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Abstract: Effective validation of distributed real-time and embedded (DRE) system quality-of-service (QoS) properties

(e.g., event prioritization, latency, and throughput) requires testing system capabilities in representative exe-
cution environments. Unfortunately, evaluating the correctness of such tests is hard since it requires validating

many states dispersed across many hardware and software components. To address this problem, this article
presents a method called Test Execution (TE) Score for validating execution correctness of DRE system tests

and empirically evaluates TE Score in the context of a representative DRE system. Results from this evalu-

ation show that TE Score can determine the percentage correctness in test execution, and facilitate trade-off
analysis of execution states, thereby increasing confidence in QoS assurance and improving test quality.
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1. Introduction

Distributed real-time and embedded (DRE) systems, such as large-scale traffic management systems, manufac-

turing and control systems, and global financial systems, are increasing in size (e.g., number of lines of source

code and number of hardware/software resources) and complexity (e.g., envisioned operational scenarios and tar-

get execution environments) [1]. It is therefore becoming more critical to validate their QoS properties (such as

event prioritization, latency, and throughput) in their target environments continuously throughout their software

lifecycles. Continuous validation enables DRE system testers to locate and resolve performance bottlenecks with

less time and effort than deferring such validation until final system integration [2, 3].
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System execution modeling (SEM) [4] is a promising approach for continuously validating DRE system QoS

properties throughout their software lifecycles. SEM tools enable DRE system developers to (1) model system

behavior and workload at high-levels of abstraction and (2) use these models to validate QoS properties on the

target architecture. Although SEM tools can provide early insight a DRE system’s QoS values, conventional SEM

tools do not ensure that QoS tests themselves execute correctly.

For example, it is possible for a DRE system to execute incorrectly due to transient errors even though the

test appeared to execute correctly [5], e.g., failure to detect the effects of node failures on QoS properties because

injected faults did not occur as expected. Likewise, DRE systems have many competing and conflicting QoS prop-

erties that must be validated [1]. For example, end-to-end response time may meet specified QoS requirements,

but latencies between individual components may not meet specified QoS requirements due to software/hardware

contention and QoS trade-off requirements, such as prioritizing system reliability over intermittent response time.

These problems are exacerbated when metrics (such as event timestamps, application state, and network interface

stats) needed to validate these concerns are dispersed across many hardware/software components. Developers

of DRE systems currently determine test execution correctness via conventional techniques, such as manually

inserting checkpoints and assertions [6]. Unfortunately, these techniques can alter test behavior and performance,

are locality-constrained, and focus on functional concerns rather than QoS properties. DRE system testers

therefore need improved techniques that help reduce the complexity of ensuring test correctness when validating

DRE system QoS properties in their target environments.

Solution approach → Correctness validation via system execution traces. System execution traces [7]

are artifacts of executing a software system (e.g., a DRE system) in a representative target environment. These

traces log messages that capture system state during different execution phases, such as component activation

versus passivation. System execution traces can also capture metrics for validating test execution correctness,

such as event timestamps that determine what component exceeded its allotted execution time. In the context

of correctness validation, system execution traces can help quantify the correctness of a DRE system test that

validates QoS properties in terms of its states and trade-off analysis of such properties.

This article therefore describes a method called Test Execution (TE) Score that uses system execution traces

to validate DRE system test correctness. DRE system testers use TE Score by first defining valid and invalid

DRE system states and QoS properties, such as number of events processed or acceptable response time(s) for an

event. TE Score then uses system execution traces to evaluate test correctness using the specified (in)valid state

and QoS properties. Results from our experiments show how applying TE Score to a representative DRE system

can provide DRE system testers with a correctness grade (i.e., a percentage) that quantifies how well their tests

execute. Moreover, TE Score helps identify test errors that must be resolved to improve correctness and increase

confidence in QoS assurance for DRE systems.

Article organization. The remainder of this article is organized as follows: Section 2 introduces a representative

DRE system case study to motivate the need for TE Score; Section 3 describes the structure and functionality
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of TE Score; Section 4 analyzes the results of experiments that applied TE Score to the case study; Section 5

compares TE Score with related work; and Section 6 presents concluding remarks.

2. Case Study: The QED Project

The QoS-Enabled Dissemination (QED) [8] project is a multi-year, multi-team effort to create and evaluate

information management middleware to meet the QoS requirements of component-based DRE systems in the

Global Information Grid (GIG) [9]. The GIG is a large-scale DRE system [1] designed to ensure that different

applications collaborate effectively and deliver appropriate information to users in a timely, dependable, and

secure manner. Figure 1 shows QED in context of the GIG.

Figure 1. QED Relationship to the GIG

One of the key challenges faced by the QED development team was overcoming the serialized-phasing development

problem [10], where systems are developed in different layers and phases throughout their lifecycle. In this software

development model, design flaws that negatively impact QoS properties are often not identified until late in the

software lifecycle, e.g., system integration time, when it is much more expensive to resolve flaws [2, 3]. To overcome

this problem, QED testers used the CUTS and UNITE (see Sidebar 1) SEM tools to validate QoS properties of

the QED middleware on existing GIG middleware continuously throughout the software lifecycle [11].

