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Abstract

Persons with diabetes must perform many self-management tasks each day

to obtain optimal control of their blood glucose. Psychosocial and contextual

factors impact the ability to perform those tasks. Ecological momentary as-

sessment (EMA) uses technology-mediated approaches to monitor and assess

psychosocial and contextual variables that may impact self-management. To

utilize EMA data in applied settings, however, feasible methods are needed to

automate prioritization of the many factors that can impact health behaviors.

This study uniquely applies machine learning algorithms to demographic and

EMA-generated psychosocial data to predict self-management in adolescents

with type 1 diabetes (T1D). The results suggest certain domains of factors

more accurately predict on self-management than others and have promise for

prioritization in future research. Results have implications for scaling up this

combination of assessment and analytic approaches in population health.
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1. Introduction

Type 1 diabetes (T1D) is a prevalent chronic illness with increasing inci-

dence rates reported worldwide [1, 2]. It is an autoimmune disorder where the

body does not produce insulin and requires patients to perform critical self-

management tasks multiple times per day [3]. Two key self-management tasks

in T1D involve frequent monitoring of blood glucose and administering insulin.

These tasks help manage glycemic control to avoid or delay serious short- and

long- term consequences, such as retinopathy, neuropathy, and mortality [4, 5, 6].

Mealtimes are a critical time for diabetes self-management.

Adolescents and young adults have the worst glycemic control of any age

group [4]. For young people with diabetes, living successfully with T1D is

particularly hard due to many potential psychosocial and contextual barriers

to self-management [7, 8, 9]. A recommended approach used to improve self-

management involves promoting and supporting problem solving skills to reduce

barriers [10].

To identify problems related to self-management, patients, caregivers, and

clinicians must rely on blood glucose and insulin administration data from de-

vices along with a patient recall of behavioral, emotional, and/or contextual

events that could pose barriers to self-management. However, utilizing retro-

spective memory or recall for events that are days or weeks in the past has been

identified as generally unreliable and potentially biased in nature [11]. Unre-

liable recall of events in diabetes problem solving could result in modifications

to the insulin regimen that are not based on reliable information.

To address the limitations of human recall and bias in health behavior re-

search, ecological momentary assessment (EMA) methods have been developed

and successfully utilized in a range of health conditions. EMA methods pro-

vide a more proximal (and often more accurate) technology-mediated method

to monitor and assess the contexts, subjective experiences, and processes that

surround health decisions in daily life [12, 13]. In contrast to traditional assess-

ment methods, EMA utilizes more frequent and in vivo ambulatory assessment
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of factors that impact health behaviors and decision-making. This approach

provides more relevant, proximal, and frequent observations per person, and

generates rich data to assess correlates of health behavior more accurately and

identify novel correlates for intervention [14].

Many studies in the EMA literature have used hierarchical linear modeling

(HLM) or other similar analytic approaches [15, 16]. These studies, however,

have not identified a model for prioritizing variables or automating analyses.

A promising approach for identifying such a model involves integrating EMA

with techniques and tools associated with machine learning (ML), which is a

data analysis method that automates statistical model building by identifying

patterns and making decisions with minimal human intervention [17].

The goal of the study reported in this paper was to use ML to identify

patterns of psychosocial and contextual factors that may impact diabetes self-

management assessed by EMA. To achieve this goal, we devised a learned fil-

tering architecture (LFA) to identify phenotype groups that are related to two

self-management behaviors: insulin administration (IA) and self-monitoring of

blood glucose (SMBG).

2. Background and Comparison with Related Work

Prior research using traditional retrospective questionnaire methods has

focused largely on identifying psychosocial correlates and predictors of self-

management in chronic illness in general and specifically in diabetes [9]. With

few exceptions, little research using EMA has been conducted in diabetes. The

few studies conducted have uniquely identified time-based factors, such as time

of day and momentary negative emotions, as related to self-management behav-

iors [18, 19, 20].

