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Abstract —Search-based software engineering is an emerging
paradigm that uses automated search algorithms to help designers
iteratively find solutions to complicated design problems. For example,
when designing a climate monitoring satellite, designers may want
to use the minimal amount of computing hardware to reduce weight
and cost, while supporting the image processing algorithms running
onboard. A key problem in these situations is that the hardware
and software design are locked in a tightly-coupled cost-constrained
producer/consumer relationship that makes it hard to find a good
hardware/software design configuration. Search-based software
engineering can be used to apply algorithmic techniques to automate
the search for hardware/software designs that maximize the image
processing accuracy while respecting cost constraints.

This paper provides the following contributions to research on search-
based software engineering: (1) we show how a cost-constrained
producer/consumer problem can be modeled as a set of two multidi-
mensional multiple-choice knapsack problems (MMKPs), (2) we present
a polynomial-time search-based software engineering technique, called
the Allocation-baSed Configuration Exploration Technique (ASCENT),
for finding near optimal hardware/software co-design solutions, and (3)
we present empirical results showing that ASCENT'’s solutions average
over 95% of the optimal solution’s value.

1 INTRODUCTION

search technique to find designs that optimize a specifiesyst
quality while adhering to design constraints. Each time a
new design is produced, designers can use the knowledge
they have gleaned from the new design solution to craft
more precise constraints to guide the next design search.
Search-based software engineering has been applied to the
design of a number of software engineering aspects, ranging
from generating test data [27] to project management and
staffing [5, 3] to software security [9].

Open Praoblem. A common theme in domains where
search-based software engineering is applied is that thigrde
solution space is so large and tightly constrained thatithe t
required to find an optimal solution grows at an exponential
rate with the problem size. These vast and constrained solu-
tions spaces make it hard for designers to derive good sakuti
manually. One domain with solution spaces that exhibiteéhes
challenging characteristics is hardware/software cagdes

Hardware/software co-design is a process whereby a sys-
tem’'s hardware and software are designed at the same-
time in order to produce optimizations that would not be
possible in either hardware or software alone. Traditignal
hardware/software co-design has focused on determining ho

Current trends and challenges. Increasing levels of program-to partition application functionality between hardwaneda
ming abstraction, middleware, and other software advana®ftware. For example, developers can take a time-critical
ments have expanded the scale and complexity of softwameage processing step in an application and determine wheth
systems that we can develop. At the same time, the balloonbogimplement it in hardware or software. Typically, there
scale and complexity have created a problem where systeans limited resources available to implement functiogalit
are becoming so large that their design and developmémthardware and thus determining which pieces of func-
can no longer be optimized manually. Current large-scdienality to implement in hardware versus software becomes
systems can contain an exponential number of potentiajdesextremely challenging. A number of search-based engingeri
configurations and vast numbers of constraints ranging fraechniques, ranging from particle swarm optimization [2] 2
security to performance requirements. Systems of thisssctd genetic algorithms [34, 28, 13] have been used to help
and complexity—coupled with the increasing importance @utomate this process.

non-functional characteristics [8] (such as end-to-esgaoase

This paper examines another type of hardware/software co-

time)—are making software design processes increasinglgsign problem that is common in the domain of distributed

expensive [22].

real-time and embedded (DRE) systems. The problem we

Search-based software engineering [17, 16] is an emergfiogus on is the need to choose a set of hardware and soft-

discipline that aims to decrease the cost of optimizingesyst ware configuration options that maximizes a specific system
design by using algorithmic search techniques, such agigeneapability subject to constraints on cost and the prodactio
algorithms or simulated annealing, to automate the designd consumption of resources, such as RAM, by the hardware
search. In this paradigm, rather than performing the searghd software, respectively. This problem assumes that the
manually, designers iteratively produce a design by usingpartitioning of functionality between hardware and softwa



is fixed but that there are different configuration options im each of the hardware and software design spaces.
the hardware and software that developers must set. Paper organization. The remainder of this paper is or-

A configuration option is a setting that can be changed ganized as follows: Section 2 presents a motivating example
the hardware or software design, such as the image resolutid a satellite hardware/software co-design problem; Sac3i
used in an image processing algorithm. Selecting a high#iscusses the challenges of solving software/-hardware co
resolution will yield better image processing results bult w design problems in the context of this motivating exam-
in turn require more CPU time. Similarly, the hardware hagsle; Section 4 describes the ASCENT heuristic algorithm;
multiple configuration options, such as the clock speed ef tlsection 5 analyzes empirical results from experiments we
processor used. The goal of engineers is to find a seriespefformed with ASCENT; Section 6 compares ASCENT with
settings for these configuration options that maximize Eyti related work; and Section 7 presents concluding remarks and
function that describes the quality of the system. lessons learned from our work with ASCENT.

For example, when designing a satellite for monitoring
earth’s magnetosphere [11], the goal may be to maximi MOTIVATING EXAMPLE
the accuracy of the sensor data processing algorithms on
the satellite without exceeding the development budget ahBiS Section presents a satellite design example to metttiat
hardware resources. Ideally, to maximize the capabilitige need to expand search-based software engineering teelsniqu
system for a given cost, system software and hardware shot@dencompass cost-constrained hardware/software produce
be configured in tandem to produce a design with a preciseG@nSumer co-design problems. Designing satellites, ssch a
between hardware capabilities and software resource dignate satellite for NASAs Magnetospheric Multiscale (MMS)

The more precise the fit, the less budget is expended on exd®égsion [11], requires carefully balancing hardwareisafe
hardware resource capacity. design subject to tight budgets. Figure 1 shows a satellite w

A key problem in these design scenarios is that th number of possible variations in software and hardware

create a complex cost-constrained producer/consumelgonobdesign. For example, the software design has a point of
involving the software and hardware design. The hardware
design determines the resources, such as processing pow
and memory, that are available to the software. Likewise, th

hardware consumes a portion of the project budget and tht
reduces resources remaining for the software (assumingé fix lggzg{gcaeggnmgﬁgg;g ,ngt‘,ﬁ’af‘f'\’!)'xmp Set2
budget). The software also consumes a portion of the budg¢ e e R e e el
and the resources produced by the hardware configuratien. Tfé

perceived value of system comes from the attributes of theg

Software Knapsack

Algorithm 3, Consumes Ram 50, CPU 450 Low, Consumes Ram 5, CPU 1

Algorithm 4, Consumes Ram 120, CPU 50,

software desigre.g, image processing accuracy in the satellite §
example. The intricate dependencies between the hardwdre a 3
software’s production and consumption of resources, eost,
value makes the design solution space so large and comple
that finding an optimal and valid design configuration is hard - »

Solution approach — Automated Solution Space Explo- o = Ram 312
ration. This paper presents a heuristic search-based softwal Gpu 2000 Ram 2048
engineering technique, called thdlocation-baSed Configu- o
ration Exploration Techniqué ASCENT), for solving cost-
constrained hardware/software producer/consumer dgrades
problems. ASCENT models these co-design problems as tw
separate knapsack problems [21]. Since knapsack problems ¢
NP-Hard [10], ASCENT uses heuristics to reduce the solution
space size and iteratively search for near optimal designs fig. 1. Software/Hardware Design Variability in a Satellite
adjusting the budget allocations to software and hardware.
addition to outputting the best design found, ASCENT alsaariability where a designer can select the resolution ef th
generates a data set representing the trends it discoveredmnages that are processed. Processing higher resolutagyesn
the solution space. improves the accuracy but requires more RAM and CPU

