
1

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

all all all use of the word
synchronization in the
concurrency patterns might
confuse readers: why aren’t
these patterns in the
synchronization chapter
then?

replace synchronization
with coordination

Front
cover

8 1 (447)provides (447) provides FB 24.10.00

XIII 1 5 Programming Design Program Design FB 24.10.00 2

XIII 1 9 [Bat97] [Bat79] FB 25.07.00 2

XIV 7 1 Distributed Networked FB 24.10.00 2

XVI 3 1 Distributed Networked FB 24.10.00 2

XVIII 4 2 Federico Frederico FB 24.10.00 2

XVIII /
XIX

add Kobi Cohen-Arazi,
Robert Crell, Mike Curtis,
Christopher Kohlhoff,
Patrick Rabau, Eric Sam-
uelsson, Stefan Scherer,
and Johnny Willemsen to
list of generally acknowl-
edged people. This causes
pagination to break.

FB 24.10.00 2

XIX 1 2 add Chung-Horng Lung FB 06.05.01

XX 2 1 Very special thanks go to
Steve Rickaby, our copy
editor,

Very special thanks go to
Steve Rickaby, of Word-
mongers Ltd, our copy ed-
itor,

FB 31.07.00 2

XXI 1 8 design patterns patterns and pattern lan-
guages

FB 18.09.00 2

XXIII 3 1 Principal Senior Senior Principal FB 30.10.00 2

XXV 7 1 Louis Carroll Lewis Carroll FB 29.01.01 2

2

2 7 2+7 concurrent and networked complex concurrent and
networked (Note that this
breaks pagination)

2 6 4 common-off-the-shelf commercial-off-the-shelf FB 06.05.01

3 3 3 have focused on have focused largely on FB 18.09.00 2

3 5 2 small smaller FB 18.09.00 2

3 5 3 available to enjoyed by FB 18.09.00 2

5 1 2-4 In today’s competitive,
time-to-market-driven
environments, however,
this often yields non-
optimal ad hoc solutions.

In today’s competitive,
time-to-market-driven
business environments,
however, this process of-
ten yields non-optimal ad
hoc solutions. (Note that
this breaks pagination
heavily)

7 1 1 common general FB 19.09.00 2

11 5 8 completely remove word FB 24.10.00 2

14 7 1-2 At the next layer is an event
demultiplexer, such as
select() [Ste98], which
waits for events to arrive ...

At the next layer is an
event demultiplexer,
which uses functions like
select() [Ste98] to
wait for events to arrive ...

FB 24.10.00 2

15 2 4 The events that are
exchanged between peers
in this architecture play
four different roles [Bl91]

move sentence down be-
low the diagram

FB 24.10.00 2

15 4 5 often waits can wait FB 24.10.00 2

20 2 7 all waiting threads will
compete

the waiting threads can
compete

FB 24.10.00 2

28 8 2 many multiple FB 24.10.00 2

29 diagram mutex_lock (mutex)
mutex_unlock (mutex)

mutex_lock (&mutex)
mutex_unlock (&mutex)

FB 16.08.00 2

29 diagram release release() FB 16.08.00 2

30 3 5 from of FB 24.10.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

3

30 4 2 When an event arrives When one or more events
arrive

FB 24.10.00 2

30 4 4 this event to a designated
event handler

the events to designated
event handlers

FB 24.10.00 2

31 5 1 which uses flow control which is a transport proto-
col that uses flow control

FB 24.10.00 2

31 6 5 must not block while
waiting for connection
flow control to abate so it
can finish sending a file to
a client

must not block waiting for
connection flow control to
abate while sending a file
to a client

FB 24.10.00 2

33 diagram 1..* 2 FB 24.10.00 2

33 diagram -- notify_all() FB 16.08.00 2

34 6 7 -- add: in the JAWS server. FB 24.10.00 2

35 1 1 Handler Handlers FB 24.10.00 2

35/36 3 3 accept(). accept() on the same han-
dle.

