it.

● Check the Activity WeakReference contents for null on each
access

● Remember to cancel it no later than onDestroy

23

Visualizing Activity Leaks

A1

onCreate

Post UI
update(s)

onDestroy

T1

onCreate T2

A2

Post UI
update(s)

Dead UI
updates

Leaked
A1

?

?

Config
Change

24

Possible Causes of Activity Leaks

● T1 doesn't end quickly after onDestroy
– Forgotten? Uninterruptible? Blocked? Busy loop?

● AND: T1 prevents A1 to be garbage collected
– T1 holds a direct strong ref to A1, e.g.:

T1: A1.getResources().getString(...);

– OR: T1 is an inner member class of A1 (implicit strong ref to A1)

– OR: T1 holds an indirect strong ref to A1, e.g.:

A1: Manages a Handler that performs UI updates
T1: Handler.post(message)

25

Possible Solution: Loaders

What they do:
● Put a single unit of work on separate thread
● Delivers the result of the work on the main thread
● Continue pending work during a configuration change
● Remember the result between activity configuration changes
● Can monitor a source of data for change, notifying the Activity

on change (e.g. CursorLoader)

26

Loader Illustrated

A1 A2

L1

Reorient

27

Possible Solution: Loaders

Use them when:
● You have discrete data to fetch or compute in a single activity

that will update the UI
● You have work to do that must survive the Activity lifecycle after

a configuration change

For example:
● Load data (from a database, file, network) for display

28

Loader Notes

Loaders first available in API level 11 (Honeycomb):

android.content.Loader

android.app.LoaderManager

subclass android.app.Activity

Loaders available to API level 4 via Android Compatibility library:

android.support.v4.content.Loader

android.support.v4.app.LoaderManager

subclass android.support.v4.app.FragmentActivity

29

Loader Usage

Two parts to using a loader:

1. Loader class
● Subclass of Loader android.support.v4.content.Loader
● Performs background work in another thread
● Instances managed by LoaderManager

2. LoaderCallbacks class
● Impl android.support.v4.app.LoaderManager.LoaderCallbacks
● Creates the Loader instance to use
● Receives the Loader's results, updates the Activity UI

30

Loader Usage: Loader Class

public class YourLoader extends SomeBaseLoader<Result> {

 private final int arg;
 public YourLoader(final Context context, final int arg) {
 super(context);
 this.arg = arg;
 }

 @Override
 protected Result loadInBackground() {
 Result result;
 // use arg to load Result in the background
 return result;
 }

}

31

Tips for Loaders

● Should never contain Activity instances
● May never be non-static inner class in an activity (enforced)
● The Loader decides how to background blocking work

32

Loader Usage: LoaderCallbacks Class

public class YourLoaderCallbacks implements LoaderCallbacks<Result> {

 @Override
 public Loader<Result> onCreateLoader(final int loader_id, final Bundle args) {
 // Create the Loader instance; pass stuff from args into it if necessary
 return new YourLoader(context, args.getInt("key"));
 }

 @Override
 public void onLoadFinished(final Loader<Result> loader, final Result data) {
 // Do something with the loaded result in the UI
 }

 @Override
 public void onLoaderReset(final Loader<Result> loader) {
 // typically empty
 }

}

33

Tips for LoaderCallbacks

● Typically implemented as Activity inner classes
● May contain/use Activity instances without leaking
● But don't pass Activity instances through to the Loader!
● Typically take parameters from the args Bundle
● (but you don't have to pass params that way)

34

LoaderManager

Manages instances of Loaders between Activity instances.

For one-time loads, typically done during onCreate():

LoaderManager lm = getSupportLoaderManager();

LoaderCallbacks<Result> callbacks = new YourLoaderCallbacks();

Loader<Result> loader = lm.initLoader(

 LOADER_ID,

 (Bundle) null,

 callbacks

);

35

LoaderManager.initLoader

Two circumstances to remember when you call initLoader()

1. If the Loader with the given id IS NOT already created:
– The given LoaderCallbacks is asked to create a new one

– The new loader starts its loadInBackground()

2. If the Loader with the given id IS already created:
– The given LoaderCallbacks is associated with the existing Loader

– If the load is already complete, callbacks will be notified next cycle

36

Other LoaderManager Methods

Loader<T> getLoader(int id)

Returns the Loader with the given id or null if not running.

void destroyLoader(int id)

Stops the Loader with the given id.
If already finished work, calls LoaderCallbacks.onLoaderReset.

Loader<T> restartLoader
 (int id, Bundle args, LoaderCallbacks<T> data)

If Loader not already running, works like initLoader.
If Loader already running, it will be destroyed first.