A key attribute of the ASCENT technique is that, in theycles.
process of solving, it generates a large number of optimalAnother point of variability in the software design is the
design configurations that present a wide view of the trenilsage processing algorithms that can be used to identify
and patterns in a system’s design solution space. This papkaracteristics of the images captured by the satelli@a-c
shows how this wide view of trends in the solution spaceras. The algorithms each provide a distinct level of aaguyra
can be used to iteratively search for near optimal co-desigtile also consuming different quantities of RAM and CPU
solutions. Moreover, our empirical results show that ASGENcycles. The underlying hardware has a number of points of
produces co-design configurations that average over 9%riability that can be used to increase or decrease the RAM
optimal for problems with more than 7 points of variabilityand CPU power to support the resource demands of different

Provide Sufficient Resources

for Software Solution\l/

Hardware

Hardware MMKP Set 1 Hardware MMKP Set 2

Hardware Knapsack




image processing configurations. Each configuration optiorariability (e.g., High, Medium, Low for Image Resolution).
such as the chosen algorithm or RAM value, has a coBhe items each have a size (cost) associated with them and
associated with it that subtracts from the overall budget. #here is a limited size knapsack (budget) that the items can
key design question for the satellite ishat set of hardware fit into. Clearly, just selecting the optimal set of software
and software choices will fit a given budget and maximiZeatures subject to a maximum budget is an instance of the
the image processing accuraclfor example, will an image NP-Hard [10] MMKP problem.
processing algorithm that consumes more memory but rexjuire For the overall satellite design problem, we must contend
less CPU resources or an algorithm that requires buying @ maiith not one but two individual knapsack problems. One
expensive processor and less RAM better fit the budget? problem models the software design and the second problem
Many similar design problems involving the allocationmodels the hardware design. The first of the two MMKP
of resources subject to a series of design constraints haveblems for the satellite design is its software MMKP
been modeled allultidimensional Multiple-Choice Knapsackproblem. The hardware design options are modeled in a
Problems(MMKPs) [20, 23, 2]. A standard knapsack probseparate MMKP problem with each set containing the potentia
lem [21] is defined by a set of items with varying sizes anbardware options. An example mapping of the software and
values. The goal is to find the set of items that fits into Bardware design problems to MMKP problems is shown in
fixed sized knapsack and that simultaneously maximizes thigure 1.
value of the items in the knapsack. An MMKP problem is a We call this combined two problem MMKP modeMMKP
variation on a standard knapsack problem where the items agedesign problemWith this MMKP co-design model of the
divided into sets and at most one item from each set may $atellite, a design is reached by choosing one item from each
placed into the knapsack. set €.0., an Image Resolution, Algorithm, RAM value, and
Figure 2 shows an example MMKP problem where tw&PU) for each problem. The correctness of the design can

sets contain items of different sizes and values. At moge validated by ensuring that exactly one item is chosen
from each set and that the items fit into their respective

Values: 5 9 6 2 1 8 i niti
e soE | AR END. AN 15X1EXS  15X15X5 1 6Xax7 software and hardware knapsacks. This definition, however,

| L is still not sufficient to model the cost-constrained harckta
.0 ] .@ \ software producer/consumer co-design problem since we hav

s Lfe [

[en not accounted for the constraint on the total size of the two

2

knapsacks or the production and consumption of resources by
hardware and software.
A correct solution must also uphold the constraint that the

S items chosen for the solution to the software MMKP problem
Avallabla Space: 5XZ0X5 do not consume more resources, such as RAM, than are
produced by the items selected for the solution to the hamrelwa
Fig. 2. An Example MMKP Problem MMKP problem. Moreover, the cost of the entire selection of

items must be less than the total development budget. We know

one of the items A,B, and C can be put into the knapsadkat solving the individual MMKP problems for the optimal
Likewise, only one of the items D, E, and F can be putardware and software design is NP-Hard but we must also
into the knapsack. The goal is to find the combination afetermine how hard solving the combined co-design problem
two items, where one item is chosen from each set, that fits
into the knapsack and maximizes the overall value. A numberin this simple satellite example, there are 192 possible
of resource related problems have been modeled as MME#&ellite configurations to consider, allowing for exhaest
problems where the sets are the points of variability in treearch to be used. For real industrial scale examples, lesywev
design, the items are the options for each point of varigbili there are a significantly larger number of possibilities afahi
and the knapsack/item sizes are the resources consumedniakes it infeasible to use an exhaustive search technique. F
different design options [23, 7, 2]. example, a system with design choices that can be modeled

The software and hardware design problems are harduging 64 MMKP sets, each with 2 items, will haa*
solve individually. Each design problem consists of a numbpossible configurations. For systems of this scale, manual
of design variability points that can be implemented by exolving methods are clearly not feasible, which motivates t
actly one design option, such as a specific image processitegd for a search-based software engineering technique.
algorithm. Each design option has an associated resounze co
sumption, such as cost, and value associated with it. Mereov2-1  MMKP Co-design Complexity
the design options cannot be arbitrarily chosen because thBelow, we show that MMKP co-design problems are NP-Hard
is a limited amount of each resource available to consumeand in need of a search-based software engineering te@niqu

It is apparent that the description of the software desighle are not aware of any approximation techniques for solving
problem directly parallels the definition of an MMKP problemMMKP co-design problems in polynomial time. This lack of
An MMKP set can be created for each point of variabilitapproximation algorithms—coupled with the poor scal&pili
(e.g., Image Resolution and Algorithm). Each set can thexf exact solving technigues—hinders DRE system designers’
be populated with the options for its corresponding point ailities to optimize software and hardware in tandem.



To show that MMKP co-design problems are NP-Hard, weonstraint corresponds to Rule (2) in Figure 3 that each
must build a formal definition of them. We can define asolution must fit into the budget for its respective knapsack
MMKP co-design problemCoP, as an 8-tuple: The MMKP co-design problem adds two additional con-
straints on the solutionsandc. First, we require that the items
in ¢ do not consume more of any resource than is produced

CoP =< Pr,Co,S1,52,5, R, Uc(z, k), Up(x, k) > by the items inp:

where:
. j l
cPrToilietsh)(_a producer MMKP probleme(g., the hardware (¥ C R),ZUc(cj, k) < Z Up(pu, )
o Co is the consumer MMKP probleneg., the software 0 0
choices). wherej is the total number of items in, ¢; is theji, item in
+ S is the size of the produceRr, knapsack. ¢, L is the total number of items ip, andp; is the jy, item
« Sy is the size of the consumef,o, knapsack. in p. Visually, this means that the consumer solution can fit

« R is the set of resource types.d., RAM, CPU, etc.) into the producer solution’s resources as shown in Rulen(1) i
that can be produced and consumed By and Co, Figure 3.

re;pectively. . . The second constraint anandp is an interesting twist on
« Sisthe total allowed combined size of the two knapsackgaditional MMKP problems. For a MMKP co-design problem,
for Pr andCo (e.g., total budget). we do not know the exact sizeS;, S», of each knapsack. Part

e Uc(z,k) is a function which calculates the amount obf the problem is determining the sizes as well as the items fo
the resourcet C R consumed by an itemr C Co (ed., each knapsack. Since we are bound by a total overall budget,

RAM consumed). we must ensure that the sizes of the knapsacks do not exceed
« Up(x, k) is a function which calculates the amount of thenjs budget:

the resourcé: C R produced by an item: C Pr (eg.,
RAM provided).