Although CUTS and UNITE enabled QED testers to evaluate QED’s enhancements relative to existing GIG

middleware, CUTS was bound to the same limitations of evaluating QoS test correctness discussed in Section 1.

In particular, QED testers were faced with the following challenges:1

Challenge 1: Inability to validate execution correctness of QoS test. Executing a QoS test on a DRE

system requires running the system in its target environment. This environment consists of many hardware/-

software components that must coordinate with each other. To determine the correctness of QoS test execution,

DRE system testers must ensure that all hardware/software resources in the distributed environment behave

1 Although these challenges are motivated in the context of the QED project and CUTS, they apply to other DRE
systems that must validate their QoS tests.

3



Evaluating Distributed Real-time and Embedded System Test Correctness using System Execution Traces

Sidebar 1: Overview of CUTS and UNITE

The Component Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS) [12] is a system execution
modeling tool for large-scale DRE systems. It enables DRE system testers to validate QoS properties on the

target architecture during early phases of the software lifecycle. DRE system testers use CUTS as follows:

1. Use domain-specific modeling languages [13] to model behavior and workload at high-levels of abstraction;

2. Use generative programming techniques [14] to synthesize a complete test system for the target architec-

ture; and

3. Use emulation techniques to execute the synthesized system on its target architecture and validate its
QoS properties in its target execution environment.

DRE system testers can also replace emulated portions of the system with its real counterpart as its development

is completed through a process called continuous system integration testing.
The Understanding Non-functional Intentions via Testing and Experimentation (UNITE) [11] tool is dis-

tributed with CUTS that mines distributed system execution traces to validate QoS properties. UNITE also

constructs QoS performance graphs that illustrate data trends throughout the lifetime of the system (i.e., how
a QoS property changed with respect to time). Section 3.1 provides a more detailed overview of UNITE.

correctly.

QED testers therefore needed a method that simplified validating whether QoS validation tests execute correctly.

Ideally, this method would automate the validation process so testers need not manually check all hardware/-

software resources for correctness. The validation method should also minimize false negatives (e.g., stating the

QoS test executes correctly, but in reality it failed to meet different QoS requirements). Section 3.2 describes how

TE Score method addresses this challenge problem using state-based specifications.

Challenge 2: Inability to perform trade-off analysis between QoS properties. QoS properties are a

multi-dimension concern [15]. It is hard to simultaneously ensure all DRE system QoS properties with optimal

performance, such as ensuring high reliability and low end-to-end response time; high scalability and high fault

tolerance; or high security and low latencies. Resolving this challenge requires trade-off analysis that prioritizes

what QoS properties to validate (or ensure) since some are more important than others. For example, QED

testers must ensure that high priority events have lower latency than lower priority events when applying QED’s

enhancements to existing GIG middleware.

After QED testers validated the correctness of QoS test execution (i.e., they address challenge 1), they wanted to

validate multiple QoS properties simultaneously because it is time-consuming to validate a single QoS property in

isolation. QED testers therefore needed a method to assist in this trade-off analysis between multiple dimensions

of QoS properties. Moreover, the method should allow QED testers to determine (1) what QoS properties are

most important, (2) quantify the correctness of QoS test execution based on the specified priorities, and (3) help

identify and prioritize where improvements in QoS test execution are needed. Section 3.3 describes how TE Score

addresses this challenge by adding priorities and weights to the state-based specifications.
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3. The Structure and Functionality of TE Score

This section describes the structure and functionality of TE Score. Examples from the QED case study introduced

in Section 2 are used throughout this section to showcase the applicability of TE Score to DRE systems.

3.1. Mining System Execution Traces with Dataflow Models

Before discussing the details of TE Score, it is first helpful to understand how dataflow models can be used to mine

system execution traces and validate QoS properties. As mentioned in Section 1, system execution traces are a

collection of messages that capture a DRE system’s behavior and state at any given point in time while executing

in its target environment. Prior research efforts [11, 16] yielded a SEM tool called UNITE (see Sidebar 1) that

mines system execution traces to (1) validate QoS properties and (2) generate QoS performance graphs for QoS

properties by viewing its data trend (i.e., how a metric changes with respect to time).

To validate a QoS property and view its data trend using system execution traces, UNITE uses dataflow mod-

els [17]. A dataflow model captures how data is passed (or flows) through a given domain—similar to how

connections between separate components in a DRE system capture how data flows through a distributed system.

UNITE defines this dataflow model as DM = (LF, CR) as:

• A set LF of log formats that have a set V of variables identifying what data to extract from messages in a

system execution traces. These log formats will identify many occurrences of similar messages in a system

execution trace where the difference is captured in V .

• A set CR of causal relations that specify the order of occurrence for each log format, such that CRi,j means

LFi → LFj , or LFi occurs before LFj [18]. These relations help determine how data flows across different

application domains, such as one component sending an event to another component deployed on a different

host.

Figure 2 shows a user-defined dataflow model that can produce QoS performance graphs from a system execution

trace, such as the one shown in Table 1. This figure shows how two log formats will locate messages for event

publication (i.e., LF1 will identify message 45, 46, and 48 in Table 1) and event receipt (i.e., LF2 will identify

message 47, 49, and 50 in Table 1). The variables in the two log formats capture the variable portion of each log

message, which also contain metrics of interest.

