
CS 251: Intermediate Software Design

Program Assignment 4

This programming assignment focuses upon using a variety of patterns to implement a non-
trivial program. The final result will be several thousand lines of code long, though you’ll reuse all
the earlier Array, AQueue, and LQueue classes, so it won’t seem as painful as writing/debugging
thousands of lines of code from scratch! The assignment is split into the following three parts so
you can separate concerns and create/debug your solution incrementally.

Part A. We’ll start by implementing using the Adapter pattern, which you’ll use to integrate
your LQueue and AQueue into a new Queue and Queue Adapter template class hierarchy that
can be used to dynamically select which type of queueing strategy to use in the program at
runtime. The use of Adapter ensures that no changes are required to the existing LQueue and
AQueue classes. You’ll also need to implement an adapter for the STL queue class so that it can
be plugged into the Queue Adapter, as well.

You can get the shells for Part A of the program from www.dre.vanderbilt.edu/~schmidt/
cs251/assignment4a. You’ll need to reuse the files from your Array, AQueue, and LQueue
implementations.

Part B. In this part of the assignment you’ll use the Queue and Queue Adapter template
classes to implement a program that will build and traverse a binary tree using various traversal
strategies. You’ll use the following patterns to guide the design of Part B:

• Singleton, which is used to implement an Options singleton that parses and keeps track
of the command-line options.

• Factory, which is used to create the appropriate types of queueing and traversal strategies
indicated by the Options Singleton.

• Strategy, which is used to implement the appropriate type of queueing strategy (such
as AQueue or LQueue) and traversal strategy (such as level-order, in-order, pre-order, and
post-order).

You can get the shells for Part B of the program from www.dre.vanderbilt.edu/~schmidt/
cs251/assignment4b. You’ll need to reuse the files from your solution to Part A of the program.

Extra graduate student work. Graduate students need to implement the following addi-
tional patterns for Part B.

• Abstract Factory and Factory Method, which are used instead of individual Factory
functions to consolidate all the factories into a single concrete factory class.

• Bridge, which is used to avoid exposing “naked” pointers and to simplify memory man-
agement, e.g., by reference counting throughout the program.

The use of these patterns are optional for undergraduates.

Part C. The third part of the assignment will replace the Strategy pattern with the following
patterns:

• Iterator, which is used to retrieve each element in the binary tree one item at a time,
using various traversal orders, e.g., in-order, pre-order, post-order, and level-order.

• Visitor, which is a generalization of Strategy used to perform an operation on each node
that is visited.

1



The visitor implementations need only print the contents of the tree when visited, though
again your design should be capable of being extended to handle other types of visitors to prepare
for Part D. Likewise, your visitor implementations only need to define an iterator for level-order
traversal, though your design should be capable of being extended to handle the other traversal
orders, as well, for Part D.

You can get the shells for PartC of the program from www.dre.vanderbilt.edu/~schmidt/
cs251/assignment4c. You’ll need to reuse many files from your solution to Part B of the
program.

Extra graduate student work. Graduate students need to implement the Abstract Factory,
Factory Method, and Bridge patterns you used for Part B. Moreover, graduate students need to
implement STL-style iterators, whereas these are optional for the undergraduates (who can use
GoF-style iterators if they choose).

Part D. This final part of the assignment will change the tree factories to produce an expression
tree, which consists of nodes containing operators (e.g., +, -, *, and /) and operands (e.g.,
integers). You will need to implement the following pattern for the expression tree:

• Composite, which treats individual objects (operands) and recursively-composed objects
(operators) uniformly.

Likewise, a new visitor will be needed to evaluate the expression tree to print its value. You
will therefore need to enhance your iterator to support (at least) pre-order traversal of the tree.

Extra graduate student work. Graduate students will need to enhance the expression tree
program to use the Interpreter and Builder patterns to parse expressions input from users to
create expression trees.

2


