
Real-Time Constraints as Strategies 1

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

Real-Time Constraints as Strategies

The Real-time Constraints as Strategies design pattern decouples
real-time specific constraints and behavior from the application ser-
vice to which they apply. The application service is provided by a
service class. Real-time related aspects are delegated to strategies
which implement these in a system-specific manner.

Example Consider the temperature control example from the Frame Dispatch-
er pattern (89). Concrete installations of this system require the inte-
gration of different application-specific real-time aspects, like han-
dling deadline misses of the temperature regulation task sequence.

An installation for a household may likely be able to ignore the viola-
tion of this time constraint. A more sophisticated system may log
deadline misses by increasing Leaky Bucket Counters [PLoP95]. Yet
other systems cannot ignore any deadline misses. An example for the
latter is an installation for a fermentation tank as part of a pharma-
ceutical production process at a chemical plant. For a proper fermen-
tation—and thus a successful chemical reaction—it is necessary to
keep temperature in the tank on a constant level. Dependent on the
product under production, only small deviations can be tolerated. If
the temperature regulation sequence processes overly long, however,
a constant temperature may not be guaranteed. Action must be tak-

Sensor

TemperatureTemperature

forever do within 50 msec

if time-limit violation
Customer 2

Customer 3

Control

1. 10 msec measure temperature sensor 1
2. 10 msec measure temperature sensor 2
3. 15 msec calculate temperature regulation
4. 15 msec regulate temperature

then increase Leaky
Bucket Counter

if time-limit violation
then reorganize task

time-limits

Regulator

if time-limit violation
Customer 1

then do nothing

2

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

en, ranging from raising an alarm to automatically re-factoring future
executions of the task sequence and task-specific deadlines.

Context Configuration of application services with real-time specific aspects.

Problem For many application services in real-time systems it is possible to de-
fine implementation skeletons that capture these services’ core pro-
cessing schemes. Different instantiations of the system only differ in
their specific real-time constraints and behavior, such as algorithms
for task scheduling and handling deadline misses. Three forces arise
when integrating such real-time specifics:

• The general processing schema of services should not be polluted
with system and customer-specific real-time constraints and be-
havior.

• Varying real-time constraints and behavior should not affect the
implementation of a service’s general processing schema.

• It should not be possible to accidentally override implementation
skeletons of application services when modifying real-time con-
straints and behavior.

Solution Specialize the Strategy pattern [GHJV95] for separating real-time
specifics from the general processing schema of the application ser-
vice to which they apply. Strategy supports varying real-time aspects
independently from the service that depends on them [GHJV95].

Capture the general processing schema for the application service—
the context in terms of Strategy—as a template method, according to
the Template Method pattern [GHJV95]. This ensures that the gener-
al processing schema only contains system-invariant behavior, which
also cannot be overridden accidentally [GHJV95].

Define hook methods [Pree95] for all real-time aspects that apply to
the service. Use these hook methods in the implementation of the
template method—instead of implementing real-time related behavior
directly [GHJV95].

Provide the interface for all hook methods in an abstract strategy
class, according to the Strategy pattern [GHJV95]. Define specific
real-time constraints and behavior by subclassing the strategy class
and implementing the hook methods as required. Integrate this

Real-Time Constraints as Strategies 3

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

behavior by configuring the template method with the strategy
subclass.

Structure A service class implements—as a template method [GHJV95]—the in-
variant skeleton for the real-time sensitive service it offers to clients.
Basically, this is the service’s system-invariant core functionality, ab-
stracting from real-time specifics. Only this invariant behavior is
‘hard-coded’ in the service class, as if it were no real-time service at
all.

For all varying real-time constraints and behavior, the template meth-
od uses appropriate hook methods [Pree95]. These hook methods
abstract from concrete real-time behavior. By this, the service class
becomes independent of application-specific real-time requirements:
the execution of concrete real-time behavior is delegated to the hook
methods.

An abstract strategy class defines interfaces for all hook methods that
are needed by the service class. These interfaces are commonly
shared by all possible implementations of the hook methods.

Concrete strategy classes provide customer-specific implementations
of the hook methods as declared by the abstract strategy class. For
each different instantiation of the system a separate concrete strategy
class exists. At run-time, the service class is configured with a single
concrete strategy class, the one that implements the required real-
time behavior. When the template method of the service class invokes

Class
Service Class

Responsibility
• Implements a tem-

plate method for
the service with
real-time aspects.

