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Abstract—Distributed applications are increasingly developed
by composing many participants, such as services, components,
and objects. When deploying distributed applications into a
mobile ad hoc cloud, the locality of application participants that
communicate with each other can affect latency, power/battery
usage, throughput, and whether or not a cloud provider can
meet service-level agreements (SLA). Optimization of important
communication links within a distributed application is partic-
ularly important when dealing with mission-critical applications
deployed in a distributed real-time and embedded (DRE) sce-
nario, where violation of SLAs may result in loss of property,
cyber infrastructure, or lives.

To complicate the optimization process, the underlying cloud
environment can change during operation and an optimal de-
ployment of the distributed application may degrade over time
due to hardware failures, overloaded hosts, and other issues
that are beyond the control of distributed application developers.
To optimize performance of distributed applications in dynamic
environments, therefore, the deployment of participants may need
adapting and revising according to the requirements of applica-
tion developers and the resources available in the underlying
cloud environment.

This paper present two contributions to the study of dynamic
optimizations of user-provided deployments within a cloud. First,
we present a dataflow description language that allows developers
to designate key communication paths between participants
within their distributed applications. Second, we describe heuris-
tics that use this dataflow representation to identify optimal
configurations for initial deployments and/or subsequent rede-
ployments within a cloud. An experiment is presented to validate
the heuristic approaches.

Index Terms—heuristics; genetic algorithms; clouds optimiza-
tion; real time; constraint problems

I. INTRODUCTION

Enterprise distributed real-time and embedded (DRE) sys-
tems are mission-critical applications that run in networked
processes across heterogeneous architectures under stringent
timing requirements and scarce resources [2]. Though enter-
prise DRE systems were originally associated with avionics,
manufacturing, and defense applications, they increasingly
focus on a broader class of distributed applications where the
right answer delivered too late becomes the wrong answer.
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Information in DRE systems must therefore be delivered
according to stringent quality-of-service (QoS) needs, despite
failures and resource limitations [13], [15], [12].

Unlike some enterprise cloud-based applications that deal
with service-level agreement (SLA) violations with small
surcharges to the cloud infrastructure provider, mission-critical
enterprise DRE systems cannot tolerate unresponsiveness. Re-
curring poor performance may thus result in financial loss and
even deaths. DRE systems often require continuous human
vigilance to maintain appropriate end-to-end QoS. Moreover,
cloud environments do not optimize distributed deployments
according to user-defined application dataflows between im-
portant participants. To enable next-generation cloud environ-
ments to support DRE applications, therefore, they need the
following capabilities:

1) A means to specify key communication paths within a
distributed application to inform the underlying cloud of
what participant interactions should be optimized.

2) Heuristics for optimizing distributed application partic-
ipant pathways that are identified as important by the
user or a monitoring system that informs the cloud
infrastructure of heavily utilized pathways.

This paper describes extensions to the Multi-Agent Dis-
tributed Adaptive Resource Allocation (MADARA ) [5], [6]
open-source multi-agent middleware, which provides adaptive
deployment tools to support next-generation cloud computing
capabilities for DRE systems. We have enhanced MADARA to
provide a dataflow description language that allows developers
to designate key communication paths between participants
within their distributed applications. MADARA now also pro-
vides genetic algorithms and heuristics that use this dataflow
representation to identify optimal configurations for initial
deployments and/or subsequent redeployments within a cloud
using real-time latency information. In addition, MADARA
now provides developers with methods for aggregating latency
information via summations of latencies along important paths
in the dataflow, which is useful for other approximation
techniques that require similar aggregations of latency.

The remainder of this paper is organized as follows: Sec-



tion II presents a search-and-rescue scenrio that motivates the
need for the specification and heuristics added to MADARA;
Section III describes the dataflow description specification
and heuristics MADARA uses to minimize end-to-end latency
in a DRE application dataflow within a cloud; Section IV
analyzes the results of experiments that evaluate how well the
MADARA guided genetic algorithms and heuristics approxi-
mate a user workflow; Section V compares MADARA with
related work on approximation techniques; and Section VI
presents concluding remarks.