37

About Android’s AsyncTaskLoader

● AsyncTaskLoader is a Loader implementation by Google
● Implemented on top of AsyncTask
● Inherits all of AsyncTask’s idiosyncrasies
● Doesn’t always work exactly as a Loader should:

http://code.google.com/p/android/issues/detail?id=14944

http://code.google.com/p/android/issues/detail?id=14944

38

ExecutorServiceLoader: A better loader

● Default operation puts all work on a singleton thread
● Or you can give it an ExecutorService to handle threading
● If you give it an ExecutorService, make it also a global singleton

– DO NOT create a new ExecutorService in onCreate()

● Requires your results to be a ResultOrException<T, E>
– Data container for a generic result type or an Exception subclass

– Handy because Loaders can't “throw”, but can generate errors

– Must check if result or exception exists before using either

39

Basic Loader Demo

See ActivityBasicLoader.java

40

Loader as a Non-static Inner Class

Loader helps defend against accidental Activity leaks:
● All Loader classes are required NOT to be a non-static inner

class.
● Non-static inner class loaders will make your app will crash:

java.lang.IllegalArgumentException: Object returned from onCreateLoader
must not be a non-static inner member class

● Nothing stopping you from injecting an Activity into a custom
loader.

41

Non-Static Loader Demo

See ActivityInvalidNonStaticLoader.java

42

A Tricky Situation with a Loader

1. You have a Button that:
● Kicks off a Loader (NOT in onCreate())
● Updates UI to disable the button and show a wait spinner

2. Configuration change → new Activity

3. New Activity needs to reattach the Loader and disable the button

Problems:
● You can't blindly call initLoader() in onCreate()
● getLoader() won't tell you if the loader is in progress or finished

43

Stateful Loader Part 1

Create a Loader subclass with a method getState() that returns an enum
for load state (e.g. Loading, Loaded).
public class StatefulLoader extends BaseLoader<Result> {

 private volatile State state;

 public static enum State { Loading, Loaded; }

 public State getState() { return state; }

 protected Result loadInBackground() {

 state = State.Loading;
 // Do your loading here
 state = State.Loaded;

 return result;

 }
}

44

Stateful Loader Part 2

Then in onCreate():
initViews();

LoaderManager lm = getSupportLoaderManager();
Loader<Result> loader = lm.getLoader(LOADER_ID);
StatefulLoader statefulLoader = (StatefulLoader) loader;

if (statefulLoader != null) {

 lm.initLoader(LOADER_ID, null, new YourLoaderCallbacks());

 switch (statefulLoader.getState()) {
 case Loading:
 updateUiLoading();
 break;
 case Loaded:
 break;
 }

}

45

Another Trick for Saving Loader State

How to keep track of multiple potential loaders?

1. Remember all Loader ids that have been init'd

2. In onSaveInstanceState(), save all init'd loader ids in the state
bundle

3. In onCreate():

a) Get list of saved loader ids from the Bundle arg

b) Check their state, update UI

c) Init each each loader id again

46

Tracking Loader Work Progress

If you have a Loader that should track incremental progress:
● Start with Stateful Loader pattern
● Use LocalBroadcastManager as a data exchange mechanism
● In the Loader, broadcast progress updates
● Implement a BroadcastReceiver to handle progress updates
● Register the BroadcastReceiver in onCreate() /

Unregister in onDestroy()

47

Tracking Loader Demo

See ActivityProgressLoader.java

48

CursorLoader: Loading from ContentProvider

To use Android's CursorLoader, you need a Uri for a
ContentProvider:

● From an Android system component (Calendar, Contacts,
Media)

● From another app
● One you created for yourself

http://developer.android.com/guide/topics/providers/content-
providers.html

49

CursorLoader Usage

1. Create a LoaderCallback that implements
LoaderCallbacks<Cursor>

2. In onCreateLoader(), create and return a CursorLoader with the
ContentProvider query

3. In onLoadFinished(), make use of the Cursor

50

CursorLoader Callbacks Example

public class YourLoaderCallbacks implements LoaderCallbacks<Cursor> {

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return new CursorLoader(activity, content_uri, ...);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 listView.setAdapter(new YourCursorAdapter(activity, data, 0));
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 }

}

51

CursorLoader Demo

See ActivityMusicCursorLoader.java

52

Loaders and Asynchronous APIs

Using a fully asynchronous API?
(methods return immediately, work is on another thread, calls a
listener on completion)

1. Call the API in loadInBackground()

2. Use a CountDownLatch to block the Loader thread and wait for
a result

3. Have the listener signal the Latch and store the API result

4. After the Latch unblocks the main thread, fetch the result and
return it

53

Loaders and Asynchronous APIs

Call API

Listener

API
Thread

Loader
Thread

Unblock
Latch

Block on
Latch

API thread
does work

Fetch
Result,
Return

API complete,
Calls Listener

54

When Not to Use a Loader

● Lots of little downloads (e.g. thumbnails)
● The load needs to continue after the activity is done

55

Loader Summary

● Loader is a useful and underutilized tool for Android
development.