Let a solution to the MMKP co-design problem be definegis constraint on the overall budget corresponds to Rule (3
as a 2-tuple< p,c >, wherep C Pr is the set of items j, Figure 3.

chosen from the producer MMKP problem andc Clo is To demonstrate that solving for an exact answer to the

the set of items chosen from the consumer MMKP problerp/lMKP problem is NP-Hard, we will show that we can reduce
A visualization of a solution tuple is shown in Figure 3. W%ny instance of the NP—cor"anekmapsack decision problem
1. Fits Provided to an instance of the MMKP co-design problem. The knapsack
Resources decision problem asks if there is a combination of items
eroducer with value at least that can fit into the knapsack without
Solution exceeding a cost constraint.
(Hardware) A knapsack problem can easily be converted to a MMKP
problem as described by Akbar et al. [2]. For each item, asset i
created containing the item and thétem. Thef) item has no
value and does not take up any space. Using this approach, a
knapsack decision probler,,,, can be converted to a MMKP
decision problemM,,, where we ask if there is a selection
g of items from the sets that has value at leEst
>/ / To reduce the decision problem to an MMKP co-design
U\ / problem, we can use the MMKP decision problem as the
consumer knapsaclk’p = Mg,,), set the producer knapsack to
Fig. 3. Structure of an MMKP Co-design Problem an MMKP problem with a single item with zero weight and

value (0), and let our set of produced and consumed resources,
define the value of the solution as the sum of the values gf be empty,R = 0. Next, we can let the total knapsack

S1+5 <8

ConsLmer
Solution
(Software)

Overall
¥ Budget /

3. Fits Budget

the elements in the consumer solution: size budget be the size of the decision problem’s knapsack,
J S = sizeof(Map).
V= Zvalueof(cj) The co-design solution, which is the maximization of the
0

consumer knapsack solution value, will also be the optimal

wherej is the total number of items in, ¢; is the j,;, item answer for the decision problemy,. We have thus setup the
in ¢, andvalueof () is a function that returns the value of arco-design problem so that it is solving for a maximal answer
item in the consumer soution. to Mg, without any additional producer/consumer constraints

We require thap andc are valid solutions taPr andCo, or knapsack size considerations. Since any instance of the
respectively. Fop andc¢ to be valid, exactly one item from NP-complete knapsack decision problem can be reduced to
each set inPr and Co must have been chosen. Moreovean MMKP co-design problem, the MMKP co-design problem
the items must fit into the knapsacks fé» and Co. This must be NP-Hard.



3 CHALLENGES OF MMKP Co0-DESIGN with unique sequential divisions of the total budget. Tytic
PROBLEMS designers would choose a budget with little information on

This section describes the two main challenges to buiIdiﬂiﬁe ramifications of a potential budget choice. By sampling

an approximation algorithm to solve MMKP co-design prob:— € slolutl_?; space ﬁt a gu"?ber Oftﬂ'SthCttbu?gft altlrc])c;ﬂon
lems. We discuss the challenges that make it infeasible H)e algorithm can show designers the best solution thafit ca

directly apply existing MMKP algorithms to MMKP co-designpmduce at each budget allocation. The informgtion produce
problems. The first challenge is that determining how to sy not show the a_ctual best budget allocations to choqse,
t should help designers to make better budget allocation

the budget allocations of the software and hardware is . than blindly choosi budaet allocati ith
straightforward since it involves figuring out the preciszes choices than blindly choosing a budget aflocation with no

of the software and hardware knapsacks where the hardW&Ingat'ﬁn atl a!l. A key chadllenge IS fr|]gur|ng|out hdow_to
knapsack produces sufficient resources to support the abti amp e_t € so ut|on_ space an pres,entt € resu s _to esigne
software knapsack solution (which itself is unknown). Th Section 4.4 we discuss ASCENT's solution to this problem

second challenge is that the tight-coupling between preldugnd in Section 5 we present empirical data showing how

and consumer MMKP problems makes them hard to sol@CENT allows designers to sample design spaces for a

individually, thus motivating the need for a heuristic to- denumber of MMKP co-design problems.

couple them.

3.2 Challenge 2: Tight-coupling Between the

3.1 Challenge 1: Undefined Producer/Consumer
Producer/Consumer

Knapsack Sizes

One challenge of the MMKP co-design problem is that thanother key issue to contend with is how to rank the solutions
individual knapsack size budget for each of the MMKRo the producer MMKP problem. Per the definition of an
problems is not predetermindd., we do not know how much MMKP co-design problem from Section 2.1, the producer
of the budget should be allocated to software versus hasjwagolution does not directly impart any value to the overall
as shown in Figure 4. The only constraint is that the sum of teelution. The producer’s benefit to a solution is its ability

to make a good consumer solution viable. MMKP solvers

Consumer

Budget must have a way of ranking solutions and items. The problem,
(Software) however, is that the value of a producer solution or item cann
be calculated in isolation.
P,;‘f,‘:,‘;‘;i’ A consumer solution must already exist to calculate the
(Hardware) value of a particular producer solution. For example, waeth

or not 1,024 kilobytes of memory are beneficial to the overall
solution can only be ascertained by seeing if 1,024 kilobgfe
memory are needed by the consumer solution. If the consumer
solution does not need this much memory, then the memory

" overall'

Querati produced by the item is not helpful. If the consumer soluion
RAM starved, the item is desperately needed. A visualinatio
of the problem is shown in Figure 5.

Flg 4. Undefined Knapsack Sizes Provides Resources to
-Make Designs Feasible_ i
budgets must be less than or equal to an overall total budget. N
Every pair of budget values for hardware and software result Soft@ | Hardware
in two new unique MMKP problems. Even minor transfers /
of capital from one problem budget to the other can therefore ——— -
completely alter the solution of the problem, resulting imeav Rank Designs
;nxz)g{néjen;i:/eﬂu;'zf)g?ttwg MIZI;SF;;ﬁc,;anlgg\?vsnéssume that ﬂ?:elg. 5. Producer/Consumer MMKP Tight-coupling
There is currently no information to aid designers in deter-
mining the allocation of the budgets. As a result, many desig The inability to rank producer solutions in isolation of
ers may choose the allocation arbitrarily without realigthe consumer solutions is problematic because it creates &erhic
profound impact it may have. For example, a budget allonatiand the egg problem. A valid consumer solution cannot be
of 75% software and 25% software may result in a solutiathosen if we do not know what resources are available
that, while valid, provides far less value and costs comaiolg for it to consume. At the same time, we cannot rank the
more than a solution with a budget allocation of 74% and 26%&lue of producer solutions without a consumer solution as
percent. a context. This tight-coupling between the producer/coreu
There is, however, useful information in the solution spade a challenging problem. We discuss the heuristic ASCENT
that can be determined by solving instances of the problames to solve this problem in Section 4.3.