• Calls hook methods
for real-time
specific aspects.

Collaborator
• Concrete

Strategy

4

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

a hook method, the corresponding implementation within the
configured concrete strategy class is executed.

Default behavior for hook methods—if any can be specified—can be
implemented in a separate concrete strategy class, which is pre-
configured with the service class.

The concrete structure of the pattern looks as follows:

➥ In our example system we specify a service class that offers a
single template method. It implements the general processing schema
for temperature regulation. The abstract strategy class declares three
hook methods. The first hook method provides an interface for han-
dling deadline misses of the whole temperature regulation sequence.
The second hook method specifies an interface for handling deadline
misses of individual tasks within the sequence. The third hook meth-
od, finally, provides an interface for implementing the service’s behav-
ior in case the available time for a specific task in the sequence is not
completely consumed.

Class
Abstract Strategy

Responsibility
• Defines a common

interface for hook
methods for real-
time specific as-
pects.

Collaborator Class
Concrete Strategy

Responsibility
• Implements the

hook methods
declared by the
abstract strategy
class in a specific
manner.

Collaborator

AbstractStrategy

hookMethod1()
hookMethod2()

ConcreteStrategyA

hookMethod1()
hookMethod2()

ConcreteStrategyB

hookMethod1()
hookMethod2()

... // do something
strategy->hookMethod1();

strategy->hookMethod2();
... // do something else

... // do something else

ServiceClass

templateMethod()

1

Real-Time Constraints as Strategies 5

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

For applications with different real-time requirements for the temper-
ature regulation task sequence we introduce separate concrete strat-
egy classes. Each implements the three hook methods as specified in
the system’s requirements. ❏

Dynamics The collaborations within the Real-time Constraints as Strategies
pattern are relatively simple:

• The client invokes the template method of the service class.

• The template method executes the service it offers.

• For every real-time specific aspect the template method invokes the
corresponding hook method. The hook method executes this real-
time aspect as implemented in the concrete strategy class that is
configured with the service class.

Implementation The implementation of the Real-time Constraints as Strategies
pattern comprises 7 steps:

1 Specify the service’s general processing schema. Identify the invariant
behavior of the application service with real-time aspects, according
to the guidelines of the Template Method pattern [GHJV95]. In the
context of Real-time Constraints as Strategy these are the service’s
core functionality and the places where application dependent real-
time aspects must be considered. The identified general processing
schema will form the basis for implementing the service’s template
method. The places where application-specific real-time aspects must
be considered indicate the hook methods.

➥ The functional core of our temperature regulation task sequence
comprises three phases. First, the system collects the current tem-
peratures measured by the connected sensors. On basis of these tem-

Client Service
Class

templateMethod hookMethod1

hookMethod2

Concrete
Strategy

6

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

peratures the system calculates the new setting for the temperature
regulator. Finally, the system triggers the temperature regulator to
heat or cool accordingly.

While executing the sequence the system measures the time each
individual task consumes. If this is more then allowed, or less, we
must take a real-time related action. The reason why we handle tasks
that finish early is simply that all tasks should begin at a defined
point in time. We want all executions of the sequence as equal as
possible—at least with respect to task triggering. If the execution of
the whole sequence also misses its deadline, we must take another
real-time related action.

All three actions described above can vary from instance to instance
of the system. Measuring the consumed time is also real-time related,
but invariant from the perspective of the service’s specification. ❏

2 Specify the hook methods. For every real-time specific aspect that can
vary in our system—as identified in step 1—we must specify a
common interface that fits with all its possible implementations. Each
of these interfaces corresponds to a hook method. With this
specification at hand, we can declare the abstract strategy class.

➥ For the temperature regulation service in our example system we
need three hook methods. Two methods, handleTaskDeadline()
and handleSequenceDeadline() , deal with handling deadline miss-
es for individual tasks in our regulation sequence, or the sequence as
a whole respectively. A third hook method, called idle() , handles
system behavior when an individual task of the sequence consumes
less time then potentially allowed. This analysis results in the follow-
ing Abstract Strategy class:

class AbstractStrategy {
public:

// The hook methods
virtual void handleTaskDeadline (int id) = 0;
virtual void handleSequenceDeadline () = 0;
virtual void idle (long idleTime) = 0;

} ❏

3 Define the service class. This step involves three phases: specifying a
mechanism for configuring the class with a concrete strategy object,
declaring the interface for the class, and implementing the template
methods with help of the hook methods.