Note that this causes a
change in the page break

FB 24.10.00 2

35/36 4 5 waiting their turn waiting on a synchronizer
for their turn

FB 24.10.00 2

47 2 9 server, which server application, which FB 24.10.00 2

47 diagram upper arrow to database remove FB 24.10.00 2

48 diagram AF_INET PF_INET FB 08.01.01 2

48 diagram Comment on 32 bit integer
is after the #ifdef

Move in front of the #ifdef FB 29.01.01 2

48 diagram ace condition race condition FB 29.01.01 2

49 1 5 the code the application code FB 24.10.00 2

49 3 last object oriented object-oriented FB 24.10.00 2

50 1 1 However, developers Remove: however FB 24.10.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

4

52 diagram functionA in methodN methodN should call func-
tionC

FB 24.10.00 2

54 1 1 server carefully remove: carefully FB 24.10.00 2

61 diagram u_long addr) ulong addr = 0) FB 06.05.01

61 diagram return
addr_.sin_port;

return ntohs
(addr_.sin_port);

FB 08.01.01 2

61 diagram return
addr_.sin_addr.
s_addr;

return ntohl
(addr_.sin_addr.
s_addr);

FB 08.01.01 2

61 3 4/5 ntons() ... ntonl() htons() ... htonl() FB 08.01.01 2

61 diagram AF_INET PF_INET FB 08.01.01 2

65 diagram <error_> <status_> FB 08.01.01 2

67 5 6 full stop is missing FB 06.02.01 2

68 right column -- add: // Lock to protect
request_count

static Thread_Mutex lock;

FB 24.10.00 2

68 right column -- adjustment of code lines FB 29.01.01 2

69 diagram AF_INET PF_INET FB 08.01.01 2

69 diagram thr_mgr.spawn Thread_Manager::i
nstance()->spawn

FB 08.01.01 2

69 diagram port LOGGING_PORT FB 30.01.01 2

70 2 4 ACE_ Thread_Mutex ACE_Thread_Mutex FB 29.01.01 2

74 3 2 add Patrick Rabau and
Mike Curtis

FB 24.01.01 2

74 3 1 Ralph Johnson, Bob
Hanmer

Bob Hanmer, Ralph
Johnson

FB 06.05.01

74 3 2 add Chung-Horng Lung FB 06.05.01

76 3 4 the a FB + DS
22.01.01

2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

5

76 6 5 with high availability
requirements

that cannot tolerate down-
time

FB + DS
22.01.01

2

77 7 2 component components components FB 30.11.00 2

78 1 2 unnecessarily move to the end of the
sentence

FB + DS
22.01.01

2

79 3 6 , such as a DLL move behind ‘form’ FB + DS
22.01.01

2

85 diagram <script_name> <script_name>
file

FB + DS
22.01.01

2

88 5 9 into add ‘and out of ‘ FB + DS
22.01.01

2

90 8 7 for determining that determine FB + DS
22.01.01

2

90 8/9 move last sentence from
bulleted paragraph 8 to
paragraph 9

FB 08.02.01 2

92 diagram code arrangement and
event type name

FB + DS
22.01.01

2

93 1 2 by a component
configurator

remove FB + DS
22.01.01

2

93 1 3 add comma before ‘such’ FB + DS
22.01.01

2

93 2 5 are can be FB + DS
22.01.01

2

93 5 5-7 because each component
can be isolated from
accidental corruption via
operating system and
hardware protection
mechanisms

because operating system
and hardware protection
mechanisms can isolate
each component from ac-
cidental corruption

FB + DS
22.01.01

2

95 2 5 information passed information to be passed FB 14.02.01 2

101 2 6 Time_ Server Time_Server FB + DS
24.01.01

2

101 2 2 collocate ... in distribute ... across FB 06.05.01

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

6

103 3 4 the Implementation step Implementation activity 1
(83)

FB + DS
24.01.01

2

104 4 4 the Implementation step Implementation activity 1
(83)

FB + DS
24.01.01

2

106 5 4 types of system system types FB 19.02.01 2

107 6 1 credit credits FB 19.02.01 2

112 5 5 [GHJV95] [GoF95] FB 07.05.01

116 diagram attach(), callback() register(), dipatch() FB 07.05.01

120 table §3 1 marshaled demarshaled FB 07.05.01

122 5 4 simplicity uniformity FB + DS
24.01.01

2

124 5 3 correspond to play FB + DS
24.01.01

2

124 5 2 A dispatcher corresponds
to the Observer pattern’s
[GoF95] subject role

A dispatcher plays the
subject role in the Observ-
er pattern

FB + DS
24.01.01

2

128 diagram interceptor.
clone()

interceptor_.
clone()