II. MOTIVATION SCENARIO

To motivate the need for MADARA, this section presents
a scenario that occurs during a search-and-rescue mission
where multiple government agencies utilize a cloud of remote-
controllable drones within a disaster area. Figure 1 shows this
disaster recovery scenario, where remote-controllable drones
have been deployed to search for survivors in an earthquake-
ravaged metropolitan area. The application dataflow shown

Fig. 1. Motivating Search-and-Rescue Application Scenario

in this figure shows segregated groups of remote-controlled
drones in the search-and-rescue mission communicating via
satellite with human controllers. Due to the destruction, human
controllers of the drones are restricted to satellite connections
and the bandwidth available over this limited network resource
is sufficient for only a handful of dedicated sessions between
humans and the drones searching for signs of life.

Human controllers can thus only maintain communication
with a small subset of the drones, called collector drones. Each
drone has onboard sensors that may allow it to detect radiation,
record video, observe and report atmospheric anomalies, detect
thermal signatures, and other useful functions, and regardless
of which government agency leased time on the drone cloud,
each of the automated participants aids in searching for
survivors. Each drone is also equipped with a wireless access
point that allows it to form/join ad hoc networks and transmit
sensor readings, images, or other data.

With all secondary functions (e.g., radioactivity detection)
turned on, the drones will quickly run out of power. Moreover,

the faster the drones power down, the less survivors that will be
found and useful work accomplished. Data communication is
a particularly expensive operation that quickly drains batteries.
The closer two drones are to each other, however, the lower
the latency and the less data resends required across the
communication, which extends battery life.

An example application dataflow is shown in Figure 2.
The data shown in this figure enables two radiation detectors
and has two collector drones communicating with human
controllers via satellite links. Each edge in an application
dataflow shown in this figure is equally important, i.e., no
edge is more important than any other edge that is defined
in the application dataflow. The absence of an edge means
that the datapath is unimportant or at least that no attempt
should be made to minimize latency along that datapath. We
also assume that each edge is utilized equally (i.e., no edge
is monopolizing traffic unevenly), and this caveat helps us to
simplify the optimization problem: the best deployment will
be the one that has the lowest total latency summed across all
edges.
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Fig. 2. Application Dataflow Example

As drones move around the area, the optimal deployment of
DRE applications that are running on the drones may become
outdated. A redeployment of the DRE application may there-
fore be necessary to ensure these collector drones are in range
of their group within the dataflow. This redeployment time is
pure overhead and the associated computation time competes
with the CPU and memory resources that the human controller
needs to view important data, as well as draining precious
battery life. If the drones remain computation-bound for too
long and lock out their controllers from viewing information or
issuing commands, survivors may be missed, drones may crash
into buildings or other obstacles, and lives and resources may
be lost. For these reasons, the time required for calculating the
redeployment should be minimized—preferably a handful of
seconds or less.

This motivating scenario consequently requires three main
things:

1) An effective way to describe the application dataflow



TABLE I
DATAFLOW DESCRIPTION FOR MOTIVATING DRE APPLICATION

0 → [0, size/4)
size/4 → [size/4, size/2)
size/2 → [size/2, 3*size/4)

3*size/4 → [3*size/4, size)

2) Algorithms to efficiently calculate the optimal secondary
activity according to an arbitrary application dataflow
that may not reflect the Area Coverage Problem [1], [14],
[7], which is commonly solved with sensor networks.

3) A noticable improvement in network latency along the
edges of the application dataflow after using one of the
algorithms

III. APPROXIMATION TECHNIQUES IN MADARA

This section describes genetic algorithms and heuristics pro-
vided by MADARA to approximate an optimal enterprise DRE
application deployment under different constraints. We devel-
oped multiple solutions due to memory limitations imposed
by different contexts where the solutions are deployed. These
solutions are complementary and can be chained together to
produce seeds and candidates for other genetic algorithms or
heuristics. These heuristics can also be run on all hosts in the
cloud or on specific hosts, such as collector drones or a master
host.1

A. Defining the Dataflow and Identifying Degrees

MADARA optimizes DRE application dataflows from a
graph perspective. In particular, it encodes a user-defined
deployment dataflow into a graph and use degree information
to inform our approximation process. The degree of a node in
a graph is the number of connections incident on the node, i.e.,
it is essentially a connectivity metric. This concept of degree
is derived from graph algorithms, as well as distributed and
parallel computing.

The degree of a graph is relevant to MADARA because
it seeks solutions that minimize the latency or improve the
overall utility of the connections between nodes in a DRE
application dataflow. The node with the highest degree has
the most impact on this overall metric. It is therefore often a
major bottleneck in DRE applications.