Real-Time Constraints as Strategies 7

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

➥ In our example system the class TemperatureRegulation plays
the role of the pattern’s service class.

To configure this class with concrete hook methods we provide its
constructor with an input parameter of type AbstractStrategy .
Application programmers must pass the appropriate concrete strate-
gy object as an argument when instantiating a specific Temperatur-
eRegulation object.

Class TemperatureRegulation further accesses a timer that allows
to measure both the execution time for the whole task sequence and
the intermediate times for each individual task in the sequence.

Individual task implementations follow the structure introduced by
the Frame Dispatcher pattern (89). A common base class Task de-
fines a generic interface for task execution. Concrete tasks are imple-
mented by subclassing this base class: a class TemperatureSensor
for temperature measurement, and a class TemperatureRegulator
for temperature regulation. Since the temperature regulation task
needs the concrete temperatures as its input, both application-spe-
cific task classes share a common data repository. For details and a
rationale for this design see the implementation section of the Frame
Dispatcher pattern (89). For simplicity we assume that there are 10
temperature sensors in the system and one temperature regulator.

From the above discussion we can derive the declaration of class
TemperatureRegulation . The template method identified in step 1
is called regulateTemperature() .

const int maxTasks = 11; // 10 sensors, 1 regulator

class TemperatureRegulation {
private:

// Data members
Timer * timer;
long limit;
AbstractStrategy * strategy;

struct TaskData {
Task * task;
long limit;

};
TaskData tasks[maxTasks];
int numTasks;

8

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

public:
// Constructor and Destructor
TemperatureRegulation (AbstractStrategy * s);
~TemperatureRegulation ();

// Configuring the task sequence
void setTask (Task * t, int id, long limit);
void removeTask (int id);

// The template method
void regulateTemperature ();

}

We implement the temperature regulation method according to the
Frame Dispatcher pattern (89) and the results from the first imple-
mentation step for this pattern. This provides us with a general
framework for handling arbitrary periodic task sequences with real-
time constraints that follow the schema we identified in step 1.

void TemperatureRegulation:: regulateTemperature () {
// run forever
for (;;) {

// Reset and start timer for measuring
// the sequence's exection time
limit = 0;
timer->reset();
timer->start();

// Execute the tasks
for (int i = 0; i < numTasks; i++) {

// Measure task execution time
timer->startIntermediate();
tasks[i].task->run();
timer->stopIntermediate();

// Calculate the maximum time
// limit for the partial task sequence
// executed so far
limit = limit + tasks[i].limit;

// RT handling for individual tasks
if (tasks[i].limit >=

timer->getIntermediate())
// Everything o.k.
strategy->idle

(limit - timer->getTime());
else

// OOPS, deadline miss
strategy->handleTaskDeadline(i);

};

Real-Time Constraints as Strategies 9

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

timer->stop();

// RT handling for the task sequence
if (limit < timer->getTime())

// OOPS, deadline miss
strategy->handleSequenceDeadline();

};
}; ❏

4 Derive concrete strategy classes. For every version of the system we
derive a separate concrete strategy class from the abstract strategy
class. These classes implement the hook methods according to the
corresponding application-specific real-time requirements.

➥ For the chemical plant version of our temperature control sys-
tem we specify a class ChemicalPlantStrategy . Let the real-time re-
quirements for the system specify that deadline misses of individual
tasks can be ignored as long as they do not occur overly often. Dead-
line misses of the whole task sequence must be reported and handled
immediately.

As a consequence we implement the method handleTaskDeadline()
such that it increases a Leaky Bucket Counter [PLoP95] for the task
that misses its deadline. If the counter reaches its threshold, we raise
an alarm. The administrator then can take action, either checking
whether the sensor itself causes the faults, or the performance of the
software, or whether to re-factor the time limit for the task.

To implement this behavior we define a class LeakyBucketCounter
as specified in [PLoP95]. The method handleTaskDeadline() looks
as follows:

LeakyBucketCounter * counters[maxTasks];

void ChemicalPlantStrategy::
handleTaskDeadline (int id) {

// Increase counter and check whether
// it is neccessary to raise an alarm
if (counters[id]->increase())

// raise alarm
};

The implementation of the hook method handleSequenceDead-
line() is more straight forward. We always raise an alarm if the
whole task sequence misses its deadline. The actions the system
administrator can take are similar to those when a deadline miss for
an individual task is reported.