AVG(LF2 . recvTime − LF1 . sendTime )

Listing 1. Expression for calculating latency using UNITE.

Listing 1 presents the expression specified by DRE system testers to calculate the latency for sending an event

based on the data captured by the system execution trace shown in Table 1. UNITE uses the dataflow model and

system execution trace to evaluate the expression and optionally view its data trend by removing the aggregation

function (i.e., AVG).
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Figure 2. Example dataflow model in UNITE.

Table 1. Data table of an example system execution trace to be analyzed by UNITE.

ID Time of Day Hostname Severity Message

45 2009-03-06 05:15:55 node1.isislab.vanderbilt.edu INFO Config: sent event at 5 at 120394455

46 2009-03-06 05:15:55 node1.isislab.vanderbilt.edu INFO Planner: sent event at 6 at 120394465

47 2009-03-06 05:15:55 node2.isislab.vanderbilt.edu INFO Planner: received event at 5 at 120394476

48 2009-03-06 05:15:55 node1.isislab.vanderbilt.edu INFO Config: sent event at 7 at 120394480

49 2009-03-06 05:15:55 node2.isislab.vanderbilt.edu INFO Effector: received event at 6 at 120394488

50 2009-03-06 05:15:55 node2.isislab.vanderbilt.edu INFO Planner: received event at 7 at 120394502

3.2. Specifying QoS Test Execution States

Validating QoS test correctness requires evaluating a DRE system’s state and QoS properties over its complete

lifetime, i.e., from the time the system is deployed to the time it shuts down. This evaluation is necessary because

QoS properties, such as latency and end-to-end response time, often fluctuate over time due to system dynamics

and hardware/software contention. There can also be states that the DRE system must reach (and maintain) to

evaluate QoS properties properly, e.g., a component receiving the correct number of events within a time period

to evaluate end-to-end response time is under expected workload conditions.

The execution state of a DRE system is the value of its variables at any given point in time. Since it can be

hard to capture the value of each variable in a DRE system at a given point in time (i.e., take a global snap-

shot [18]), system execution traces may be needed to capture the necessary information. Based on the discussion

in Section 3.1, it is also possible to extract the needed information and validate test execution correctness. We

therefore formally define an execution state of a DRE system as s(DM) = (V ′, P ):

• A set of variables V ′ for evaluating the system’s state of interest where V ′ ∈ V in the dataflow model DM ;

and
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• A proposition P that captures the context and expected value of the context over the of variables v such

that Cv → Ev means Cv defines the context for the expected value of P and Ev defines the actual value

(or effect) for the given context. It is necessary for the execution state to define a proposition because the

same effect can occur in many different contexts. The proposition therefore prevents incorrect data from

being extracted from the totality of the data available in a system execution trace.

Implementing QoS test execution states in TE Score. To realize test execution states in TE Score, we

leverage UNITE’s capabilities for specifying dataflow models. In particular, using the set of variables defined in

UNITE’s dataflow model, QED testers select variables to define execution states that can validate the execution

correctness of their QoS test. This execution state is specified as a proposition P where the context Cv is an

expression that defines the scope of the evaluation and Ev is the expected value for the specified context.

Cv : LF1 . instName = ‘ ‘ ConfigOp ’ ’

Ev : (LF2 . sendTime − LF1 . recvTime ) < 30

Listing 2. Example State Specification for TE Score

Listing 2 shows an example that validates if response time for the ConfigOp component is always less than 30 msec.

In this example QED testers select LF1.instName, LF1.recvTime, and LF2.sendTime from the dataflow model.

They then define a proposition where the context checks the value captured in the variable named LF1.instName.

If the specified context is valid, i.e., Cv is true, the expected value of the context is evaluated, i.e., Ev is tested.

Likewise, the execution state is ignored if the context is invalid.

3.3. Specifying Execution Correctness Tests

Section 3.2 discussed how TE Score defines a single execution state for validating execution correctness. In

practice, however, there can be many execution states that must be evaluated to determine execution correctness

for a QoS test. For example, a DRE system tester may need to validate that response time of a single component

is less than 30 msec, the arrival rate of events into the system is 10 Hz, and the end-to-end response time for

a critical path of execution is less than 100 msec because under those conditions do their experiments produce

meaningful workloads. Likewise, it may be necessary to check that test execution does not reach an invalid state,

but it may be easier to express this requirement in terms of invalid states, as opposed to valid states.

It is often hard, however, to validate all execution states of a QoS tests because of its large state space that

can easily have conflicting interest. Using the previous example, for instance, it may be hard to ensure response

time of a single component is less than 30 msec and end-to-end response time is less than 100 msec because

QoS properties traditionally conflict with each other. Due to these conflicting interests, it may be necessary to

conduct trade-off analysis for the different execution states. For example, DRE system testers may want to specify

that end-to-end response time is more important than the response time of a single component, as described in

Challenge 2.
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Defining execution correctness test specifications. Since an execution state can be either invalid or valid—

and trade-off capabilities are needed to validate correctness of QoS test execution—we use the definition of an

execution state to define a validation state s′ = (s, t, p, min, max) where:

• s is the target QoS test execution state;

• t is the QoS execution test state type (i.e., either invalid or valid); and

• p is the priority (or importance) of the QoS test execution state, such that lower priorities are considered

more important. This priority model is used because it does not put a predefined upper bound on priorities

and offers a more flexible approach to assigning priorities;

• min is the minimum number of occurrences the specified state s can occur throughout the execution of the

QoS test (i.e., the state’s lower bound); and

• max is the maximum number of occurrences that the specified state s can occur throughout the execution

of the QoS test (i.e., the state’s upper bound).

