
Developing Distributed Computing Systems with Patterns and Middleware

Douglas C. Schmidt
February 19-21, 2008

UCLA Extension, Los Angeles, California

A distributed system is a computing system in which a number of components cooperate by
communicating over a network. The explosive growth of the Internet and the World Wide Web in
the mid-1990s moved distributed systems beyond their traditional application areas, such as
industrial automation, defense, and telecommunication, and into nearly all domains, including e-
commerce, financial services, health care, government, and entertainment. Developing high-
quality software for distributed systems is hard; successfully developing and applying high-quality
reusable software is even harder. The principles, methods, and skills required to develop and
apply reusable distributed systems software cannot be learned by generalities and concepts
alone. Instead, researchers, developers, and educators must learn through hands-on experience
how reusable software components, frameworks, and applications can be designed,
implemented, optimized, validated, maintained, and enhanced by applying good development
practices, patterns, tools, and platforms.

Intended for software developers who design and implement software for distributed systems, this
course provides an active learning context where participants can significantly improve their skills
related to building and applying reusable software assets for distributed systems. Emphasis is on
hands-on exercises and analysis of case studies that illustrate by example how to create and
apply effective reusable distributed systems software. A theme pervading this course is that
knowledge of middleware, patterns, components, and frameworks--together with model-driven
engineering (MDE) tools--can significantly reduce the complexity of developing software for
distributed systems.

Two types of distributed software complexity are addressed:

Complexity Due to Changes in Functional Requirements
Some distributed system complexities are due to the need to accommodate changing
requirements in functionality. Change is inevitable since user requirements, component
interfaces, and developers' understanding of their application domain all change. Well-designed
software must evolve to support these changes, especially in today's competitive global markets.

Complexity Due to Challenging Quality of Service (QoS) Requirements
Some distributed system complexities arise because software is required to perform its
functionality while meeting challenging QoS properties, such as latency, jitter, scalability,
dependability, and security. In many distributed systems the right answer delivered too late
becomes the wrong answer, e.g., they do not function correctly if too much latency is incurred.

To address these complexities the course illustrates by example how to simplify and enhance the
development of software for distributed systems by effective use of:
• Advanced application and middleware design techniques, such as patterns, layered

modularity, information hiding, and generative design
• Language features, such as abstract classes; inheritance, dynamic binding, and

parameterized types
• Middleware platforms, such as object-oriented network programming frameworks, request

brokers, and service-oriented architectures
• Model-driven engineering (MDE) tools, such as Eclipse and the Generic Modeling

Environment (GME)
• Advanced operating system mechanisms, such as asynchronous I/O, proactive and reactive

event demultiplexing, multi-threading, and dynamic linking

PREREQUISITES
Familiarity with general object-oriented design and programming techniques, interprocess
communication, and networking terminology.

COURSE MATERIALS
The text, Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing,
F. Buschmann, K. Henney, and D. Schmidt (Wiley & Sons, 2007), and lecture notes are
distributed on the first day of the course. The notes are for participants only and are not for sale.

COORDINATOR AND LECTURER
Douglas C. Schmidt, PhD, Professor, Electrical Engineering and Computer Science
Department, Vanderbilt University, Nashville, Tennessee. Dr. Schmidt's pioneering research
focuses on patterns, implementation, and experimental analysis of object-oriented techniques for
developing high-performance distributed applications. In addition to his academic research, he
has successfully applied object-oriented analysis, design, and programming techniques in a
number of large-scale commercial projects. Dr. Schmidt is the chief architect and developer of the
ADAPTIVE Communication Environment (ACE) and The ACE ORB (TAO), which are freely
available object-oriented middleware frameworks that implement a rich set of design patterns that
recur when building high-performance and real-time distributed systems software. ACE and TAO
have been used successfully on many large-scale projects at companies, such as BBN, Boeing,
Cisco, Ericsson, Lockheed Martin, Lucent, Motorola, Nokia, Nortel, Raytheon, and Siemens.

Dr. Schmidt has published widely in IEEE, IFIP, ACM, and USENIX technical conference papers
and journals on communication software systems, parallel processing for high-performance
networking protocols, distributed object computing, and object-oriented design patterns and
programming. He is the lead author of the course text; the book Patterns for Concurrent and
Networked Objects, Volume II (Wiley & Sons, 2000); the two volumes of C++ Network
Programming books by Addison-Wesley; and has co-edited several other books on patterns and
frameworks. In addition, he was editor-in-chief of the C++ Report magazine and writes a column
on CORBA with Steve Vinoski for the C/C++ Users Journal. Dr. Schmidt has presented keynote
addresses and tutorials on reusable design patterns, concurrent object-oriented network
programming, and distributed object systems at hundreds of conferences.

UCLA FACULTY REPRESENTATIVE
Alfonso F. Cardenas, PhD, Professor, Department of Computer Science, Henry Samueli School
of Engineering and Applied Science

COURSE PROGRAM
Overview of Distributed Computing Systems
The key characteristics and challenges of developing distributed computing systems; key
software technologies that have emerged to resolve these challenges, including distributed object
computing, component middleware, publish/subscribe middleware, service-oriented architectures,
and Web services.

Overview of Patterns and Pattern Languages
Introduction to patterns, including their history, and a number of pattern concepts; the anatomy of
a pattern--what it offers and what drives it; the relationships often found between patterns; pattern
languages--what they are and how they can be presented and used for distributed computing
systems.

Presentation of a Pattern Language for Distributed Computing Systems
A pattern language for distributed computing that addresses the following technical topics
relevant for building distributed systems: specifying an initial software baseline architecture,
understanding communication middleware, event demultiplexing and dispatching, interface
partitioning, component partitioning, application control, concurrency, synchronization, object

interaction, adaptation and extension, modal behavior, resource management, and database
access.

For more information call the Short Course Program Office at (310) 825-3344; fax (310) 206-
2815.

Dates February 19-21 (Tuesday through Thursday)
Time 8 am-5 pm (subject to adjustment after the first class meeting)
Location Room 211, UCLA Extension Building, 10995 Le Conte Avenue (adjacent to the

UCLA campus), Los Angeles, California
Reg#
Course No. Engineering 819.365
Units 1.8 CEU (18 hours of instruction)
Fee $1,695, includes course materials

$100 nonrefundable; no refund after February 7, 2008; however, course fee (less
$100) may be applied toward another short course enrollment.