10

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

For the method idle() we also implement task specific Leaky Bucket
Counters. The rationale for this is that we want to provide some hints
for tuning the performance of the task sequence. If a task finishes
early often enough we might reduce its individual time limit. This
would allow us to increase time limits of other tasks in the sequence,
if they tend to miss their individual deadline often. ❏

5 Define default behavior for hook methods, if possible. Default behavior
is especially useful when building frameworks: independent of con-
crete customer-specific specializations the system works in a defined
way. Providing default behavior for hook methods involves two steps:
specifying the default behavior and pre-configuring it with the service
class.

➥ For our example system we can provide default behavior for all
three hook methods. In case of the two methods handleTaskDead-
line() and handleSequenceDeadline() we simply log the number
of deadline misses that occur for an individual task, or the whole task
sequence respectively. The system administrator can check these
counts when needed. The method idle() idles the time that is
passed as an argument. The default behavior is implemented in a
class DefaultStrategy that is derived from AbstractStrategy .

The pre-configuration of class TemperatureRegulation with the
above default behavior is ensured by modifying its constructor. We
change it such that it takes an instance of class DefaultStrategy as
default argument. If no specific concrete strategy is specified, the de-
fault hook method implementations are used.

class TemperatureRegulation {
...
TemperatureRegulation (AbstractStrategy * s =

new DefaultStrategy ());
...

} ❏

If we cannot provide any default behavior, we must enforce that appli-
cation programmers to configure the service class with a concrete
strategy. Otherwise the system will crash, since no concrete hook
method implementations are available—in our example system there
would be a dangling pointer.

➥ The original declaration of class TemperatureRegulation
already ensures its configuration with a concrete strategy. If no such

Real-Time Constraints as Strategies 11

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

strategy is passed as an argument to the constructor, the compiler
will report an error. ❏

Another kind of default behavior is to prepare the system such that it
can run without considering real-time aspects. In this case we could
provide a NullStrategy , according to the Null Object pattern
[PLoP96], which implements hook methods doing ‘nothing’.

6 Provide support for configuring and changing real-time specific behav-
ior at run-time. If needed, provide the service class with an additional
method for configuring the concrete strategy object with the template
method at run-time. Otherwise, the real-time specific behavior can
only be configured either at compile-time or even at coding-time, for
example to increase performance (see implementation step 7).

Run-time configuration and exchange of real-time specific behavior
becomes necessary, for example, if an application supports modes
and mode changes. A mode is an operational regime that is defined
by a set of real-time operations, such as scheduling parameters and
strategies [SRLR89].

➥ The chemical plant version of our system could distinguish be-
tween a ‘power’ mode and a ‘regular’ mode for temperature regulation.
The ‘power’ mode is used in the beginning of a chemical production
process, such as fermentation, when large differences between actual
and target temperatures are to overcome. For the ‘power’ mode we
might ignore deadline misses for individual tasks: independently of
the current temperature we must heat or cool with high power. When
the target temperature is reached, the mode changes to ‘regular’, in-
troducing a more sensitive handling of deadline misses. ❏

In most real-time systems the configuration or exchange of real-time
specific behavior is not in the responsibility of the service component.
Rather it is triggered by an external control component, as specified
in the Recursive Control architectural pattern [PLoP96]. The reason
for this is that often more than one real-time service is affected by
such changes. For example, changing modes in a real-time sensitive
production process likely requires to re-configure several service
components, such as the temperature regulation services installed at
different tanks of the plant. Only a central control component is able
to maintain all information that is necessary to determine when to
change the mode and to perform the change when it is due.

12

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

When performing a mode change, the control component calls the re-
configuration methods of all service components that are affected by
the change. It passes a new real-time behavior strategy object to the
service components which in turn integrate it with their template
method. The Service Configurator pattern (77) helps with ensuring
that run-time or loading-time changes in real-time behavior are
consistent to each other across all affected service components.

7 Optimize performance. When implementing the Real-time Constraints
as Strategies pattern we also may need to tune its code with respect
to performance. This becomes necessary if an application’s real-time
constraints are so tough that only high-performance code is able to
fulfil them.

Note, however, that in general real-time does not mean ‘real fast’. It
only means that an application must meet certain timing constraints
to ensure correct and predictable behavior. Some of these constraints
may be easy to meet even by fairly inefficient code. Performance opti-
mization is a completely different issue. It means that some piece of
program executes as fast as possible.