If the state type is invalid min and max play a different role, where the specified range [min, max] represents the

number of occurrences that cause the execution state to fail. Finally, an execution correctness test CT is defined

as a set S of QoS validation states where s′ ∈ S.

Implementing execution correctness test specifications in TE Score. To realize execution correctness

test specifications in TE Score, QED testers specify a set of states that determine the execution correctness for a

QoS test. Each state is defined as either valid (i.e., an allowable state) or invalid (i.e., a state that is not allowed).

Likewise, each state in the execution correctness test is given a priority that determines its level of importance

when conducting trade-off analysis between different execution states.

s′1 :

s: (LF3.instName = Receiver)→ LF4.eventCount/(LF5.stopT ime− LF6.startT ime) > 5

t: valid

p: 2

min: 1

max: 1

s′2 :

s: (LF1.instName = ConfigOp)→ (LF2.sendT ime− LF1.recvT ime) > 30

t: invalid

p: 4

min: 1
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max: unbounded

s′3 :

s: LF7.endT ime− LF8.beginT ime < 100

t: valid

p: 1

min: 0

max: unbounded

Listing 3. Example Correctness Test Specification in the TE Score

Listing 3 shows an example of a correctness test that validates the correctness of QoS test execution. This example

contains the following different QoS execution states:

1. A state validating the arrival rate of events into a component named Receiver is 5 Hz, which should only

occur once;

2. A state validating that response time for a component named ConfigOp is never greater than 30 msec; and

3. A state validating the end-to-end response time of an event that is always less than 100 msec throughout

the entire execution of the QoS test.

3.4. Evaluating Execution Correctness Test Specifications

After defining an execution correctness test specification (see Section 3.3), the final step in the evaluation process

is evaluating it. The main goal of this process is to provide a metric that quantifies the degree to which a QoS test

executes correctly based on its specified states. This metric serves two purposes: (1) it helps DRE system testers

determine how well tests meet their expectations and (2) it identifies areas where tests may need improvement.

Given Section 3.3’s definition of an execution correctness test specification, evaluating these tests must account

for both the QoS execution state’s type (i.e., invalid or valid) and priority. Failure to account for these two

properties can yield false negative results that do not provide meaningful information to DRE system testers.

For example, higher priority states (i.e., states with a lower priority number) should have a greater weight on

the overall evaluation of an execution correctness specification. Likewise, overall evaluation should be impacted

negatively whenever a valid execution state is not reached or an invalid execution state is reached.

It is therefore possible to use the priorities (or weights) and state types to derive a weighted grading system.

Equation 1 calculates the weight of a given state s′ in an execution correctness test specification:

weight(s′) = maxprio(S)− prio(s′) + 1 (1)

As shown in Equation 1, maxprio(S) determines the highest priority number for a QoS execution state (i.e., the

QoS execution state with the least priority) and prio(s′) is the priority value of the specified QoS execution state.
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Since a weighted grading system is used to validate the correctness of QoS tests execution, QoS execution states

of greater importance will have more influence on the overall grade than QoS execution states of less importance.

In particular, obtaining valid states increases the execution correctness test grade and reaching invalid states

decreases the grade. Likewise, the grade is decreased if a valid state is not reached, whereas the resulting grade

is increased if an invalid state is not reached.

Equations 2 and 3 determine the number of points representing valid QoS execution states that can be reached

or invalid QoS execution states that cannot be reached for a given dataset DS.

points(DS, s′) =

8>><>>:
evaluate(DS, s′) = true weight(s′)

evaluate(DS, s′) = false 0

(2)

points(DS, S) =
X
s′∈S

points(DS, s′) (3)

Finally, Equation 4 and Equation 5 determine the final grade G for an execution correctness test specification.

maxpoints(S) =
X
s′∈S

weight(s′) (4)

G(DS, S) =
points(DS, S)

maxpoints(S)
× 100 (5)

As highlighted in the equations, the final grade of an execution correctness test for a given dataset is determined

by the number of points award for each test execution state, i.e., the number of valid states reached and invalid

states not reached divided by the number of total possible points.

Implementing correctness test evaluation in TE Score. To achieve test evaluation correctness, TE Score

leverages UNITE’s capabilities for mining system execution traces and constructing a dataset that represents the

given dataflow model. After the dataset is constructed, TE Score processes each state in the execution correctness

test to calculate a grade. Algorithm 1 shows the algorithm TE Score uses when grading the execution correctness

of a QoS test using Equations 2– 5.

As shown in Algorithm 1, given the dataset DS constructed by UNITE and the execution state s′, its corresponding

SQL statement is constructed (line 6), applied to the dataset, and the number of rows in the result set is stored.