The current study focuses on advancing assessment for factors that have been

previously associated with self-management. These factors include stress [21],

mood [22, 23], stigma [9, 24], and social contexts [8, 12]. This study also uniquely

assesses novel factors not previously studied in the T1D population, such as

3



fatigue [25], location [26], social contexts [8], and contextual factors, such as

rushing and traveling.

Machine learning (ML) analyses have been applied in various studies, focus-

ing largely on the improvement of diabetes management and control. Earlier

studies have constructed and fine-tuned different ML models to predict future

blood glucose levels based on historical physiological data, [27, 28, 29], detect

incorrect blood glucose measurements in [30], predict hypoglycemia [31, 32],

manage insulin dosing [33], and applied to provide lifestyle support integrating

food recognition, and energy expenditures [34, 35].

This current study applies a learned filter algorithm (LFA) to psychosocial

EMA data to predict self-management behaviors. This application of predic-

tive analytics differs from other studies outlined above. In particular, previous

studies focused primarily on how accurately a model could predict a specific out-

come, such as glucose values or hypoglycemia. Conversely, this study focuses on

understanding what types or group(s) of factors have the greatest relative accu-

racy in predicting the presence or absence of an event. This study also focuses

on reducing the amount of variables used to predict an outcome by filtering one

or more domains of variables with the LFA, yet still extracting the necessary

behavioral insight(s).

3. Materials and Methods

This study analyzed data from a feasibility trial of the mobile EMA and feed-

back app called MyDay, which is an IoT-based, multi-faceted self-management

problem solving tool designed for pediatric T1D patients [36]. Youth from the

Vanderbilt Eskind Pediatrics Diabetes Clinic were invited to participate in a

30-day assessment period if (1) they were between the age of 13 and 19, (2) had

been diagnosed of T1D for at least 6 months, (3) owned either an Android or

iPhone smartphone, (4) understood and spoke English, and (5) were willing to

use a Bluetooth blood glucose meter during the study.

A total of 48 participants were recruited for the pilot study. Three par-
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ticipants dropped out of the study noting competing demands, leaving 45 for

our analyses. Subjects were randomized on a 2:1 ratio to the MyDay app +

Bluetooth blood glucose meter group (n=31) and a control group (n=14) who

provided BG data only using Bluetooth BG meters, but no Myday app. Design

processes [37] and feasibility/engagement results for MyDay were previously

published [38].

3.1. Momentary Assessments and Glucose Meter Data

All SMBG data was objectively assessed using iHealth [39] BG5 glucometers.

BG5 is a commercially available Bluetooth Low-Energy meter that can upload

data automatically to the iHealth secure cloud server via their open API. Thirty-

one participants were instructed to use the MyDay app at each mealtime and

bedtime to answer questions that focused on factors likely to impact diabetes

self-management.

MyDay provided notifications to complete the EMA assessment personalized

to typical mealtimes identified by participants. Timestamps were associated

with all data entries. Bedtime EMA was not included in analyses since self-

management tasks could not be reliably expected at that specific time. Only

mealtime EMA were used in analyses.

Variables analyzed in relation to self-management outcomes were organized

into the following subsets. The first two domains of variables were collected

for all participants: (1) demographics obtained at baseline (gender, age, fathers

education, mothers education, family income, and race) and (2) time variables

that were passively coded, e.g., weekday, weekend, and mealtime (breakfast,

lunch, dinner).

The next three domains of EMA data were available only for the thirty-one

participants using the MyDay app: (3) context related to who was with the

youth at time of self-management (e.g., parent, sibling, alone, casual friend,

close friend, other family, other person, strangers, and boyfriend/girlfriend) and

location (e.g., home, school, work, restaurant, friends’ house, or on the road),

(4) stress, fatigue, mood: scored as 0-100 with higher scores indicating greater
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stress, more fatigue, and worse negative mood, and (5) situational barriers (e.g.,

rushing, sick, on the road, hungry, wanting privacy, busy, without supplies, and

having fun).