How to best tune the performance of the code strongly depends on the
programming language used. It is important to note, however, that
performance optimizations must not break the core principles of the
pattern. Otherwise you will lose its benefits—or you do not implement
the pattern at all.

➥ To tune the performance of our example implementation we can
use, for example, templates for configuring class TemperatureRegu-
lation with a concrete strategy. This allows us to avoid using virtual
functions, as in the current implementation. Since virtual functions
are expensive, we save execution time. This modification also requires
to remove the parameter from the constructor of class Temperatur-
eRegulation . We also do not need an abstract strategy class. Instead
we provide a set of independent concrete strategies that all implement
the same interface.

template <class Strategy > class TemperatureRegulation {
private:

// Data members
...
Strategy strategy;
...

Real-Time Constraints as Strategies 13

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

public:
// Constructor
TemperatureRegulation ();
...
// The template method
void regulateTemperature ();

}

The drawback of using templates is, however, that they do not
support the re-configuration of the class with a different concrete
strategy at run-time. The configuration is carved in stone at coding-
time.

Another performance optimization in C++, and thus applicable to our
example, is to use inlining. In this case, the code of the inline method
replaces all calls to it, thus increasing the performance of the system.
The downside of inlining is that the code size grows, because all
method calls are replaced by the full method bodies. Also, how well
inlining works depends on the compiler you are using. Inlining in C++
is a hint for the compiler, not a must! Different compilers also vary in
their inlining capabilities: a method that is inlined with one compiler
may not be accepted by another. ❏

Variants Real-time Constraints as Hooks: In this variant, a specialization of the
Template Method pattern [GHJV95], the hook methods are declared
in the service class, instead of within an abstract strategy. Integration
of specific real-time constraints and behavior is achieved by subclass-
ing the service class and implementing the hook methods, instead of
providing a hierarchy of strategy classes.

This solution has the advantage that template and hook methods are
declared and implemented in one class hierarchy, rather than being
separated from each other. This is easier to implement. The drawback
is that the Real-time Constraints as Hooks variant allows no run-time
re-configuration of real-time specific behavior; at least not without
modifications in the clients that use the service class.

If the overall performance of the structure is not a barrier for fulfilling
the real-time constraints of the application service, and if no run-time
re-configuration of real-time specific behavior is needed, this variant
is, however, an option worth considering.

Known Uses TAO, The ACE ORB [POSA3]. The ACE ORB is a configurable high-
performance real-time object request broker. It is built on top of the

14

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

ACE framework [Sch97]. TAO uses Real-Time Constraints as Strate-
gies to create a scheduling framework which uses the unifying notion
of urgency to provide a consistent interface to scheduling and dis-
patching real-time operations. Concrete strategies allow pluggable
mappings from real-time operation characteristics into urgency val-
ues.

All decisions concerning the pairwise ordering of real-time operations
and the off-line and run-time assignment of urgency values are fac-
tored out into the individual scheduling strategies. Examples include
rate monotonic scheduling (RMS) for statically schedulable rate-
based systems, and earliest deadline first (EDF), minimum latency
first (MLF), and maximum urgency first (MUF) for systems requiring
dynamic scheduling.

class ACE_Scheduler_Strategy {
// Abstract Base Class for scheduling strategies: each
// derived class must define an ordering strategy for
// dispatch entries based on a specific
// scheduling algorithm.
public:

ACE_Scheduler_Strategy
(ACE_Scheduler_Strategy ::Preemption_Priority
 minimum_critical_priority = 0);

// comparison of two dispatch entries in strategy
// specific high to low priority
virtual int priority_comp

(const Dispatch_Entry &first_entry,
 const Dispatch_Entry &second_entry) = 0;

// sort the dispatch entry link pointer array
// according to the specific sort order defined
// by the strategy
virtual void sort (Dispatch_Entry **dispatch_entries,

 u_int count) = 0;

// determine the minimum critical priority number
virtual ACE_Scheduler ::Preemption_Priority

minimum_critical_priority ();

// comparison of two dispatch entries in strategy
// specific high to low dynamic subpriority ordering
virtual int dynamic_subpriority_comp

(const Dispatch_Entry &first_entry,
 const Dispatch_Entry &second_entry) = 0;

Real-Time Constraints as Strategies 15

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

// returns a dynamic subpriority value
// for the given timeline entry at the current time
virtual long dynamic_subpriority