To show how a degree is imparted from an application
dataflow, Table I depicts an actual dataflow description file
for our motivating application in Section II, which consists
four collector drones, each gathering messages from a quarter
of the drone population. The MADARA dataflow description
language provides a mapping of directed edges and is ideal for
specifying large ranges of values, which maps well to cloud
environments. The simplest dataflow description involves a
source mapped to a range of destination participants, which
are processing elements capable of executing a component or
service of a distributed application.

1This paper does not specify how cloud hosts agree on a redeployment and
assume a distributed voting protocol is used to determine redeployment thresh-
olds (which is how we implement redeployment agreement in MADARA.)

For instance, participant 0 in the first line of Table I has
important edges from itself to participant 0 to size / 4, where
’[’ denotes inclusiveness and ’)’ denotes non-inclusiveness.
Instead of a single participant id, the source participant in
the dataflow description language can be a range of IDs,
e.g., [0, size/4] → [0, size/4) indicates that important edges
exist between each participant in one-fourth of the available
participants in the cloud. The number of participants available
per host can be potentially infinite, but for DRE systems it
should ideally map to the number of processors available or
less if threads of execution should be available for certain
system threads at all times.

From the dataflow description in Table I, we can make the
following observations. There are four special drones, and each
are servicing a large portion of the underlying drone network.
If the size is set to 12, the logical drone 0 is servicing drones
0-2. Drone 3 services 3-6, drone 6 takes care of 6-8, and
drone 9 handles information to and from 9-11. This MADARA
deployment specification interface addresses requirement 1 of
the motivating DRE application in Section I by providing users
a flexible mechanism for specifying a deployment dataflow in
a DRE system.

Figure 3 visualizes what a degree in a graph is by labeling
the high degree nodes in a user-provided DRE application
dataflow. The node with a degree of seven has seven directional

Degree=7 

Degree=3 

Fig. 3. Degrees in a User-provided DRE Application Dataflow

edges coming in or out of the node. A degree with three
signifies that the node has a connectivity of three. Though this
paper focuses on using degree information for the motivating
DRE application in Section I, our solution techniques are rele-
vant to approximating component placement, optimal resource
monitoring, routing, and other problems involving connected
graphs.

B. Degree-based Heuristics in MADARA
Two heuristics are discussed below, each targeting a

different context of the motivating DRE application. The
Comparison-based Iteration by Degree (CID) Heuristic
(shown in Algorithm 1) is useful for seeding genetic algo-
rithms when the drone has enough memory to hold latency



information of all other drones (O(N2) space requirement),
which can become hundreds of megabytes when thousands of
drones or processes are involved.

Algorithm 1 CID Heuristic
1: for all node ∈ dataflow do
2: if degree (node) > 0 then
3: solution[node] ← best candidate (utili-

ties[degree(node)])
4: end if
5: end for
6: for all node ∈ DRE application dataflow do
7: if degree (node) > 0 then
8: for neighbor ∈ connections(dataflow, node) ∧ neigh-

bor /∈ solved(solution) do
9: solution[neighbor] ← best candidate

(latencies[node])
10: end for
11: end if
12: end for
13: for all node ∈ DRE application dataflow ∧ node /∈

solved(solution) do
14: solution[node] ← best candidate (utilities[size])
15: end for

Algorithm 1 shows how the CID Heuristic begins by iter-
ating over the deployment and placing candidates based on
lowest latency available in the cloud for the degree.

The latencies list is a sorted list of latencies between
all participants. Thus, latencies[node] is the list of latencies
involving a certain node. We place our lowest total latency
candidates on the nodes with the highest connectivity (lines
1-5) and then iteratively fill in their closest neighbors when
possible on lines 6-12 (i.e., when it does not conflict with other
high degreed nodes in the DRE application dataflow).

The final phase of the CID heuristic (lines 13-15) deals
with nodes that are not connected to the rest of the DRE
application dataflow. For example, this phase could be used
for worker drones that do not communicate with the drone
collector and serve as sentries, data analyzers, or passive
entities whose results can be processed or collected offline
(non-mission critical).

A variant of the CID heuristic we developed called the Blind
CID heuristic is shown in Algorithm 2.

The Blind CID heuristic is useful for deployments where
drones do not have as much memory (O(N) space instead of
O(N2)). The drawback is that the Blind CID heuristic is a less
informed approximation of the solution than the CID Heuristic
and may not find the optimal deployment, which results in less
battery life, longer latencies, and more resends of important
information.