3.2. Outcomes

We examined three self-management behavioral outcomes:

1. Daily SMBG frequency of ”less than 4” or ”4 or more” times a day.

Four glucose checks per day is generally considered the minimum rec-

ommended [40],

2. Missed SMBG at mealtimes,

3. Missed insulin administration (IA) at mealtimes

Data from all subjects were available (n=45) for analyses examining daily

number of SMBG from meters. The data that was available for all subjects

were demographic and time variables. Analyses for outcomes 2 and 3 examined

data from participants who used the MyDay EMA app (n=31), which obtained

mealtimes.

3.3. The Learned Filtering Architecture

To extract domains of variables to predict IA and SMBG self-management

behaviors, a learned filtering architecture (LFA) [41] was created in this study

using a Random Forest classifier [42], which is a popular ensemble learning

method that trains multiple decision trees on different parts of the dataset and

then averages the results to improve classification accuracy.

Figure 1 presents the workflow of this LFA. This figure shows that SMBG

data and EMA data collected from the MyDay app were integrated as a complete

dataset fed into the LFA (steps 1 and 2). The LFA then performed necessary

pre-processing, such as normalizing numeric values and removing empty entries

(step 3).

After step 3, a data filtering process began, where subsets of variables were

extracted from the cleaned data either based on configurable human input or
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automatic selection. These variables were grouped as described above to create

multiple data subsets that were split for training and testing (steps 4a and 4b).

The training set was used to train an ML classifier via the Random Forest

method (step 5) and the test set was then used to evaluate the trained model

(step 6).

Specifically, we used the following metrics to assess our models: (1) accu-

racy, which is the percentage of correct predictions, (2) precision, which is the

ratio of true positives and all predicted positives that evaluates what proportion

of predicted positives was actually correct, (3) recall, which is the ratio of true

positives and all actual positives that calculates what proportion of actual pos-

itives was predicted correctly, and (4) F1 score, which evenly weighs precision

and recall.

Figure 1: Iterative Process of Our Learned Filtering Architecture (LFA).

These classification results were then sent to the filter component, which

compared them with other feature subsets (step 7). The filter component had

a configurable tolerance value that was used to select feature subset(s) with

relatively good classification results compared to the best performing model(s)

or other benchmark(s). Next, the LFA checked whether other variable groups

were available for processing (step 8). If so, the feature selection process was
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repeated to create the next subset (step 9). Otherwise, the filtering process

terminated and output the filtered results, i.e., variable groups with relatively

strong predictive power of the outcomes (step 10).

A large portion (75%) of the input data formed a structured training set

used to construct a classifier. The remaining data was a hold-out test set used

to evaluate the classifier. The classification results were then filtered to extract

the best predictor group(s) of the target class variable. For example, if the per-

formance metrics exceed the threshold values, the predictor group was added to

the final output queue. When all variable groups were evaluated, LFA returned

the final insights obtained from the input.

Although the number of observations per participant was substantial, the

overall number of participants was relatively small (n=45). The collected data

thus had some imbalance in the distribution of the outcomes, with missed meal-

time insulin being a relatively less frequent event. Classification models con-

structed using imbalanced datasets may result in the minority class being ne-

glected [43]. To avoid this problem, we applied an imbalanced learning algorithm

that combined the Synthetic Minority Oversampling Technique (SMOTE) [44]

and Tomek link (T-link) [45]. Both techniques have been used effectively for

training imbalanced data, especially for small datasets [46, 47, 48].

We employed SMOTE to enrich the minority class by creating artificial ex-

amples in the minority class rather than replicating existing samples to prevent

overfitting. SMOTE creates new samples from linear combinations of two or

more similar samples selected from the minority class using a distance measure.

Each instance was created by perturbing the original samples attributes by a

random amount one-at-a-time within the difference to the neighboring instances.

T-link was applied to remove noisy data introduced by SMOTE from the

majority class. Potential noisy data was detected by comparing the distances

between any two samples from different classes and the distances between an

arbitrary sample and one of the two samples [45]. If the distance between the

former pair is smaller, then either sample in that pair is a noise or both are

borderline instances [49]. To ensure integrity of the test set, SMOTE and T-
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link were applied only to the training set.