If state s′ is a valid state—and the number of rows is less than the min occurrences or greater than the max

occurrences—0 points are returned (line 11) Likewise, 0 points are returned (line 15) if the state s′ is an invalid

state and the count falls within the specified range [min, max].

Handling false negatives. There may be cases when querying the dataset for the specified state yields false

negatives. For example, if the expected value Ev of context Cv is true that does not necessarily mean that Ev

is never false because the query’s result returns data that only matches the specified query. The query does not

validate if the dataset contains data that invalidates the expected value, which can occur when the max value is

unbounded (i.e., the state can be reached infinite number of times).
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Algorithm 1 TE Score’s Algorithm for Evaluating Execution Correctness State

procedure EVALUATE(DS, s′, P )

DS: dataset from UNITE
s′: execution state

P : max points

sqlstr ← sqlstmt(s′)
n ← get count(DS, sqlstr)

if is valid(s′) then

if n ≤ min(s′) ∨ n ≥ max(s′) then
return 0

end if

else
if n ≥ min(s′) ∧ ≤ max(s′) then

return 0

end if
end if

if is unbounded(s′) ∧ has false negs(DS, s′) then
return 0

end if

return points(s′, P )

end procedure

To prevent false negatives from occurring in an evaluation, TE Score negates the expected value Ev and applies

it to the dataset. If the number of rows in the new result set is greater than the min(s′), then the state has a

false negative. For example, if the bounds of occurrence for s′ are [0, unbounded] that state should always occur.

When evaluating the negation of the expected value Ev the result set should be empty.

Determining the final score. After all points for the execution correctness tests are accumulated the final

step is assigning a grade to the test. This grade helps DRE system testers determine how well their tests are

executing. Moreover, it helps them identify what QoS execution states are candidates for resolving and improving

results in QoS assurance. TE Score therefore uses Equation 5 to assign a final grade to the execution correctness

test by dividing the accumulated points by the total number of points possible and multiplying that result by 100

to obtain a percentage.

4. Applying TE Score to the QED Project

This section analyzes the results of applying TE Score to the QED case study introduced in Section 2 to evaluate

the test correctness of various experiments performed on the QED middleware.

4.1. Experiment Setup

As discussed in Section 2, QED aims to enhance QoS concerns of GIG middleware by adding adaptive information

management capabilities to it. To ensure the QED project does in fact improve the QoS capabilities of GIG

middleware, QED testers constructed several experiments to evaluate QED’s enhancements. In particular, QED
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testers wanted to evaluate the following QED capabilities:

• Prioritized services for high priority users. Experiments were designed to verify higher importance

subscribers received prioritized services when compared to lower importance subscribers.

• Adaptive resource management capabilities to ensure subscriber QoS requirements. Experi-

ments were designed to simulate resource constrained environments, e.g., limited dissemination bandwidth,

to validate the adaptive capabilities of QED middleware and ensure subscriber QoS properties were not

degraded when compared to lower importance subscribers.

• QoS performance measurement for higher importance versus lower importance subscribers.

Experiments were designed to measure QoS properties of higher importance versus lower importance sub-

scribers and validate that the QED/GIG middleware met its minimum QoS requirements for all subscribers.

QED testers used CUTS and UNITE to design and analyze, respectively, several experiments that evaluated these

concerns empirically. The experiments contained up to 40 software components running on hardware components

communicating via a shared network. The application components for the experiments were first modeled using

CUTS’s behavior and workload modeling languages [19]. As shown in Figure 3, each software component has

behavior that would exercise some aspect of the QED/GIG middleware, e.g., sending high payloads, changing

application event prioritization at runtime, occupying CPU time to influence resource contention.

Figure 3. QED Clients Modeled Using CUTS

Finally, QED testers used TE Score to evaluate different execution states of QED experiments (see Section 3.2

and Section 3.3) and grade the quality of each experiment based on its execution states (see Section 3.4). Listing 4

highlights example log formats used to mine the generated system execution trace and example states for validating

and grading the execution correctness of several QED experiments using the TE Score.
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Log Formats

LF1 : {STRING c l i e n t } s t a r t e d with environment {STRING env}

LF2 : {STRING c l i e n t } s t a r t e d at {LONG startTime } with p u b l i s h r a t e={INT rat e }Hz

LF3 : {STRING c l i e n t } ended at {LONG endTime}

LF4 : {STRING c l i e n t } r e c e i v e d {LONG evid } with payload o f s i z e {INT s i z e } bytes

QoS Test Execution States

(a) Environment initialization state

s1 : LF1.env = “qed”

t1 : v a l i d

p1 : 1

(b) Publisher initialization state

s2 : LF2.client = “pub1”and LF2.rate = 6

t2 : valid

p2 : 1

c). Publisher runtime execution states

s3 : LF2.client = LF3.client and

LF3.endTime - LF2.startTime=360000

t3 : valid

p3 : 1

(d) Subscriber runtime execution states

s4 : LF4.size = 1024

t4 : valid

p4 : 1

s5 : LF4.client = “sub1”and LF4.evid > 5400

and LF4.evid < 6480

and LF4.size = 1024

t5 : valid

p5 : 2
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s6 : LF4.client = “sub3” and

(LF4.evid > 150 or LF4.evid < 50)

and LF4.size = 1024

t6 : not valid

p6 : 4

Listing 4. Examples of the TE Score States

As shown in Listing 4, LF1,. . . , LF4 define log messages that capture client states from the beginning to the end

of the experiment, and s1, . . . , s6 define test execution states that occur during the experiment. The LF1 and LF2

log formats capture messages that validate the client’s startup configuration, LF3 captures the clients end-time,

and LF4 captures subscriber client runtime behavior. Likewise, s1 and s2 validate QED server and client node

startup configuration, whereas s3, s4, s5 and s6 validate runtime behavior of the subscriber and publisher clients.