FB 07.05.01

131 3 3 tokens token FB 07.05.01

137 3 6/7 are complex to implement,
use and optimize

are hard to implement,
use, and optimize

FB + DS
24.01.01

2

148 5 5 extension delete this word FB 07.05.01

150 6 3 EJB Enterprise JavaBeans FB + DS
24.01.01

2

150 5 2 specifying defining FB + DS
24.01.01

2

153 4 7 implementation activity 3 implementation activity
3.3 (153)

FB + DS
24.01.01

2

154 3 3 implementation activity 3 implementation activity
3.3

FB + DS
24.01.01

2

158 1 6 provide prevent FB 06.02.01 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

7

158 5 4 types type FB + DS
24.01.01

2

158 5 3 . These , which FB + DS
24.01.01

2

165 diagram // Ask the factory finder for
comp. factories

// Get references to the
component factories

FB 07.05.01

166 diagram // Register components // Register component fac-
tories

FB 07.05.01

166 diagram // access // Access FB 07.05.01

170 5 6 can to create can create FB 14.02.01 2

171 4 5 Enterprise JavaBeans Enterprise JavaBeans
(EJB)

FB + DS
24.01.01

2

171 4 8 subset Enterprise
JavaBeans (EJB)

subset of EJB FB + DS
24.01.01

2

172 1 7 transparent transparently FB 14.02.01 2

176 4 3/4 scale to support ... well scale up to support FB 18.09.00 2

177 2 2 and and and FB 07.05.01

177 7 7 on top of Reactor top of a reactor or proactor FB 18.09.00 2

179 diagram topmost occurrence of
“logging records”

move this down so that it
does not chop the network
line

FB 18.09.00 2

180 6 3 is is FB 07.05.01

185 diagram handle_event call from
reactor to event handler:
dashed arrow

solid arrow FB 09.11.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

8

187 Good question! The reason
is because the same
Event_Handler can be
registered multiple times
for different HANDLEs
(see the second
register_handler() API on
the bottom of page 189). In
such a case, the
Event_Handler does not
actually own the
HANDLE, so it must be
passed in.

Frank, I don't know if we
have enough space to add
this bit of insight to the
comment on page 187, but
it would be nice to
consider!

192 3 4 reading for writing ready for writing FB 07.05.01

194 code demux_table demux_table_ FB 29.01.01 2

195 code demux_table demux_table_ FB 29.01.01 2

201 4 6 is then then FB 07.05.01

202 2 4 add sentence When the
CLOSE_EVENT flag is
passed to the
handle_event()

method the reactor will
automatically remove the
handler from its internal
demultiplexing table after
the method returns.

FB 08.01.01 2

202 2 3/4 EVENT flag CLOSE_EVENT flag FB 08.01.01 2

211 4 all generalize real-world
known use to having a
receptionist handling and
dispatching multiple phone
lines.

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

9

218 4 6 generates initiates FB 07.05.01

226 diagram event completion event FB 24.10.00 2

226 diagram add handler parameter to
first call from initiator to
AOP.

FB 24.10.00 2

229 4 4 concrete event handler concrete completion
handler

FB 07.05.01

230 2 7 concrete event handler concrete completion
handler

FB 07.05.01

247 4 4 handle_events() handle_event() FB 07.05.01

267 diagram process_result handle_event FB 24.10.00 2

234 diagram Async_Stream::read Async_Stream::async_rea
d

FB 14.02.01 2

243 4 4 6.2 5.2 FB 07.05.01

245 2 3 add (2) after sentence 1. FB 14.02.01 2

250 1 3 the waits then waits FB 07.05.01

251 diagram more synchronous more asynchronous FB 07.05.01

258 3 6 allot allow FB 07.05.01

265 CRC-card
Initiator

add Completion Handler
to Collaborator list

FB 07.05.01

284 1 1 server service FB 07.05.01

284 4 8 initiator service FB 07.05.01

295/
297

diagram add a handle to the
diagram to better show
how synchronous and
asynchronous connect
works