(Dispatch_Entry &entry,
 u_long current_time) = 0;

// provide a lowest level ordering
virtual int static_subpriority_comp

(const Dispatch_Entry &first_entry,
 const Dispatch_Entry &second_entry);

protected:
// comparison of two dispatch entries
int sort_comp (const Dispatch_Entry &first_entry,

 const Dispatch_Entry &second_entry);

// the minimum critical priority number
ACE_Scheduler ::Preemption_Priority

minimum_critical_priority_;
};

class ACE_RMS_Scheduler_Strategy :
public ACE_Scheduler_Strategy { };

class ACE_MUF_Scheduler_Strategy :
public ACE_Scheduler_Strategy { };

class ACE_MLF_Scheduler_Strategy :
public ACE_Scheduler_Strategy { };

class ACE_EDF_Scheduler_Strategy :
public ACE_Scheduler_Strategy { };

The scheduling framework then works with the total ordering
provided by the urgency values assigned to the real-time operations
by the scheduling strategies.

class ACE_Strategy_Scheduler : public ACE_Scheduler {
// Strategized scheduler implementation.
public:

ACE_Strategy_Scheduler
(ACE_Scheduler_Strategy &strategy);

virtual ~ ACE_Strategy_Scheduler ();
// assigns priorities to the sorted dispatch
// schedule, according to the strategy's
// priority comparison operator.
status_t assign_priorities

(Dispatch_Entry **dispatches, u_int count);

16

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

// assigns dynamic and static sub-priorities to
// the sorted dispatch schedule, according to
// the strategy's subpriority comparisons.
status_t assign_subpriorities

(Dispatch_Entry **dispatches, u_int count);

// determine the minimum critical priority number
virtual Preemption_Priority

minimum_critical_priority ();

private:
// chedules a dispatch entry into the timeline
// being created
virtual status_t schedule_timeline_entry

(Dispatch_Entry &dispatch_entry);

// sets up the schedule in the order generated
// by the strategy
virtual status_t sort_dispatches

(Dispatch_Entry **dispatches, u_int count);

// strategy for comparison, sorting of
// dispatch entries
ACE_Scheduler_Strategy &strategy_;

ACE_UNIMPLEMENTED_FUNC (ACE_Strategy_Scheduler
(const ACE_Strategy_Scheduler &))

ACE_UNIMPLEMENTED_FUNC (ACE_Strategy_Scheduler
&operator= (const ACE_Strategy_Scheduler &))

};

REFORM, a framework for hot steel rolling mills [Schu97]. This sys-
tem uses Real-time Constraints as Strategies to separate functional-
ity from real-time specific behavior. Real-time aspects that are imple-
mented as strategies include setting deadlines and handling deadline
misses.

One real-time sensitive task within the system is measurement value
acquisition. To ensure a correct material tracking, state data must
collected from the rolling mill plant on a periodical basis. If not
specified otherwise, the system is configured with default behavior: a
time-frame of 200 msec for a complete data update with ignoring
deadline misses. For most instantiations of the framework these
settings are sufficient, since the real-time requirements for this task
are soft, in general. Working with outdated values for one or two time
periods doesn’t affect the quality of the system’s calculations, so they
can be tolerated.

Real-Time Constraints as Strategies 17

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

Few customers, however, require more stringent real-time behavior,
specifically for handling deadline misses. For these customers,
specific strategies must be implemented and configured with the
system.

Other real-time sensitive tasks within the hot rolling mill framework
are material tracking and setpoint transmission. The latter controls
the actual stands, rolls, and other devices in the system. In contrast
to measurement value acquisition, however, deadlines for these tasks
are more stringent, since they control and impact the actual manu-
facturing process, the latter with respect to reliability, safety, and
product quality.

For example, customers require a 99,8% reliability of the automation
software by contract. Besides sophisticated fault tolerance concepts,
Quality of Service with respect to real-time contributes to fulfilling
this requirement as well. Only a system that finishes all its computa-
tions on time can be reliable. This in turn impacts the selection of
strategies for handling deadline misses, for example. They must be
configurable and adaptable in order to support system tuning the
system for a most optimal behavior under the constraints of the
actual plant to be controlled. Real-time Constraints as Strategies pro-
vides this flexibility.

For above tasks it is also hard to provide default behavior, since dead-
lines and deadline miss handling depends heavily on the actual
configuration of the plant. For example, the wider the distance be-
tween two stands or rolls in the plant, the longer the time-frame for
calculating aspects like roll force and screw down position. Thus,
customer-specific deadline calculation and deadline miss handling
strategies must be defined for these tasks.