4 THE ASCENT ALGORITHM Inputs:

This section presents our polynomial-time approximatigoa CoP = < Pr,Co,58,5 8, R,Uc(z, k), Up(z, k) >
rithm, called theAllocation-baSed Configuration ExploratioN D = stepsize
Technique(ASCENT), for solving MMKP co-design prob- )

lems. The pseudo-code for the ASCENT algorithm is shownAlgorithm:

in Figure 6 and explained throughout this section. 1) Forint i = 0to |S/D|, setS; = ix D and Sy =
S -5
4.1 ASCENT Algorithm Overview 2) For each set of values fd#; and Ss:

2.1) Solve for a solutiontc, to Co, given S,
2.2) Calculate a resource consumption heuristic
Vr(k) for the resource i € R:

Sl Uelte, k)

A MMKP co-design problem{oP, as defined as an 8-tuple;

CoP =< Pr,Co,51,52,5, R, Uc(z,k),Up(x, k) >

The ASCENT algorithm solves for a series of potential Vr(r) = R ~]tc]
solutions toCoP using an iterative heuristic algorithm. The ZFO k= Uc(tes, k)
input to the algorithm is the problem definitiafioP and a 2.3) Solve for a solutiornp, to Pr that maximizes the
step size increment), which is discussed in Section 4.2. The sum of the values of the items selected for the
ASCENT algorithm then proceeds as shown in Figure 6 knapsack,z‘k”:‘O Value(py), where the value of

the k;;, item is calculated as:

4.2 Producer/Consumer Knapsack Sizing |R|
The first issue to contend with when solving an MMKP Value(pr) = Y _Vr(r;) = Up(pe, 7))
co-design problem is Challenge 2 from Section 3.1, which j=0
involves determining how to allocate sizes to the individua 2.4) For each resources € R, calculate the amount
knapsacks. ASCENT addresses this problem by dividing the of that resourceP(r), produced by the items in
overall knapsack size budget into increments of dizeThe P
size increment is a parameter provided by the user. ASCENT
then iteratively increases the consumer’s budget allogati P(r) = Up(po,r)+Up(p1,75) - - Up(Pip|-1,75)

(knapsack size) from 0% of the total budget to 100% of the
total budget in steps of sizB. The incremental expansion of|
the producer’s budget can be seen in tho loop in step 1
of Figure 6 and the setting of values for 6f, S, in step 2.
For example, if there is a total size budget of 100 and
increments of size 10, ASCENT firsts assign 0 to the consumer Smay = (S2,70,71,---T|R|—1)
and 100 to the producer, 10 and 90, 80 and 20, and so farth
until 100% of the budget is assigned to the consumer. The ol o the list of didat lutions
allocation process is shown in Figure 7. ASCENT includes uple < p,c > 10 the Iist of candidate solutions,
both the 0%,100% and 100%,0% budget allocations to handle le, for CoP

cases where the optimal configuration includes producer |or 3) Sort the potential solutiond¢, of CoP and output
consumer items with zero cost. both the highest valued solution and the list of other

2.5) Create a new multidimensional knapsack prob-
lem, C'mo, from Co, such that the maximum sizg
of each dimension of the new knapsack is defined
by the vector:

2.6) Solve for a solution;, to Cmo and add a solutior

In some systems, such as enterprise application servers, a _Potential solutions
system’s CI_DU load may become saturated._ In these instg_nqg; : 6. The ASCENT Algorithm
understanding how the system degrades in an over utilize
scenario is important. Since we are focused on hard real-tim i
and embedded systems, we do not handle scenarios whe o o
the CPU is overloaded. Instead, we assume that the resourc
of the system are fixed and that 100% utilization cannot be
exceeded. K

%
/74,

4.3 Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizes
for the two knapsacks. In each iteration, ASCENT must solve ) .
the coupling problem presented in Section 3.2, which is: how ./ it
do we rank producer solutions without a consumer solution
After the coupling is loosened, ASCENT can solve for a highly Y4
valued solution that fits the given knapsack size restmstio ’
To break the tight-coupling between producer and consunfdg@- 7. Iteratively Allocating Budget to the Consumer
ordering, ASCENT employs a special heuristic. Once tHghapsack



knapsack size allocations are fixed, ASCENT solves for4a5 Algorithmic Complexity

maximal consumer solution that only considers the curr

size constraint of its knapsack and not produced/consu

resources. This process is shown in step 2.1 of Figure 6.
The process of solving the consumer knaps@ekin Step 1) there arel” iterations of ASCENT

2.1, uses an arbitrary MMKP approximation algorithm to find 2) in each iteration there are 3 invocations to an MMKP

a solution that only considers the consumer’s budget. This approximation algorithm

approach is similar to asking “what would the best possible 3) in each iteration, values of at most producer items

solution look like if there were unlimited produced/consdn must be updated.

resources.” Once ASCENT has this idealized consumer sofithis breakdown yields an algorithmic complexity of ¢ +

tion, it calculates a heuristic for assigning a value to piet )/ )M/ K P)), where MMKP is the algorithmic complexity of

solutions. the chosen MMKP algorithm. With M-HEU (one of the most
ASCENT leverages a commonly used type of metric fromccurate MMKP approximation algorithms [2]) the algorith-

prior work on MMKPs to assign values for ranking potentiaiic complexity is O(n?(l — 1)), wherem is the number

solutions [2, 26, 30]. The heuristic that ASCENT uses to asf resource types; is the number of sets, arids maximum

sign value to producer items isow valuable are the resourcesitems per set. Our experiments in Section 5 ufed 100 and

of a producer item to the idealized consumer solutiBhis found that it provided excellent results. With our expe nirize

heuristic is calculated as a set of values for Hievariables in setup that used M-HEU, the overall algorithmic complexity

Step 2.2 of Figure 6. We calculate the value of a resourceeas thas therefore QQ0(mn?(l — 1)? + n)).

amount of the resource consumed by the idealized consumer

solution divided by the sum of the total resources consumed

by the solution. In Step 2.3 of Figure 6, the resource rati® ANALYSIS OF EMPIRICAL RESULTS

(V- values) are known and each item in the producer MMKP

problem is assigned a value by multiplying each of its preuid This section presents empirical data we obtained from exper

resource values by the corresponding ratio and summing ftents using ASCENT to solve MMKP co-design problems.
results. The empirical results demonstrate that ASCENT produces

solutions that are often near the maximum value that can
) o be achieved while not exceeding resource constraints. The
4.4 Solving the Individual MMKP Problems results also show that ASCENT can not only provide near
Once sizes have been set for each knapsack and the valuagpiimal designs for the co-design problems, such as the
heuristic has been applied to the producer MMKP problersatellite example, but also scale to the large problem sizes
existing MMKP solving approaches can be applied. First, tqgoduction DRE systems. Moreover, we show that the data sets
producer MMKP problem, with its new item values, is solvegenerated by ASCENT—which contain high valued solutions
for an optimal solution, as shown in Step 2.3 of Figure &t each budget allocation—can be used to perform a number
In Step 2.5, a new consumer MMKP problem is created withf important search-based software engineering studi¢heon
constraints reflecting the maximum available amount of each-design solution space.
resource produced by the solution from the producer MMKP These results are applicable to systems that have hard real-
problem. The consumer MMKP problem is then solved for aime timing constraints and resource consumption chatiaete
solution in Step 2.6. The producer and consumer solutioms &ics. In particular, resources, such as CPU utilizationsimu
then combined into the 2-tuple; p, ¢ > and saved. have fixed limits. Moreover, the calculations are based on
In each iteration, ASCENT assigns sizes to the producsgiatic worst-case bounds on resource consumption that must
and consumer knapsacks and the solving process is repeatedknown at design time. The results do not apply to systems
A collection of the 2-tuple solutions is compiled duringvhere design decisions need to be based on dynamically
the process. The output of ASCENT, returned in Step 3 ohanging resource consumption profiles.