313 diagram the dashed rectangle for
templates is only for
unbounded template
classes, but not for
concrete instances.

remove the dashed
rectangle and bind the
classes to the parameters
in the ‘ordibary’ class box

FB 16.01.01 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

10
316 diagram the dashed rectangle for
templates is only for
unbounded template
classes, but not for
concrete instances.

remove the dashed
rectangle and bind the
classes to the parameters
in the ‘ordibary’ class box

FB 16.01.01 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

11
322 -- -- to be added as another see
also

The intent of the Acceptor
Connector pattern is
similar to the
Configuration pattern
\cite{Magee:95}. The
Configuration pattern
decouples structural
issues related to
configuring services in
distributed applications
from the execution of the
services themselves. This
pattern has been used in
frameworks for
configuring distributed
systems, such as Regis
\cite{Magee:94}, to
support the construction
of a distributed system
from a set of components.
In a similar way, the
Acceptor-Connector
pattern decouples service
initialization from service
processing. The primary
difference is that the
Configuration pattern
focuses more on the active
composition of a chain of
related services, whereas
the Acceptor-Connector
pattern focuses on the
passive initialization of a
service handler at a
particular endpoint. In
addition, the Acceptor-
Connector pattern also
focuses on decoupling
service behavior from the
service's concurrency
strategies.

322 add a new credits section
for Eric Samuelsson’s
help with the class
diagrams

FB 16.01.01 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

12
334 7 2 likely to occur likely occur FB 29.01.01 2

362 -- -- -- In Java, once the spec got
changed, you can make
double-checked locking
work by using a volatile
field for the field that is
double-checked.

374 diagram ActivationQueue,
enqueue(),
dequeue()

ActivationList,
insert(),
remove()

FB 27.11.00 2

394 3 Siemens MedCom Siemens Syngo FB 19.09.00 2

404 diagram 1..* * FB 24.10.00 2

404 diagram -- notify_all() FB 16.08.00 2

436 diagram sowakeup() sbwakeup() FB 29.01.01 2

443 3 3 within with FB 07.05.01

455 diagram promo new_leader promote_new_leader FB 16.08.00 2

456 diagram arrow from processing to
follower thread is in the
wrong direction

change direction FB 29.11.00 2

460 diagram LF_Thread_Pool
(Reactor *r):

reactor_ (r),
followers_conditio
n_ (mutex_) { };

LF_Thread_Pool
(Reactor *r):

reactor_ (r) { };

FB 14.02.02 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

13
460 Question: p. 460. What
does reactivate_handle()
do exactly?

It is called by a thread that
has just finished processing
an event on a particular
handle, while in the mean
time another thread as been
promoted as leader. This
new leader has been
promoted after the handle
in question has been
deactivated by the first
thread. Assume that while
the first (now follower)
thread processes the event,
another event becomes
ready on the same handle.
The lead thread will not see
it, since when it does
select(), that handle is
disabled. So question is:
does reactivate_handle()
somehow notify the leader
thread so that it can
reattempt to select on a
handle set that includes the
reactivated handle?

There are two ways to ad-
dress this:

1. The reactivate_handle()
can in fact notify the cur-
rent leader thread so that it
can select() on this handle
again. This "eager" ap-
proach is what we use in
the ACE_TP_Reactor in
order to avoid starvation.

2. The reactivate_handle()
might simply queue up the
request to reactive the
handle so that it'll only be
considered again after the
current leader thread has
gotten another event and a
new leader has been de-
tected. This "lazy" ap-
proach might be a good
optimization for use-cases
where events occurred fre-
quently on all the handles
in the handle set since it
would reduce unnecessary
context switching without
causing starvation.

462 code reactor_-
>handle_events ()’

reactor_-
>handle_events
();

FB 29.01.01 2

468 diagram arrow from processing to
follower thread is in the
wrong direction

change direction FB 29.11.00 2

472 3 1 Leader/Follower Leader/Followers FB 29.01.01 2

481 diagram bottom right class: Thread-
Specific Object Proxy

bottom right class:
Thread-Specific Object

FB 08.01.01 2

481 diagram bottom right class: key remove FB 08.01.01 2

505 2 2 Chapter 2 connect Chapter 2 through 5 con-
nect

FB 20.07.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

14
510 1 1 we want to explore we explore FB 19.08.00 2

510 6 2-4 ‘Duplicate’ entries for
patterns that are frequently
referenced by other
patterns avoid having too
many crossed
relationships.