4. Results

This section analyzes the results obtained from the LFA constructed in ac-

cordance with the methods described in Section 3.

4.1. Descriptive Statistics of the Sample

The sample of n=45 participants were on average 15.33 years of age (SD

1.67), were 53.33% female, 84.44% White, 68.80% used an insulin pump and

had a mean HbA1c (indicating overall glycemic control) of 8.56% (SD 1.88).

4.1.1. Daily SMBG Frequency

A total of 6,524 blood glucose (BG) measurements were obtained from Blue-

tooth meters used by all participants (n=45). For this analysis the demographic

and time variables were related to the outcome of SMBG frequency per day.

SMBG frequency ranged between 0-12 measurements per day. The measure-

ments were aggregated on a daily basis to obtain a new dataset of 1,244 entries,

with each entry per participant being the total number of measurements an

individual had each day during the study period.

The following distributions of SMBG daily frequency were observed: There

were 595 days with ”Below 4” frequency and 649 day with ”4 or Above”. A

Random Forest classifier1 was trained with a 10-fold cross validation and ob-

tained the classification results using the test data. The results are shown in

Table 1 for SMBG frequency Below 4 or 4 and Above. The filter then compared

the benchmark value with the outcome classification results obtained from each

variable group. A tolerance value of 15% was configured for the filter to select

subsets with significant predictive power. As shown, the demographics variable

group for SMBG frequency resulted in a better performance than time variables

and all variables.

1Random Forest was the best performing model compared to several other classifiers, such

as Support Vector Machine and Naive Bayes.
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Table 1: SMBG Classification of ”Below 4” or ”4 and Above” Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 75.2% 0.75 0.75 0.75

Time variables 48.2% 0.48 0.48 0.47

All 67.5% 0.68 0.68 0.68

4.2. Missed Mealtime SMBG and Insulin Administration

From the app group (n=31), a total of 1,855 entries were associated with

breakfast, lunch, or dinner and used to analyze factor(s) that could impact

SMBG and IA. Missed IA had a distribution of 1:6 for True (missed) vs False

(administered) outcomes. In contrast, the outcome missed SMBG had a class

distribution of 1:5 for True (missed) vs False (completed). LFA created classi-

fication models for each variable group (i.e., demographic, time, social context,

and psychosocial) using the 75%/25% split for training and testing. A Random

Forest classifier with a 10-fold cross validation was the best performing model.

Table 2: Missed SMBG Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 85.5% 0.85 0.85 0.85

Time Variables 71.8% 0.61 0.72 0.64

Social Context 71.3% 0.73 0.71 0.72

Stress, Fatigue, Mood 73.1% 0.71 0.73 0.71

Contextual Barriers 75.4% 0.70 0.75 0.68

All 86.7% 0.87 0.87 0.87

Tables 2 and 3 present the classification results of missed SMBG and missed

IA. The Random Forest filter selected demographics as the variable group that

most accurately predicted missed SMBG. Stress/fatigue/mood and social con-

texts were the next best sets of variables associated with Missed SMBG. Table 3

shows that the variable group with contextual barriers had the greatest accu-

racy in predicting IA and stress/fatigue/mood was the variable group with the
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Table 3: Missed Mealtime Insulin Administration (IA) Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 65.9% 0.84 0.66 0.71

Time Variables 56.7% 0.79 0.57 0.63

Social Context 62.1% 0.78 0.62 0.67

Stress, Fatigue, Mood 72.5% 0.78 0.73 0.75

Contextual Barriers 75.6% 0.77 0.76 0.76

All 80.1% 0.84 0.80 0.82

next best accuracy for predicting IA.

5. Discussion

This section discusses the main findings in this study and analyzes limita-

tions regarding this work reported in this paper.