Figure 6, is both the 2-tuple with the greatest value and theOur experiments were designed to compare ASCENT
collection of 2-tuples. against other competing configuration approaches based on
The reason that the 2-tuples are saved and returned as @&, Genetic algorithms, and Particle Swarm Optimization
of the output is that they provide valuable information oa th(PSO) algorithms. Our experiments were designed to test
trends in the solution space of the co-design problem. EachtRe key properties of MMKP co-configuration problems that

tuple contains a high-valued solution to the co-design lgrab affect configuration optimality and scalability. In pattiar, the

at a particular ratio of knapsack sizes. This data can be tose@xperiments test scalability and optimality in terms of tizl
graph and visualize how the overall solution value changes anumber of configuration options and settings, which deteemi
function of the ratio of knapsack sizes. As shown in Sectipn Bow large the configuration solution space is. The larger the
this information can be used to ascertain a number of use@anfiguration space is, the more difficult it is to produce adjo
solution space characteristics, such as determining hoshmuonfiguration in a reasonable amount of time. The resulte&’/sho
it costs to increase the value of a specific system propertyttat ASCENT produces solutions with superior optimality. A
a given level or finding the design with the highest value p#ne same time, ASCENT runs roughly 10 times faster than
unit of cost. either the Genetic or PSO algorithms.

r?]ﬂt"(lje overall algorithmic complexity of ASCENT can be broken
gown as follows:



Each experiment used a total of 100 budget iterations3) Randomly choose one itendppt; C Optitems from
(T'" = 100). We also used the M-HEU MMKP approxima- each set to be the optimal itenfopt; is the optimal
tion algorithm as our MMKP solver. All experiments were item in thes,;, set.
conducted on an Apple MacBook Pro with a 2.4 GHz Intel 4) Set the sizes of the items fiptItems, so that when
Core 2 Duo processor, 2 gigabyes of RAM, running OS X added together they exactly consume all of the space in
version 10.4.11, and a 1.5 Java Virtual Machine (JVM) run in  the knapsack:
client mode. The JVM was launched with a maximum heap i
size of 64mb (-Xmx=64m). (Vk C R), (Z size(lopt;, k)) = size(S, k)

We chose the M-HEU algorithm since it is straight-forward 0
to implement and provided good results in our initial ex-
periments. Many other excellent MMKP heuristic algorithms
are available that may produce better results at the expens

of increased solving time and implementation complexity. ; , : - ;
. o min(Vopt;), where min(Vopt;) is the optimal item
ASCENT does not require the use of any specific MMKP with the smallest value

algorithm, such as M'HEU' an_d thu_s designers can Choose7) Randomly set the size and values of the remaining non-
alternate MMKP heuristic algorithms if they prefer. optimal items in the sets so that either:

« The item has a greater value than the optimal item

5) Randomly generate a valuéppt;, for the optimal item,
ITopt;, in each set
8) Randomly generate a value delta variablg; <

5.1 MMKP Co-design Problem Generation ?n its s_et. In this case, each component of the
N _ N item’s size vector, is greater than the correspond-

A key capability needed for the experiments was the abidity t ing component in the optimal item’'s size vector:

randomly generate MMKP co-design problems for test data. (Vk C R), size(Iopt;, k) < size(Iy;, k)

For each problem, we also needed to calculate how good AS- , The item has a smaller value than the optimal item’s

CENT's solution was as a percentage of the optimal solution: value minusV;, valueof (I;;) < Vopt; — Vy. This

l ASCENTSoluti ; . L . ) .

”SJSZZ}(o,,timmo?u?if,?)- For small problems with less than constraint will be important in the next step. In this

7 sets per MMKP problem, we were able to use a constraint case, each component of the item’s size vector is

logic programming (CLP) [32] technique built on top of randomly generated.

the_Java Choc_:o constra_lint solvehpco- sol ver. net) to At this point, we have a very random MMKP problem. What

derive the optimal solution. ) _we have to do is further constrain the problem so that we
For larger scale problems the CLP technique was SiMRin guarantee the items @ptItems are truly the optimal

not feasible,e.g., solutions might take years to find. Fokelection of items. Lefi/azV; be the item with the highest

larger problems, we developed a technique that randomlyi,e in thei,, set. We further constrain the problem as
generated MMKP co-design problems with a few carefullyy|ows:

crafted constraints so we knew the exact optimal answer.pqr each itemM axV;, we reset the values of the items (if
Others [2] have used this general approach, though withygeged) to ensure that the sum of the differences between the

different problem generation technique. max valued items in each set and the optimal item are less
Ideally, we would prefer to generate completely randopan v/,

problems to test ASCENT. We are confident in the validity i

of this technique, however, for two reasons: (1) the trends w Z(MaxVi —Vopt;) < Vg

observed from smaller problems with truly random data were 0

identical to those we saw in the data obtained from solvirg tiA visualization of this constraint is shown in Figure 8.
generated problems and (2) the generated problems randomly
placed the optimal items and randomly assigned their valui Highest
and size so that the problems did not have a structure clearl Ve
amenable to the heuristics used by our MMKP approximatior
algorithm. Optimal ltem ] ]_\,d hwiﬁ

Our problem generation technique worked by creating twc ~ Value ’
MMKP problems for which we knew the exact optimal answer. yex; nighest £ <Vq
First, we will discuss how we generated the individual MMKP  Value After /
problems. LetS be the set of MMKP sets for the probled, ~ Optimalftem [ &
be aK -dimensional vector describing the size of the knapsack,
Iij be thejth item of the i, set, SZZB(IW,]{I) be the ky,
component off;;'s size vectonS‘Zij, andsize(S, k) be thek,

component of the knapsack size vector, the problem generati g new valuation of the items guarantees that the items in

Fig. 8. A Visualization of V,

technique for each MMKP problem worked as follows: 5, 14eims are the optimal items. We can prove this property
1) Randomly populate each setC S, with a number of by showing that if it does not hold, there is a contradiction.
items Assume that there is some set of iteni&gtier, that fit into

2) Generate a random siz8, for the knapsack the knapsack and have a higher value. /& be the value



of the better item to choose than the optimal item in the Next, we generate a set of produced/consumed resource val-
set. The sum of the values of the better items from each sets for the two MMKP problems. For the consumer problem,
must have a higher value than the optimal items. we randomly assign each item an amount of each produced
The itemsIb; C Ibetter must fit into the knapsack. We resource: C R that the item consumes. L&btalC (k) be the
designed the problem so that the optimal items exactly fdtal amount of the resouréeneeded by the optimal consumer
into the knapsack and that any item with a higher value thaolution andV opt(p) be the optimal value for the producer
an optimal item is also bigger. This design implies that &IMKP problem. We take the consumer problem and calculate
least one of the items idbetter is smaller and thus also a resource production rati®p(k), where
has a smaller valud/ small, than the optimal item in its set TotalC(k)
(or Ibetter wouldn't fit). If there are@ sets in the MMKP Rp(k) = ———=
problem, this implies that at mo§t— 1 items inIbetter have Vopt(p)
a larger value than the optimal item in their set, and thus: For each item,;;, in the producer problem, we assign it
0-1 0-1 a p(ro)duction va(lue)for the resourde of: Produced(k) =
) _ Rp(k) x valueof (I;;).
Vortq + 20: Vopti < Vsmall + ; Vi The optimal iterns have the highest feasible total valuedase
on the given budget and the sum of their values times the

We explicitly revalued the items so that: resource production ratios exactly equals the needed wdlue

i each resourcé:
g (MazxV; — Vopt;) < Vy i
Total
0 TotalC(k) = ————= ora C g Vopt;

) 0-1 ) Vopt(p
By subtracting the) ;7 Vopt; from both sides, we get:

Any other set of items must have a smaller total value and
consequently not provide sufficient resources for the ogitim
set of consumer items. To complete the co-design problem,

_ ) ) ) ) ) _ we set the total knapsack size budget to the sum of the sizes
the ‘inequality will still hold if we substituteV; in for of the two individual knapsacks.