We ‘duplicate’ entries for
patterns that are refer-
enced frequently by other
patterns to avoid having
too many crossed relation-
ships.

FB 19.09.00 2

511 diagram Half-Sync/Half-Async box
is not in correct shade

Shade the box to 10% FB 19.09.00 2

520 4 5 pattern-based pattern language-based FB 19.09.00 2

520 4 1-3 Our pattern language has
been applied to many real-
world applications, in par-
ticular, but not only to sys-
tems that are built using the
ACE framework.

Our pattern language has
been applied to many real-
world applications includ-
ing—but not limited to—
those built using the ACE
framework.

FB 19.09.00 2

524 2 4 , however, remove “however” FB 19.09.00 2

524 2 6/7 service access and configu-
ration, event handling, syn-
chronization, and concur-
rency

apply emph-content char-
acter format to all 4 topics.

FB 18.09.00 2

525 1 6 ever every FB 18.09.00 2

526 2 7/8 as a result move from end to the be-
ginning of the sentence

FB 19.09.00 2

526 4 3 however Remove this word FB 19.09.00 2

530 1 8/9 due in large part to the ef-
fort

due in part to the amount
of effort

FB 19.09.00 2

545 3 1 A component specifies an
interfac

A component specifies
one or more iterfaces

FB 24.10.00 2

545 4 4 polymorphism apply emph-content char-
acter format

FB 22.09.00 2

545 4 6 the pattern patterns FB 11.09.00 2

546 1 1 The external interface The external interfaces FB 24.10.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

15
546 1 2 operating system apply emph-content char-
acter format

FB 22.09.00 2

546 4 4 relationships apply emph-content char-
acter format

FB 18.09.00 2

547 7 6 functions apply emph-content char-
acter format

FB 22.09.00 2

548 2 2 network networked FB 18.09.00 2

548 4 2 method closure apply emph-content char-
acter format

FB 18.09.00 2

548 5 1 (CORBA) deleted FB 18.09.00 2

548 7 2 responsibilities apply emph-content char-
acter format

FB 18.09.00 2

549 11 3 application apply emph-content char-
acter format

FB 22.09.00 2

549 4 1/2 host-independent / host-
specific

system- and application-
independent / system- and
application-specific

Note that this breaks
pagination heavily.

550 12 1/2 A future [Hal85] [LS88] al-
lows a client to obtain the
result of a method invoca-
tion after the invoked
method finishes executing.

A future [Hal85] [LS88]
allows a client to obtain
the result of a method at
any point in time after its
invocation.

FB 22.09.00 2

551 5 all hardwiring is not only
about using magic numbers

Give an additional exam-
ple?

551 7 1 Hyper Text Transport
Protocol

HyperText Transfer Proto-
col

FB 24.10.00 2

551 9 3 relationship apply emph-content char-
acter format

FB 06.10.00 2

551 11 4 single and multiple
inheritance

apply emph-content
character format to
“single” and “multiple
inheritance”

FB 06.10.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

16
552 2 1 special class concrete class FB 18.08.00 2

552 3 3 functions apply emph-content char-
acter format

FB 06.10.00 2

552 3 6 pattern apply emph-content char-
acter format

FB 06.10.00 2

552 4 all Shall we extend the defi-
nition? In particular we
could explain that a cache
holds a copy of specific
portion of the main mem-
ory which then gives an
application the illusion to
access the main memory.

553 1 1 Shall we extend the defi-
nition? In particluar we
can explain that jitter is
undesireable for certain
application types, such as
A/V streaming.

554 2 1 A function performed An operation performed FB 24.10.00 2

554 3 3 object that contains the
context of a method

apply emph-content char-
acter format to “objec”
and “method”

FB 06.10.00 2

554 7 2 module apply emph-content char-
acter format

FB 06.10.00 2

555 2 3 domain apply emph-content char-
acter format

FB 06.10.00 2

555 9 3 HTTP apply emph-content char-
acter format

FB 06.10.00 2

555 10 all Add that it also returns no
error values or other (sta-
tus) information

FB 24.10.00 2

556 3 all There is also out-of-band
data.