5.1. Main Findings

To better understand the factors impacting self-management behavior of

adolescents with T1D, this study applied ML analyses to construct a learn-

ing filter architecture (LFA) using demographic, novel momentary psychosocial

data and self-management data. The relative association of five domains of

variables for predictability of self-management behaviors was compared using

all the variables collectively as the benchmark.

The results indicated that demographic variables were most associated with

average daily SMBG frequency, which were the only non-EMA variables in-

cluded in the study. These results highlight the value of social determinants

of health, as defined by demographics. While demographic factors are gener-

ally not modifiable, social determinants of health are increasingly used to adapt

care to for those who are most vulnerable and may not receive the full benefit

of current approaches to healthcare [50, 51].

These results support the feasibility and value of integrating EMA

and ML to improve behavioral assessment and automate behavioral
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pattern recognition in healthcare [52]. The methods described in Section 3

show promise to quantify the impact of psychosocial factors on self-management.

In previous studies [53, 54] using behavioral observation in the context of

identifying patterns of hand hygiene compliance monitoring, from which we ob-

tained useful initial insights into which domains of variables had the most impact

on compliance behavior. Based on the current findings, similar experiments are

needed with larger samples to prioritize multiple potential domains of influ-

ence on health behaviors, and advance the assessment and analytic approaches

utilized here.

The use of primarily passive psychosocial and behavioral data

streams combined with ML moving forward will provide the basis

for a population-based monitoring system that can help guide auto-

mated pattern detection for clinical management. For example, experi-

mental unobtrusive indicators of mealtimes are in development [55] and insulin

administration is available via pumps but not in real time [55]. If successful,

additional passive data streams would greatly improve our methodological rigor

and reach [56].

The LFA machine learning methods employed here should be applied to

a large diverse sample of patients to confirm and expand results reported in

this paper. Although passive methods are increasingly used to infer behavior

and psychosocial status [57, 58], there are important subjective experiences,

such as mood, which may continue to require self-report. For the foreseeable

future, both self-reported real-time data and passive data, such as social net-

working [59], may be integrated to optimize insights for healthcare.

5.2. Limitations

A limitation of the results reported in this paper is that only demographic

and time-related variables were available for analyses of the SMBG frequency

outcome. In particular, demographic variables were not directly tested against

the other EMA variables. Future research is therefore needed to contrast all the

current variable domains within one sample.
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Moreover, for small datasets that have disparities in the frequencies of ob-

served classes or outcomes, applying an over-sampling technique is a strategy

to mitigate the negative impact this imbalance has on model fitting. Nev-

ertheless, synthetic sampling (under-sampling or over-sampling) methods may

overestimate performance. The trained model with synthetic samples may not

reflect the class imbalance future studies may encounter, potentially leading to

overly optimistic estimates performance. Likewise, synthetic samples could in-

duce model uncertainty. Depending on how accurately the synthesized samples

represent the actual samples, the prediction outcomes may be better or worse,

so the model could appear more or less effective than it actually is.

With the above drawbacks notwithstanding, we did not consider these threats

to validity crucial to our goals since we were relatively less focused on absolute

levels of predictability for this pilot study compared to relative value of predic-

tor groups. General patterns are harder to obscure by adding artificial samples

using the algorithms we had chosen.

6. Conclusions

This paper reports the results of a study that applied EMA and ML methods

to better understand psychosocial and contextual aspects of self-management

behavior in adolescents with T1D. The following is a summary of the results

reported in this paper:

• Combining EMA data with ML methods show promise to quantify the

impact of psychosocial factors on self-management.

• The combined methods will provide the basis for a population-based mon-

itoring system that can help guide automated pattern detection for clinical

management.

Future work will enhance MyDay’s ability to utilize unobtrusive indicators.

For example, experimental unobtrusive indicators of mealtimes are in develop-

ment and if successful would greatly enhance our methodological approach [56].
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Finally, the LFA machine learning methods employed here will be applied to a

large diverse sample of patients to confirm and expand results reported in this

paper. Future systems will benefit from combining self-report of subjective hu-

man experiences together with passive indicators of factors that impact health

behavior decision-making in daily life.
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