In total, over 10 different log formats and validation states were used in the experiments.

4.2. Experiment Configuration

Each experiment was executed in ISISlab (www.isislab.vanderbilt.edu), which contains over 100 computing

cores powered by Emulab (www.emulab.net) software. Emulab enables QED testers to configure network topolo-

gies and operating systems to produce a realistic target environment for integration testing. Each node in ISISlab

is an IBM BladeType L20, dual-CPU 2.8 GHz Xeon processor with 1 GB RAM. Each node used in the QED

experiments was configured to run Fedora Core 6 and implemented network bandwidth management by modifying

Linux kernel settings.

Each experiment used the baseline GIG middleware implementation and the enhanced QED/GIG middleware [8]

implementation that added adaptive QoS management capabilities to the baseline. Each experiment also consisted

of (1) multiple clients that published information objects using the GIG infrastructure and (2) multiple subscribing

clients that received information objects published by the publisher clients. Each publisher client was configured as

either high, medium, or low importance; each subscriber client received information objects from all the publisher

clients. Each publisher client has a publication rate of at most 6 Hz and a payload (i.e., the amount of data

transmitted with an event) of at most 1 KB.

We ran the experiments for 6 minutes so their results could be compared in terms of throughput (i.e., the total

number of information objects received by each client). Our goal therefore was to highlight QED implementation’s

QoS management capabilities that were absent in the baseline GIG middleware implementation. To evaluate

execution correctness, QED testers divided their test execution steps into the following groups: initialization and

runtime. This decomposition provided finer grain evaluation for evaluating their test execution correctness. The

initialization group consisted of the following categories:

• ENV INIT (EI), which are environment states that validate environment variables are set on each pub-

lisher and subscriber node. The example state s1 in Listing 4 validates that the environment file used for
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the given experiment sets the environment variables listed for QED/GIG middleware;

• PUB INIT (PI), which are publisher initialization states that validate the number of publishers running

on the experiment node and their publish rates. The example state s2 in the Listing 4 validates that

publisher pub1 has a publish rate of 6 Hz. States similar to s2 were also defined for pub2 and pub3 in the

experiment; and

• SUB INIT (SI), which are subscriber initialization states that validate the number of subscribers running

on the experiment node and their startup configuration, e.g., the importance of each subscriber and the

predicates strings for filtering information objects.

Likewise, the runtime group consisted of the following categories:

• PUB RUNTIME (PR), which are publisher runtime states that validate each publisher maintains the

given publish rate and does not fail during the experiment. The example state s3 in Listing 4 validates

that each publisher runs for the entire duration of the experiment, i.e., 6 minutes; and

• SUB RUNTIME (SR), which are subscriber runtime states that validate each subscriber receives the

expected minimum number of information objects with complete payload. The states also check that each

subscribers runs for the entire duration of the experiment, i.e., 6 minutes.

The example states in Listing 4 validate that the size of received payloads match the size of payloads sent by

publisher clients. The example states also validate that subscriber clients with id sub1 and sub3 receive the

minimum number of information objects as per their expected QoS levels. Subscriber client sub1 is a high

importance subscriber and therefore should receive the highest QoS, which is measured it terms of the number of

information objects received by a subscriber. Subscriber sub3 is a low importance subscriber and therefore should

receive lower QoS. The minimum number of information objects defined for sub3 in s6 is an estimated minimum

value to ensure that the lower importance subscriber client is running.

Experiment initialization and environment validation states (i.e., s1 and s2) receive the highest priority because

correct configuration is critical for correct runtime behavior of the experiment. Likewise, runtime states (i.e., s3

and s4) were also given equivalent high priority because QED testers considered them as equally important as the

initialization states when ensuring correct runtime behavior. State s3 ensures that all publisher clients run for

complete duration of the experiment i.e., 6 minutes and state s4 ensures that no corrupt or incomplete payloads

are received by the subscriber clients.

The runtime states (i.e., s5 and s6) are given lower priority because they only measure runtime behavior of

the system. Since the QED/GIG middleware is priority-based, QoS requirements of high importance clients

are given higher preference. It is therefore acceptable if the low-importance subscriber clients do not meet

the estimated minimum number of information objects, while high-importance subscriber clients receive their
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estimated minimum number of information objects. As a result, QED testers selected different relative priorities

for states s5 and s6.

4.3. Experiment Results

The following four test cases showcase how QED testers used TE Score to identify correct and incorrect executions

in experiments.