N (Vb; — Vopt,), becausé/, is larger:

Q-1
Voptg < Vsmall + Z (Vb; — Vopt;)

Voptg < Vsmall + V4 5.2 Comparison of ASCENT, a Genetic Algorithm,
and PSO

Experiment 1: Comparing ASCENT’s Optimality Versus
which is a contradicton of the rule that we enforced for seralla Genetic Algorithm, and PSO. For our first experiment,
items:valueof(I;;) < Vopt; — Vg we created semi-random MMKP co-design problems that

This problem generation technique creates MMKP problem& knew the optimal answer to using the technique from
with some important properties. First, the optimal iteméwcte Section 5.1. We generated MMKP co-design problems that
set will have a random number of larger and smaller valuednged in size from 2 to 30 sets per MMKP. Each set contained
items (or none) in its set. This property guarantees thatld items. These experiments yielded solution space sizes
greedy strategy will not necessarily do well on the problemsf between15% and 15%° (2 problems with 30 sets of 15

Moreover, the optimal item may not have the best ratio @ems). For each problem size, we generated and solved 30
value/size. For example, an item valued slightly small@nth problem instances using ASCENT, a genetic algorithm, and a
the optimal item may consume significantly less space becal*SO algorithm. We graphed and compared the optimality and
its size was randomly generated. Many MMKP approximaticsolving time of the three algorithms.
algorithms use the value/size heuristic to choose itemmeeSi  ASCENT'’s function for determining the value of a solu-
there is no guarantee on how good the value/size of ttien is domain-specific and typically provided by the system
optimal item is, MMKP approximation algorithms will notdesigner. The approach is the same as PSO and genetic
automatically do well on these problems. algorithms where the value of a solution is computed using

To create an MMKP co-design problem where we know thee function supplied by the user that is specific to the problem
optimal answer, we generate a single MMKP problem with la the case of software configuration for DRE systems, the
known optimal answer and split it into two MMKP problemsralue function is typically a calculation of the expectedico
to create the producer and consumer MMKP problems. power consumption, or real-time schedulability based an th
split the problem, two new MMKP problems are created. Orsoftware/hardware configuration. In domains, such as thedcl
MMKP problem receivest of the sets from the original computing domain, resource utilization prices, such as the
problem and the other problem receives the remaining satests of utilizing computing resources on Amazon’s EC2
The total knapsack size for each problem is set to exactly tbemputing cloud (http://aws.amazon.com/ec2/#pricirag) be
size required by the optimal items from its sets to fit. The suosed to produce the valuation function.
of the two knapsack sizes will equal the original knapsazk.si  Genetic/PSO Design: The Genetic and PSO algorithms
Since the overall knapsack size budget does not change, Itlo¢h used a common representation of the problem and penalty
original optimal items remain the overall optimal solution function. The problem was represented as an n-dimensional

Voptg — Vg < Vsmall
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vector, where the positions in the vector correspondedéo t89.2% optimal versus the Genetic algorithms 54.9% optimal-
item that was selected from each set. For example, a problagyn Furthermore, ASCENT solved the problems in an average
with 3 sets per MMKP problem would produce a vector witlof 317ms versus the Genetic algorithms average runtime of
6 components. The first 3 components would represent b 212ms.

items selected from the consumer MMKP problem'’s sets. TheExperiment Results with Random Data: We also com-
second 3 components would represent the items selected figaned the algorithms on a series of problems that were
the producer MMKP problem'’s sets. completely randomly generated. For these problems, we did

Each position in the vector was limited to values correiot know the true optimal value. We generated 100 problems
sponding to the valid 0-based indices of items in the sets. Rgith 50 sets per MMKP problem and 15 items per set. This
example, a set with 5 items would allow values of 0-4. A valugielded a solution space size 95'°. In order to ensure that
of 2 would correspond to selecting tB&? item in the set. ~ we generated tractable problem instances, we set extremely

The penalty function scored solutions based on 1) if tHeose resource constraints on the problems to create a high
solution’s overall value and 2) whether or not the solutioprobability that a solution existed.
was correct. If a solution was not valid, the score of the Figure 10 shows a graph of the solution scores of the
solution was set to 0 - (resource overconsumption). Thalgorithms on these 100 random problems.
is, solutions that did not properly adhere to the budget or
the production and consumption of resources would produ 2400000
negative values. Although repair functions can sometim
provide better results than a penalizing function, repgiri
an arbitrary invalid MMKP co-design solution is extremely 1000000
complex and a research endeavor in its own right [12].

For the genetic and PSO algorithms, we used populati
(total particle) sizes of 20, 200, and 2000 members. V
conducted various experiments to tune the parameters of
algorithms. For the PSO algorithm, we used a local learnit 400000
rate of 2, a global learning rate of 2, and an inertial value i
0.5. For the Genetic algorithm, we mated the top 25% of tt
population using a strict cutoff. We also allowed up to 50% ¢ o ‘
the population to survive and cross over from one generati "e38d8R8YeageR
to the next. Finally, we used a mutation probability of 0.05%

Each algorithm was run for a total of 20 generations/iterati Fig. 10. Solution Score for 100 Randomly Generated

Experiment Results with Semi-Random Data: The results Problems
for the first experiment are shown in Figure 9.

1200000

=+=ASCENT
-#- Genetic2000
PSO 2000

600000

200000

o © o4 ©
0 0 o o

76

As can be seen from Figure 10, ASCENT produced superior

100 solution scores across all 100 problem instances. The @enet
5 N algorithm, which was the second best algorithm, produced
o ~_ - w90 solutions that were at most 90.9% of the value of ASCENT's
i ; ,\\ solution and at least 65.8% of the value. The PSO produced
o > \ e solutions that were at most 43.5% of the value of ASCENT's
“ = e A\ 560 solutions and at least 27.5% of the value. The average gplvin
" S \° =53 00 time for the Genetic 2000 was 101,453ms. The average solving

\\ ‘ \\ e, time for the PSO 2000 was 55,203ms. The average solving
* T e ke ~ Geneticzooo | time for ASCENT was 672ms.
20 o ~
10 N % o : ;

-, T — 5.3 ASCENT Scalability and Optimality
0 | : ..
2 5 10 20 30 Experiment 2: Comparing ASCENT scalability to an exact