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

17
556 11 4 relationships and
responsibilities

apply emph-content char-
acter format to “relation-
ships” and “responsibili-
ties”

FB 06.10.00 2

557 6 1 scheduling apply emph-content char-
acter format

FB 06.10.00 2

558 4 1 instance apply emph-content char-
acter format

FB 06.10.00 2

558 4 1 object reifies a class apply emph-content char-
acter format to “object”
and “class”

FB 06.10.00 2

558 8 all An incremental activity
that abstracts general-
purpose behavior from
existing software to
enhance the structure and
reusability of components
and frameworks.

An incremental activity
that improves the internal
structure of components
and frameworks.

FB 06.10.00 2

559 1 5 clients apply emph-content char-
acter format

FB 06.10.00 2

559 1 7 pattern apply emph-content char-
acter format

FB 06.10.00 2

559 3 all There are also other sema-
phore implementations
possible. Mark the one in
the definition as one pos-
siblity and reference
ohthers.

559 7 1 applications apply emph-content char-
acter format

FB 06.10.00 2

561 2 2 address space that address space of a process
that

Note that this change
breaks pagination heavily.

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

18
561 5 all Add a disadvantage? If the
actual resource consump-
tion is way smaller than
the pre-allocated resourc-
es at all points in time dur-
ing a system’s execution,
we wast resources too.

562 6 1 layer apply emph-content char-
acter format

FB 06.10.00 2

564 diagram Navigability and
realization relationships
cannot touch an unbound
template

correct that wrong nota-
tion, add a seperate tem-
plate class

FB 16.01.01 2

568 4 1 icon for actions and
conditions included twice

remove one icon FB 06.10.00 2

570 [BGHS98] 9th 9th FB 20.07.00 2

570 [Bat97] [Bat979] + 1997 [Bat79] + 1979 FB 25.07.00 2

571 [Boo94] Second Edition 2nd edition FB 20.07.00 2

571 [BRJ98] Jacobsen Jacobson FB 07.05.01

573 [Doble96] apply emph-content char-
acter format for paper title

FB 08.01.01 2

573 [CY91] second 2nd FB 20.07.00 2

575 [GLDW87] 19987 1987 FB 07.05.01

577 [HMPT89] apply emph-content char-
acter format for paper title

FB 08.01.01 2

580 [Lea99a] 2nd 2nd FB 20.07.00 2

581 [LY99] Edition edition FB 20.07.00 2

582 [MBKQ96] apply emph-content char-
acter format for paper title

FB 08.01.01 2

582 [Mey97] Edition edition FB 20.07.00 2

590 [Sol98] Edition edition FB 20.07.00 2

591 [Ste98] Second Edition 2nd edition FB 20.07.00 2

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

19
Replacement pages

591 [Ste99] Edition edition FB 20.07.00 2

591 [Str97] Edition edition FB 20.07.00 2

624 Siemens MedCom Siemens Syngo FB 19.09.00 2

631 2 3 Federico Frederico FB 24.10.00 2

631 3 15 add Robert Crell FB 24.10.00 2

631 C 3 Carroll, Louis Carroll, Lewis FB 29.01.01 2

631 add Mike Curtis FB 29.01.01 2

631 3 9 add Kobi Cohen-Arazi FB 14.02.01 2

632 L add Chung-Horng Lung FB 06.05.01

632 2 5 Harrison, Neil xviii Harrison, Neil xix FB 24.10.00 2

632 6 9 add Christopher Kohlhoff FB 14.02.00 2

633 10 5 add Stefan Scherer FB 29.11.00 2

633 10 5 add Willemsen, Johnny FB 27.11.00 2

633 5 1 add Eric Samuelsson FB 16.01.01 2

633 4 1 add Patrick Rabau FB 24.01.01 2

back
cover

-- -- All patterns present
extensive example and
known uses in multiple
programming languages,
including C++, C, and
Java.

These patterns present
extensive example and
known uses in multiple
programming languages,
including C++, Java, and
C.

Page ¶ Line Wrong Text Correct Text Done Correction
appears in
print #

20

	Replacement pages