● Some boilerplate overhead in coding, but addresses the most
common problems with background tasks in Activities

56

Services

Quick overview:
● Android app component
● A Service is its own Context
● Lifecycle independent of Activities
● Don't restart with configuration changes
● Instances must provide their own threading behavior
● Can be a “started” service or a “bound” service, or both

– Only dealing with started services here

57

Started Services

Use a started service when your background work:
● Must continue beyond the Activity that initiated it
● May be started at any time and may run indefinitely

For example:
● Large background uploads, downloads, data refresh, sync
● Lengthy computation
● Background media playback
● Other background operations that the user should be aware of

58

Started Services

Be careful:
● Manage the lifecycle of the service
● Manage threading directly or use IntentService behavior
● Figure out how to publish data to other parts of the app

59

IntentService

● Single thread per service
● All work queued and serialized on that thread
● Service is “started” when work is active or pending
● No more work? Thread goes away and service stops

60

IntentService Usage

● Subclass IntentService
● Add the Service to AndroidManifest.xml
● Override onHandleIntent(Intent)
● Logic in onHandleIntent parameterized by the contents of the

intent (action, extras)
● Initiate work using context.startService(Intent)

– Intent instance uses the class of the IntentService subclass

61

IntentService Example: Service

public class YourIntentService extends IntentService {

 public MyIntentService() {
 super("YourIntentService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 // Called on background thread, take action on intent

 String action = intent.getAction(); // could use action as switch
 if ("ACTION".equals(action)) {
 int repeat = intent.getIntExtra("repeat", 5);
 // Do stuff
 }

 }

}

62

IntentService Example: Client

Intent intent = new Intent(context, YourIntentService.class);
intent.setAction("ACTION");
intent.putExtra("repeat", 5);
startService(intent);

63

IntentService Demo

See IntentServiceBasic.java and ActivityBasicIntentService.java

64

Looper, Handler, HandlerThread

Looper
● Implements a message loop/queue/pump on a Thread
● One Looper → One Thread
● Looper logic:

1. Wait for message

2. Execute message

3. Goto 1

65

Looper, Handler, HandlerThread

Handler
● Schedules and executes work on a Thread with a Looper
● Messages may be scheduled

– sendMessage(), sendMessageAtTime(), sendMessageDelayed()

● Runnables may be scheduled
– post(), postAtTime(), postDelayed()

● One Handler → One Looper → One Thread
● One Thread → Multiple Handlers

66

Looper, Handler, HandlerThread

HandlerThread
● Convenience class for:

– Starting a new Thread
– Creating a Looper on it

● Once started, ready for new Handlers to give it work

HandlerThread handlerThread = new HandlerThread("Name", priority);
handlerThread.start();
Looper looper = handlerThread.getLooper();
Handler handler = new YourHandler(looper);
// Now post runnables and messages to handler for exec on thread...
looper.quit();

67

Optimizing Intermittent Network I/O

● e.g. High throughput remote API calls with small payloads
● Limit to one or two threads to prevent saturating a slow

connection
● Maybe increase threads if connection speed is high

68

Optimizing Sustained Network I/O

● e.g. Downloading large files and images
● Limit to just one thread to prevent saturating a slow connection

69

Optimizing File I/O

● e.g. Simple database queries that can touch many rows
● e.g. Access to external storage
● Limit to just one thread (per storage device) to prevent I/O

thrashing

70

Optimizing Heavy CPU Work

● e.g. Decoding many/large bitmaps (or any media)
● e.g. Performing complex database operations (could be I/O

intense as well)
● Limit to number of CPU cores minus one

– Runtime.getRuntime().availableProcessors();

71

Other concurrency tips

● Android has all the same thread tools and issues as Java 5.
– java.util.concurrent.* (Semaphore, BlockingQueue, etc)

● Devices may not power up all their CPU’s cores immediately
● Avoid polling loops at any cost
● Smartly use android.os.Process.setThreadPriority(prio)

– android.os.Process.THREAD_PRIORITY_BACKGROUND

– android.os.Process.THREAD_PRIORITY_AUDIO

– (Do NOT use java.lang.Thread.setPriority())

72

Other concurrency tips

● Consider Renderscript Computation (API 11+) to offload heavy
math to the GPU
– http://developer.android.com/guide/topics/renderscript/compute.html

73

Feedback?

Please use the EventBoard app!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	page0
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