CLP technique. When designing a satellite it is critical that
Fig. 9. Solution Optimality vs Number of Sets Compared designers can gauge the accuracy of their design techniques
for ASCENT, a Genetic Algorithm, and a PSO Algorithm  Moreover, designers of a complicated satellite system need

know how different design techniques scale and which tech-

As can be seen from the results, for up to 5 sets peigue to use for a given problem size. This set of experiments

MMKP problem, the Genetic algorithm with 2000 populatiorevalutes these questions for ASCENT and a constraint logic
members provided the best results. The Genetic Algorithpnogramming (CLP) co-design technique.
with 2000 population members, required 9,024ms to solve aAlthough CLP solvers can find optimal solutions to MMKP
problem with 5 sets. ASCENT, in contrast, required 73mso-design problems they have exponential time complexity.
When the problems were scaled up to 30 sets per MMKRr large-scale co-design problems (such as designing a com
problem, ASCENT provided far superior optimality and rumplicated climate monitoring satellite) CLP solvers thuscily
time. ASCENT produced solutions that averaged roughbecome incapable of finding a solution in a reasonable time
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frame. We setup an experiment to compare the scalability
of ASCENT to an CLP technique. We randomly generated
a series of problems ranging in size from 1 to 7 sets per
hardware and software MMKP problem. Each set had 10 o
items. We tracked and compared the solving time for ASCENT 8 =l

and the CLP technique as the number of sets grew. Figure 11 ©
presents the results from the experiment. As shown by the

DA S D OO DD PR DD DD D DR PN P

Number of Sets
6000000

n 5659282
& sooo000 Fig. 12. Solution Optimality vs Number of Sets
£ 4000000
F 3000000
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E 2000000 1365707
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0 \ » Beyond 20 sets, the average optimality-i88% and continues

1 5 70/ asar O iMprove. These results are similar to MMKP approximation
TotafSets 4 . algorithms, such as M-HEU, that also improve with incregsin
numbers of sets [2]. We also found that increasing the number

Fig. 11. Solving Time for ASCENT vs. CLP of items per set also increased the optimality, which peisll

the results for our solver M-HEU [2].
results, ASCENT scales significantly better than an CLRetas Experiment 4: Measuring ASCENT’s solution space
approach. _ . ’ . o snapshot accuracy. As part of the solving process, ASCENT
Experiment 3: Testing ASCENT'’s solution optimality. ot only returns the optimal valued solution for a co-design
Clearly, scalability alone is not the only characteristica0 proplem but it also produces a data set to graph the optimal
good approximation algorithm. A good approximation algoynswer at each budget allocation. For the satellite example
rithm must also provide very optimal results for large pesbl o graph would show designers the design with the highest

sizes. W? created an experiment to test the accuracy,imfage processing accuracy for each ratio of budget allogati
ASCENT's solutions. We compared the value of ASCENT'g; software and hardware. We created an experiment to test

answer to the optimal answer, how optimal each data point in this graph was.
valueof(ASCENT Solution) For this experiment, we generated 100 co-design problems
valueo f (Optimal Solution) with less than 7 sets per MMKP problem and compared

for 50 different MMKP co-design problem sizes with 3 item&SCENT'’s answer at each budget allocation to the optimal
per set. For each size co-design problem, we solved 80swer derived using an CLP technique (more sets improve
different problem instances and averaged the results. ASCENT's accuracy). For problems with 7 sets divided into

It is often suggested, due to the Central Limit Theorem [1998 different budget allocations, ASCENT finds the same,
to use a sample size of 30 or larger to produce an appré@ptimal solution as the CLP solver more than 85% of the
imately normal data distribution [15]. We chose a sampléme. Figure 13 shows an example that compares the solution
size of 50 to remain well above this recommended minimugpace graph produced by ASCENT to a solution space graph
sample size. The largest problems, with 50 sets per MMKPoduced with an CLP technique. The X-axis shows the
problem, would be the equivalent of a satellite with 50 p®int
of software variability and an additional 50 points of hasaes
variability. % m

For problems with less than 7 sets per MMKP problem, we - |
compared against the optimal answer produced with an CLP - ——— |
solver. We chose a low number of items per set to decrease w J/ L 15 Soler
the time required by the CLP solver and make the experiment i
feasible. For problems with more than 7 sets, which could 2 /" ’ \\
not be solved in a timely manner with the CLP technique, we D - B \
used our co-design problem generation technique presented 15 9 1317212529 33 37 41 45 49 5357 6165 69 73 77 81 85 %
in Section 5.1. The problem generation technique allowed Percentage of BudgetAllocated fo Software
us to create random MMKP co-design problems that weag 13. Solution Value vs. Budget Allocation
knew the exact optimal answer for and could compare against
ASCENT's answer.

Figure 12 shows the results of the experiment to tegercentage of the budget allocated to the software (condume
ASCENT’s solution value verusus the optimal value over SRIMKP problem. The Y-axis shows the total value of the
MMKP co-design problem sizes. MMKP co-design problem solution. The ASCENT solution

With 5 sets, ASCENT produces answers that average 9@¥ace graph closely matches the actual solution space graph
optimal. With 7 sets, the answers averag85% optimal. produced with the CLP technique.

Value
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5.4 Solution Space Snapshot Resolution The importance of a small step size is demonstrated in
Experiment 5: Demonstrating the importance of solution Figure 14(b), which was produced with 100 allocation steps.

space snapshot resolution. A complicated challenge of apply- Figure 14(a) suggests that any allocation of greater than
ing search-based software engineering to hardware/saftwa0%0 for software would result in an optimal satellite design
co-design problems is that design decisions are rarely f@gure 14(b) shows that there are many pitfalls in the 70%

straightforward as identifying the design configuratiomtth 0 99% range that must be avoided. At these precise budget
maximizes a specific property. For example, if one satelli@llocation points, there is not a combination of hardware an
configuration provides 98% of the accuracy of the mo§Pftware that will produce a good solution.
optimal configuration for 50% less cost, designers are\like| . o
choose it. If designers have extensive experience in haedwa> Solution Space Analysis with ASCENT
development, they may favor a solution that is marginallyenoAlthough ASCENT’s ability to provide variable resolution
expensive but allocates more of the development to hargwagelution space images is important, its greatest value sstem
which they know well. Search-based software engineerifigm the variety of questions that can be answered from its
technigques should therefore allow designers to iteratitezise output data. In the following results, we present represesm
these desired designs out of the solution space. solution space analyses that can be performed with ASCENT’s
ASCENT has a number of capabilites beyond simplgutput data.
finding the optimal solution for a problem to help designers Design analysis 1. Finding designs that produce budget
find desirable solutions. First, as we describe below, ASCENuUrpluses. Designers may wish to know how the resource
can be adjusted to produce different resolution images ef thlack values, such as how much RAM is unused, with different
solution space by adjusting the granularity of the budget al satellite designs. Another related question is how muclhef t
cation stepsé.g., make a larger number of smaller allocatiohudget will be left-over for designs that provides a spedifie
changes). ASCENT's other solution space analysis cagiabili minimal level of image processing accuracy. We can use the
are presented in Section 5.5. same ASCENT output data to graph the budget surplus at a
The granularity of the step size greatly impacts the regange of allocation values.
olution or detail that can be seen in the solution space. ToFigure 15 shows the budget surplus from choosing various
obtain the most accurate and informative solution spacgemadesigns. The graph has been filtered to adhere to a requitemen
a small step size should be used. Figure 14(a) shows a solutidat the solution provide a value of at least 1600. Any data
space graph generated through ASCENT using 10 allocati@@int with a value of less than 1600 has had its surplus set to
steps. The X-axis is the percentage of budget allocated GoLooking at the graph, we can see that the cheapest design
software, the Y-axis is the total value of the solution. Ithat provides a value of at least 1,600 is found with a budget
appears that any allocation of 30% or more of the budget @&jocation of 80% software and 20% hardware. This design