MFC, a material flow control system, developed as part of the RE-
BOOT project [Kar95]. This system adapts the Real-time constraints
as Hooks variant to provide a task scheduler component with differ-
ent scheduling strategies, in particular earliest deadline first and
maximum urgency first.

R2, a meta-level architecture for soft real-time systems [HT92]. In this
architecture, real-time specific behavior, such as setting deadlines
and handling deadline misses, as well as real-time related protocols,
such as time fence protocols and priority inheritance protocols, are

18

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

implemented as metaobjects. These are consulted by base-level ob-
jects whenever real-time specific actions are to be performed. The
real-time metaobjects are strategies which can be dynamically config-
ured with the base-level objects they ‘control’.

Consequences The real-time Constraints as Strategies pattern provides several
benefits:

Separation of concerns. Core functionality of the application service is
separated from its real-time specific behavior. Both can be changed
almost independently. Also, due to the encapsulation of the real-time
specific behavior in a separate class hierarchy, no accidental overrid-
ing of the functional core is possible.

Adaptability. The pattern allows for the integration of different imple-
mentations of real-time aspects without modifying the service’s core
processing schema. As a consequence, the structure introduced by
the pattern can be configured easily for different concrete applica-
tions that offer the same service with the same kinds of varying real-
time aspects.

Support for run-time re-configuration. The structure of the pattern al-
lows an application service to be reconfigured with different hook
method implementations at run-time. By this, a system can react to
changes in its environment or modes in which it runs. Furthermore
clients are shielded from the re-configuration since it affects the ser-
vice class only.

Efficiency. The pattern’s structure is—even though it uses indirection
and inheritance—open for performance optimizations. These help to
meet tight timing constraints, if the code is otherwise not efficient
enough; but they do not break the patterns fundamental principles
for solving the original problem.

There is one potential liability, however:

Hidden communication costs between the service class and concrete
strategies. The pattern assumes that developers can identify and
specify a common interface for the hook methods that fits with all
their implementations. However, this might be hard to achieve. For
example, if different implementations need different input parame-
ters, we need a wide interface comprising all these parameters. On
the other hand, the service class is unaware of the type of the con-

Real-Time Constraints as Strategies 19

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

crete strategy object attached to it. Thus it must create and pass all
parameters, independent if a hook method needs them or not. As a
result we may run into overhead in space and time.

Using introspective language features for identifying the type of the
concrete strategy object and the parameters that need to be passed,
such as Run-time type information, is not a considerable option. We
would introduce conditional code in the service class, which sweeps
away all the benefits of having the strategies. A better solution is to
pass the service class object to the strategy using self delegation. This
would allow the strategy to directly access the information it needs
from the service class, at the cost that service class and strategy are
more tightly coupled.

In general, the interface between the service class and the hook
methods should be as small as possible, with all parameters shared
by all possible hook method implementations. Otherwise, applying
Real-time Constraints as Strategies may be inefficient.

See also Real-time constraints as Strategies builds on two Gang-of-Four pat-
terns [GHJV95]: Strategy and Template Method. Strategy forms the
foundation for the pattern. In contrast to the ‘pure’ Strategy pattern,
however, the service class—which corresponds to the context class in
Strategy—does not just implement an arbitrary service. Rather it im-
plements the general and invariant schema for a certain kind of ser-
vice, which factors out all possible variations to strategies. This per-
spective is covered by the Template Method pattern, which provides
the guidelines for providing template methods and their correspond-
ing hook methods. Also, Real-time Constraints as Strategies suggests
to use a single strategy hierarchy offering a coherent set of real-time
functions. The plain Strategy pattern focuses more on reifying a sin-
gle algorithm, which would result in several strategy hierarchies if ap-
plied to Real-time Constraints as Strategies.

Credits We like to thank our colleague Willi Gruber, who provided us with
many details on this pattern. Doug Schmidt and Chris Gill provided
detailed information about TAO’s scheduling framework. Our colleag-
es Thomas Heimke and Christian Schuderer contributed with infor-
mation about the hot rolling mill framework. Bob Hanner shepherded
the EuroPLoP ‘98 version of Real-time Constraints as Strategies.

20

© Douglas C. Schmidt 1998, all rights reserved, © Siemens AG 1998, all rights reserved