A key difference between the CID heuristic and the Blind
CID heuristic (Algorithm 2) is that the CID heuristic uses
the fine-grained latency information from all drones in the
network. In contrast, the Blind CID heuristic only uses ag-
gregation of this knowledge in a preparation phase. The Blind

Algorithm 2 Blind CID
1: for all node ∈ dataflow do
2: if degree (node) > 0 then
3: solution[node] ← best candidate (utilities[degree])
4: end if
5: end for
6: for all node ∈ dataflow do
7: if degree (node) > 0 then
8: for neighbor ∈ connections(deployment, node) ∧

neighbor /∈ solved(solution) do
9: solution[neighbor] ← best candidate

(utilities[size])
10: end for
11: end if
12: end for
13: for all node ∈ dataflow ∧ node /∈ solved(solution) do
14: solution[node] ← best candidate (utilities[size])
15: end for

CID heuristic does use deployment information in the dataflow
to prioritize which node of the dataflow to approximate next.
It always selects from the best total latency value (essentially
the aggregate of a full broadcast from the node), however,
rather than the aggregate of best latencies from this node for
the degree.

The benefit of the Blind CID heuristic is that the drones
need not send their individual latency values to other drones
that must make redeployment decisions (O(N) total message
complexity unlike the other algorithms). Each node using
Algorithm 2 alone has a message complexity of O(1), a
message containing an aggregrate latency value for a full
broadcast from the node. Sending fewer messages increases
battery life for all participants in the dataflow.

C. Genetic Algorithms in MADARA

Not all DRE application dataflows can be solved opti-
mally by the heuristics described in Section III-B. The CID
and BCID heuristics are tailored to solve certain types of
dataflows like acyclic collector drones and not more complex
dataflows like hierarchical or cyclic dataflows. For more com-
plex dataflows, a randomized search technique may be more
appropriate.

To complement the heuristics discussed in Section III-B,
we therefore developed two genetic algorithms to hone the
approximated solution before deciding if a redeployment is
necessary for the special drones. Only one of these genetic
algorithms—Guided GA shown in Algorithm 3—is guided
with degree information.

The Blind GA Algorithm does not use degree information
to mutate solutions and instead uses pure randomness when
selecting solution chromosomes to mutate.

Before describing the Guided GA Algorithm(see Algorithm
3) and Blind GA Algorithm solutions we briefly describe what
constitutes a mutable chromosome in the deployment. Each
of these algorithms considers a chromosome as a mapped



Algorithm 3 Guided GA
1: mutations ← min + rand() % (max - min)
2: orig utility ← utility(new)
3: for i → mutations do
4: new ← solution
5: if rand() % 5 < 4 then
6: c1 ← random degreed node (dataflow)
7: c2 ← location(new[good candidate(utilities)])
8: while c1 ≡ c2 do
9: c2 ← location(new[good candidate(utilities)])

10: end while
11: else
12: c1 ← rand() % size
13: c2 ← rand() % size
14: while c1 ≡ c2 do
15: c2 ← rand() % size
16: end while
17: end if
18: if utility(new) < orig utility then
19: solution ← new
20: end if
21: end for
22: if utility(solution) < orig utility then
23: return solution
24: end if

participant of the final deployment solution. For instance,
if a user-provided dataflow contained five participants, then
five chromosomes would exist in the solution list and the
genetic algorithms will attempt to optimize the deployment by
mutating chromosomes until a time limit is reached. The best
generated solution that contained the lowest summed latency
according to the edges in the user-provided dataflow would be
returned by these genetic algorithms as the solution list (this
list is actually a vector in MADARA for performance reasons).

Both algorithms select chromosomes (i.e., nodes/drones) of
the proposed solution (the approximated deployment) to mu-
tate and then perform mutations for a specified time interval or
number of allowed mutations before returning the best solution
(either the original or the improved solution). The Guided GA
in Algorithm 3, however, targets the higher degreed nodes 80%
of the time and selects from the best available participants in
the underlying cloud, which allows it to make more intelligent
mutations by targeting highly degreed chromosomes more
often. While the Guided GA does converge much more quickly
than the Blind GA, the randomness inherent in the Blind GA
can be better for hybrid approaches (solutions that combine
Blind GA with other heuristics)

IV. EXPERIMENTAL VALIDATION OF THE HEURISTICS

Due to space restrictions of the short paper format, we must
present a limited glimpse into the significant optimizations
made possible by these heuristic approaches. The specific
type of experiment we will focus on here is called a system
slowdown experiment. System slowdown is defined by the

equation “slowdown = 2 * system latency / (1,000,000 *
size)” in these experiments. With the optimal configuration,
slowdown == 1. Anything greater than one is a factor of
slowdown. For example, 2.0 is a 100% slowdown in the
overall system, which drain a battery more significantly than
an optimal deployment. Our objective in the heuristics in this
experiment is to reduce the system slowdown to 1, if at all
possible.