software will produce a satellite with optimal image praieg has a value of 1,600 and produces budget savings of 37%.
accuracy. Once the design that produces the biggest surplus is found,

developers use algorithms other than ASCENT to determine
how to best use the excess.
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Percentage of Budget Allocated to Software K
(@) Low Resolution Solution Space Snapshot " Percentage of Budget Allocated to Software
' Fig. 15. Budget Surplus vs. Budget Allocation
o WV ‘H‘ ‘H“H\ Design analysis 2. Evaluating design upgrade/-
% downgrade cost. In some situations, designers may have a
> q v‘u‘\uw\u’ ‘l given solution and want to know how much it will cost or
save to upgrade or downgrade the solution to a differentémag
processing accuracy. For example, designers may be asked to
¢ 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 provide a range Of Sate”ite Options for their Superi0r$ ﬂhm)w
Percentage of Budget Allocated to Software what level of image processing accuracy they can provide at
(b) High Resolution Solution Space Snapshot a number of price points. Figure 16 depicts another view of

the ASCENT data that shows how cost varies in relation to
Fig. 14. A Solution Space Graph at Varying Resolutions  the minimum required solution value.
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This graph shows that 5 cost units can finance a desigased software engineering landscape for hardware/seftwa
with a value up to 900, but a design of a value of 1,00€o-design.
units will cost at least 124 cost units. This informationra  Another related problem in hardware/software co-design is
demonstrates the increased financial burden of requiringtree scheduling of hardware/software tasks subject to resou
slightly higher valued design. Alternatively, if the nesag/ constraints. This type of co-design problem tries to deigem
value of the system is near the left edge of one of thetiee optimal ordering of a series of tasks implemented in both
plateaus, designers can make an informed decision on whethardware and software. Scheduling with resource consdrain
the increased value justifies the significantly increasesi.co is a challenging problem that has led to the development
of large number of co-design search and design exploration
techniques [18, 24, 14]. This co-design technique is aittack
a different facet of software/-hardware co-design thatsdoe
/ not deal with how to select a software and hardware design
/ that maximizes system value subject to producer/consunter a
cost constraints. ASCENT, however, focuses directly os thi
“ / maximization of system value subject to these constraints.
| MMKP approximation. Many problems similar to the
e s2e888828 888288 C88EE8C88EE RS hardware/software co-design problem presented in thigmpap

mmmmmmmmmmmmmmmmmmmmmmmmmmm
NNNNNNNNNNNNNNNNNNNNNNNN

Minimum Value have been solved with MMKP techniques. In multimedia
systems, determining the quality settings that maximize th
Fig. 16. Cost of Increasing Solution Value value of a series of data streams has been modeled as an
MMKP problem [23]. Other usages of MMKP include meta-
scheduling for grid applications [33]. A humber of excetlen
6 RELATED WORK heuristic approximation algorithms, such as M-HEU [2] and
Search-based software engineering has a large numberCaflEU [2], with near optimal results have been devised.
facets ranging from the design of general approximation-alg These existing MMKP algorithms and techniques, however,
rithms to the construction of search-based software eerginecannot be directly applied to the MMKP-codesign problem
ing methods for specific problems. This section compares ageélscribed in this paper. First, as described in SectiontBel,
contrasts ASCENT to search-based software engineerihg tegxisting techniques assume that there are predefineddudilvi
niques related to (1) approximation algorithms for sohéimg-  knapsack sizes, which is not the case in the MMKP co-design
ilar problems to the MMKP co-design problem, (2) methodscenario. Second, as described in Section 3.2, producer RIMK
for using search-based techniques to solve hardware&@twitems cannot be valued separately from a consumer MMKP
partitioning problems, (3) methods for using approximatioproblem, causing a coupling problem. Existing MMKP ap-
techniques for solving hardware/software scheduling proproaches are not designed to handle this type of coupling
lems, and (4) search-based software engineering tectsigpeoblem. In contrast, ASCENT addresses these issues and
for determining project staffing. provides high-quality solutions to MMKP co-design probkem
Hardware/software co-design. A number of co-design  Project management and staff allocation. Accurate plan-
techniques [6, 25, 31, 1, 29, 34, 28, 13]—that can be vieweihg of large projects are essential to estimate project, cos
as search-based software engineering techniques—ex#minaletermine the formation of employee project teams, and to
problem of partitioning system functionality into hardwamnd assign these teams to tasks in a manner that gives the largest
software. These approaches use a number of search techiniguebability for successful completion. The placement afrea
such as heuristic search techniques [34, 31], PSO [28, liBllividual employee can change the profile of the entiregaroj
Genetic Algorithms [1, 29], and Clustering Algorithms [6). plan, resulting in an exponential number of possible conrfigu
the partitioning problem, a system’s required operatiores aations [4]. Moreover, parameters of a project are dynamit a
grouped into tasks or functions, which are then implemeintedmay change several times before project completion, raqguir
either hardware or software. The goal is to correctly gartit that multiple staffing solutions be calculated. This reskas
the tasks into hardware and software to meet a predefimethted to MMKP co-design problems in that it deals with two
performance goal. Some tasks may operate with higher perftightly-coupled activites—the ordering and staffing of jpod
mance if the functionality is placed on the hardware rathant parts subject to resource constraints. Although the work is
on software. The performance of the system is thus detetminelated, it cannot be used to solve MMKP co-design problems.
by the location and placement of tasks in hardware versuws contrast, ASCENT is specifically designed for solving
software. MMKP co-design problems.
The MMKP co-design problem, which ASCENT focuse
on, is complementary to this research. In particular, these CONCLUDING REMARKS
related approaches do not deal with maximizing a measubesigning hardware and software in tandem to maximize a
of system value subject to producer/consumer resources agdtem capability can be an NP-hard activity. Search-based
cost. Similarly, ASCENT does not examine the impact of theoftware engineering is a promising approach that can be use
placement of tasks on the hardware and software. Each &pdeverage algorithmic techniques during system co-ahesig
proach fills an important, although distinct, role in thersba This paper presented a polynomial-time search-based a@tw

Cost
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engineering technique, calleillocation-baSed Configuration [15] J. Gosling.Introductory Statistics Pascal Press, Glebe,

Exploration Techniqud ASCENT), for finding near optimal [

hardware/software co-design solutions.
We showed how ASCENT's heuristic-based solutions to
hardware/software co-design problems average over 9586 opi7)
mal when there are more than seven points of variability é th
hardware and software design. Moreover, ASCENT’s outpli€]
(which is a data set showing the optimal design configuration
at each ratio of budget allocation to hardware and software)
can be used to search for and answer important software
engineering questions, such as how much more it will cog]

for increasing the value of system capability.

An implementation of ASCENT is available from the
ASCENT Design Studio projecth{t p: // code. googl e.
com p/ ascent - desi gn- studi o/).
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