Case 1: Validating execution correctness of performance evaluation experiment. As explained in

Section 4.2, QED testers performed experiments that compared the performance of the baseline GIG middleware

to the QED/GIG middleware under normal conditions. The experiments measured throughput (i.e., the num-

ber of information objects received by each subscriber) for subscribers of low-, medium-, and high-importance

subscribers. The experiments also demonstrated that the baseline GIG middleware did not provide differenti-

ated QoS of services to subscribers with varying importance, whereas the QED/GIGbmiddleware provided such

differentiated QoS of services.

Table 2. Results for QoS Performance Evaluation Using TE Score

EI PI SI PR SR

gig 100% 100% 100% 100% 50%

qed-gig 100% 100% 100% 100% 100%

Table 2 presents the execution correctness score calculated by TE Score for one execution of this particular

experiment. As shown in this table, the initialization states succeed. QED testers were therefore confident the

experiment initialized correctly on all nodes. The table, however, shows that the runtime states for the subscriber

(i.e., SUB RUNTIME SCORE) was different for the baseline GIG middleware and GIG/QED middleware. For

the baseline GIG middleware, the execution correctness score was 50%, whereas the execution correctness score for

the GIG/QED middleware was 100%. Since the baseline GIG middleware does not provide differentiated services

to clients with varying importance, all subscribers receive the same number of information objects—resulting in

only 50% execution correctness.

When the same experiment was run using QED/GIG middleware, however, 100% execution correctness was ob-

served. The score for subscriber runtime states thus highlights the difference between the baseline GIG middleware

and QED/GIG middleware capabilities.

Case 2: Validating execution correctness for client configuration. As explained in Section 4.2 and Case 1,

QED testers ran the same experiments using QED/GIG middleware. When switching the middleware publishers

failed to start in some cases due to low memory availability from the previous experiment. Due to this failure,

few information objects were published and received by publishers and subscribers, respectively. Moreover, the

experiment neither executed correctly nor to completion.

Table 3 presents the correctness score calculated by TE Score for one execution of this particular case. As shown

16



James H. Hill, Pooja Varshneya, Douglas C. Schmidt

in this table, the baseline QED middleware experiment executed as expected since it has the same results from

Table 2 in Case 1. The execution correctness for the GIG/QED middleware experiment, however, did not score

well.

Table 3. Results for Client Configuration Evaluation Using TE Score

EI PI SI PR SR

gig 100% 100% 100% 100% 50%

qed-gig 100% 0% 100% 33% 80%

Table 3 also showed how the publishers failed to initialize. Due to this failure, subscribers did not receive the

correct number of events—thereby having a low score. Since QED testers used TE Score, they quickly pinpointed

that the problem was occurring when switching between experiments.

Case 3: Validating execution correctness of environment configuration. After running experiments

with baseline GIG middleware, QED testers had to update the environment configuration on all nodes in the ex-

periment so they could execute the replicated experiment(s) using the enhanced QED/GIG implementation. Due

to configuration errors (e.g., errors in the automation script and incorrect parameters passed to the automation

script) the environment update did not always succeed on each node. As a result of these errors, subscribers would

run on their target node with invalid configurations. Moreover, the subscribers failed to receive any information

objects from publishers.

Table 4 presents the correctness score calculated by TE Score for one execution of this particular case. As shown

in this table, the experiments for the baseline GIG middleware executed as expected. The experiments for the

GIG/QED middleware, however, did not execute as expected.

Table 4. Results for Environment Configuration Evaluation Using TE Score

EI PI SI PR SR

gig 100% 100% 100% 100% 50%

qed-gig 0% 100% 100% 100% 0%

Table 4 also shows that the environment initialization states was 0%, meaning none of its execution states were

reached. Likewise, because the environment initialization states failed in this case, the subscriber runtime states

failed. Since the QED testers used TE Score to validate execution correctness, they quickly pinpointed that the

error was located on the subscriber node in this case.

Case 4: Validating execution correctness when operating in resource constrained environments.

As discussed in Section 4.2, QED testers wanted to compare capabilities of the baseline GIG middleware and the

enhanced GIG/QED middleware in resource constrained environments, such as limited bandwidth for sending

events (or information objects). The baseline GIG implementation does not support any adaptation capabilities

when operating in resource constrained environments. In contrast, the GIG/QED middleware is designed to adapt
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to such conditions and ensure clients meet their QoS requirements with respect to their level of importance. If the

GIG/QED middleware cannot ensure all subscribers will meet their requirements it will ignore QoS requirements

of low importance subscribers so higher importance subscribers can continue meeting their QoS requirements.

When experiments were run with QED/GIG implementation, lower importance subscribers received fewer infor-

mation objects than the minimum number of information objects defined for state s6 in Listing 4. Thus, s6 should

fail for this test.

Table 5. Results for Trade-off Analysis of Execution States Using TE Score

EI PI SI PR SR

gig 100% 100% 100% 100% 50%

qed-gig 100% 100% 100% 100% 87%

Table 5 presents the correctness score calculated by TE Score for one execution of this particular case. As shown

in this table, SUB RUNTIME SCORE is of most importance since execution states in the other categories were

reached. Since the experiment using GIG/QED middleware did not receive the correct number of events, Table 5

shows only partial success for subscriber runtime validation states. This test, however, is still be considered valid

(and correct) since the service to higher importance subscribers still received events under resource constrained

conditions. If a higher importance subscriber had crashed at runtime or received fewer events than expected,

then SUB RUNTIME SCORE would be much lower. This result occurs because the runtime execution state for

higher importance subscribers has a higher priority when compared to runtime execution states for medium and

lower importance subscribers.