In the experimental results shown in Figure 4, three spe-
cialized drones are collecting and instrumenting three disjoint
segments of a 10,000 drone deployment within a noisy en-
vironment. In this environment, we have many local minima
in the system slowdown but only one optimal 10,000 drone
deployment.
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Fig. 4. System Slowdown with 3 Specialized Drones in a Noisy Environment

There are three important results that come from these
graph. First, a random solution, which corresponds to the BGA
line, is the worst performer and results in nearly 3x worse
performance than optimal. Second, all CID-based algorithms
(CID, CID-BGA, and CID-GGA) find the optimal deployment
for 10,000 drones and do so within milliseconds. Third, the
anytime algorithms BCID-GGA and BCID-BGA can reduce
the system slowdown to less than 2x worse than optimal,
which is significantly better than random.

V. RELATED WORK

This section compares our work on MADARA with related
work on deployment problems based on constraint satisfaction
problem solving, genetic algorithms, and heuristics.

Constraint satisfaction problem solving. Haldik et. al. [9]
presents a constraint programming technique to solve static
allocation problems in real-time tasks. Cucu-Grosjean et.
al. [4] propose two approaches to addressing real-time periodic
scheduling on heterogeneous platforms, which is a constraint
satisfaction problem (CSP). The first method requires an
encoding of the problem into a basic format that is then
passed into state-of-the-art CSP solvers. The other approach
encodes problems in an optimized way to obtain solutions



faster. Despite being faster than traditional CSP solvers, both
techniques take dozens to hundreds of seconds to solve even
small number of constraints, which does not meet the require-
ments of our motivating DRE application in Section II that
exhibits thousands of constraints defined on the deployment
between the collection drone and its group.

Genetic algorithms. Whereas CSP solving typically in-
volves backtracking through potential matches, genetic algo-
rithms are a type of local search that tries to approximate
an optimal match through mutations, fitness functions, and
crossbreeding best candidates according to the fitness criteria.
Heward et. al. [8] recently used genetic algorithms to optimize
configurations of monitors in a web services application. This
method is unsuitable for our motivating DRE application,
however, since it requires roughly an hour to compute an
approximated good configuration.

Wieczorek et. al. [16] use a genetic algorithm to schedule
scientific dataflows in Grid environments, but their mutation-
based scheme similarly required at least hundreds of seconds
(some of their tests showed requirements of tens of thousands
of seconds—several hours). Other implementers have used
combinations of genetic algorithms and neural networks [11]
and even knowledge and reasoning [10] to converge to optimal
solutions. These approaches concentrate on offline or human-
interactive solutions, however, and thus are not suitable for
DRE application problem solving because they require many
minutes or hours to approximate a solution.

Heuristics. Heuristics approximate good solutions and often
serve as guides for local search techniques, such as genetic
algorithms, simulated annealing, or backtracking and depth-
first searches. Some researchers use these heuristics to directly
approximate scheduling [8] in grids and dataflow solutions [3]
for real-time solutions. The latter is of interest to us since the
heuristic approximates a constraint problem involving a set
of dataflows within milliseconds. The solution [3], however,
was demonstrated on only five hosts and not thousands, so it
is not readily apparent how to migrate our motivating DRE
application to the heuristic defined in either of these papers.

VI. CONCLUDING REMARKS

Enterprise DRE systems are increasingly essential in
mission-critical domains, such as aerospace, defense, telecom-
munications, health care, and financial service. This paper pre-
sented two heuristics provided in MADARA to approximate
user-provided dataflows in next-generation DRE clouds. We
also presented MADARA’s genetic algorithms and hybrids of
the heuristics and genetic algorithms to improve the solutions
generated by the heuristics. We analyzed the results of ex-
periments to validate the MADARA heuristics and genetic
algorithms, as well as highlighted issues with unguided genetic
algorithms in a representative DRE application context.

C++ code for the MADARA heuristics and algorithms is
available in open-source form from madara.googlecode.com.
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