Synopsis. These test results show how TE Score simplified the evaluation and trade-off analysis of QoS perfor-

mance for experiments of the QED/GIG middleware. Without TE Score, QED testers would have to identify

configuration and runtime failures manually in the experiments. Moreover, QED testers would have to perform

trade-off analysis manually between the different execution states of the experiments. By leveraging TE Score

to assist with their efforts, QED testers could focus more on defining and running experiments to validate their

enhancements to the GIG middleware, as opposed to dealing with low-level testing and evaluation concerns.

5. Related Work

This section compares our work on TS Score with related work on system execution traces, conventional correctness

testing, and trade-off analysis.

System execution traces. Moe et al. [20] present a technique for using system execution traces to understand

distributed system behavior and identify anomalies in behavior. Their technique uses intercepters, which is a form

of “black-box” testing, to monitor system events, such as sending/receiving an event. TE Score differs from this

technique since it uses a “white-box” approach to understand behavior, where metrics are used to validate test

behavior comes from data generated inside the actual component (i.e., the log messages). TE Score’s approach
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offers a richer set of data to perform analysis, understand DRE system behavior, and detect anomalies in the

behavior that may not be detectable from black-box testing alone.

Chang et al. [7] show how system execution traces can be used to validate software functional properties. For

example, their technique uses parameterized patterns [21] to mine system execution traces and validate functional

correctness to test execution. TE Score is similar in that is uses system execution traces to capture and extract

metrics of interest. It differs, however, by focusing on validating correctness of QoS test execution, which involves

evaluating execution states of the system.

Conventional correctness testing. Many conventional techniques, such as assertion-based testing [6], contin-

uous integration [22], and unit testing [23], have been used to test the correctness of DRE systems. Irrespective

of the correctness testing approach, conventional techniques focus on non-distributed systems. TE Score differs

from conventional approaches by focusing on DRE systems. This focus incurs additional complexity since data

must be correlated correctly across the entire system. TE Score can also behave like conventional correctness

testing approaches if the necessary data is captured in system execution traces.

Tian et al. [24] present a reliability measurement for providing reliability assessment for large-scale software

systems. Their technique uses failure detections in collected data to not only assess the overall reliability of the

system, but also track testing progress in addressing identified defects in the software. TE Score is similar in

that it provides a measurement for assessing the correctness (or reliability) of QoS test execution, and identifying

where improvements are needed. It differs, however, in that it focuses on assessing QoS test execution, which

is based on QoS properties that influence each other and cannot be assessed as disjoint concerns like functional

properties.

Trade-off analysis. Lee et al. [25] present an approach for conducting trade-off analysis in requirements engi-

neering for complex systems. Their approach assists developers in measuring how different requirements influence

each other. TE Score is similar in that its weighted grading system assist developers in conducting trade-off anal-

ysis between different QoS execution states. It differs from Lee et al.’s work, however, since TE Score measures

how conflicting concerns affect the entire solution (i.e., correctness of QoS execution test) whereas Lee et al.’s

work measures how different requirements affect each other.

6. Concluding Remarks

The ability to quantify the degree of correctness for QoS tests helps increase confidence levels in QoS assurance.

This article presented a method called Test Execution (TE) Score that quantifies the correctness of QoS test

execution. We showed how DRE system testers in the QED project used TE Score to define correctness tests that

account for the different execution states of the system and consider that different execution states have different

priorities. QED testers used TE Score to perform trade-off analysis within their correctness tests to ensure that

important execution states have greater influence on the results.
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Based on our experience applying TE Score to a representative DRE system, we learned the following lessons:

• Manually specifying the execution states helped reduce false negatives because TE Score was

not trying to deduce them automatically. More importantly, it helped DRE system testers understand the

test execution process better by identifying important states that should influence overall correctness.

• Time-based correctness of execution testing is needed because QoS properties can change over time.

In some cases, DRE system testers many want to ensure correctness of QoS test execution at different time

slices using different execution states. Our future work will therefore investigate techniques that leverage

temporal-logic [26] to facilitate time-based correctness testing of QoS test execution.

• Execution state-based specification helped perform trade-off analysis because it allowed finer

control over how different states affect the final analysis. More importantly, assigning priorities to the

different execution states helped improve DRE system testers control how much affect a given state had on

the final analysis.

• Determining the correct number of execution states is not trivial because it is unknown ahead of

time how many execution states are needed to produce meaningful results. For example, too few execution

states can make it hard to show how one execution state influences another, or impacts the over score.

Likewise, too many execution states can accidently dilute the impact of other execution states. DRE system

testers who use TE Score currently determine the correct number of execution states for a correctness test

by starting small and increasing the states and priority as needed (i.e., by trial-and-error). Future research

therefore will investigate techniques for deriving the appropriate number of execution states for a correctness

test.

TE Score, CUTS, and UNITE are freely available in open-source format for download from www.cs.iupui.edu/

CUTS.
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