Introduction

e Remote Procedure Calls (RPC) are a popu-
lar model for building client/server applica-
tions

Overview of Remote Procedure
Calls (RPC)

— ONC RPC and OSF DCE are widely available RPC
toolkits

e RPC forms the basis for many client/server
applications

Douglas C. Schmidt — e.g., NFS

Washington University, St. Louis

e Distributed object computing (DOC) frame-
works may be viewed as an extension of
RPC (RPC on steriods)

http://www.cs.wustl.edu/~schmidt/ _ 9. OMG CORBA

schmidt@cs.wustl.edu

e RPC falls somewhere between the transport
layer and application layer in the OSI model

— j.e., it contains elements of session and presenta-
tion layers

Motivation

IPC Overview

e RPC tries to simplify distributed application
programming by making distribution trans-
parent

CLIENT HOST SERVER HOST

RPC toolkits automatically handle
CLIENT SERVER
— Reliability PROCESS PROCESS

A [y
> e.g., communication errors and transactions

RESPONSE

Platform heterogeneity

> e.g., performs parameter “marshaling” of com-
plex data structures and handles byte-ordering
differences

NETWORK

e Many applications require communication among

Service location and selection multiple processes

Service activation and handler dispatching — Processes may be remote or local

Security

Message Passing Model

e Message passing is a general technique for
exchanging information between two or more
processes

e Basically an extension to the send/recv I/O
API

— e.g., UDP, VMTP

e Supports a number of different communica-
tion styles

— e.g., request/response, asynchronous oneway, mul-
ticast, broadcast, etc.

e May serve as the basis for higher-level com-
munication mechanisms such as RPC

Message Passing Model (cont’d)
e In general, message passing does not make
an effort to hide distribution

— e.g., network byte order, pointer linearization, ad-
dressing, and security must be dealt with explicitly

e This makes the model efficient and flexible,
but also complicate and time consuming

Message Passing Design

Considerations

e Blocking vs. nonblocking

— Affects reliablility, responsiveness, and program struc-

ture

e Buffered vs. unbuffered

— Affects performance and reliability

e Reliable vs. unreliable

— Affects performance and correctness

Monolithic Application Structure

FILESYSTEM
API

DATABASE
DATABASE

RPC Application Structure

FILESYSTEM
API

GENERATED

DATABASE

RPC
GENERATE!
SERVER
STUBS

e Note, RPC generators automate most of
the work involved in separating client and
server functionality

Basic Principles of RPC

1. Use traditional programming style for dis-
tributed application development

. Enable selec_tive replacement of local proce-
dure calls with remote procecure calls

e Local Procedure Call (LPC)

— A well-known method for transferring control
from one part of a process to another

> Implies a subsequent return of control to the
caller

e Remote Procedure Call (RPC)

— Similar LPC, except a local process invokes a
procedure on a remote system

> /.e., control is transferred across processes/hosts

A Temporal View of RPC

Vs

CLIENT L\r\>
|

Y

REQUEST

SERVER

USER

KERNEL

CLIENT
BLOCKED

i

NETWORK

1
RESPONSE

SERVICE
EXECUTES

e An RPC protocol contains two sides, the
sender and the receiver (i.e., client and server)

— However, a server might also be a client of another
server and so on...

A Layered View of RPC

CLIENT HOST SERVER HOST

CLIENT
PROCESS REMOTE PROCESS REMOTE
PROCEDURE PROCEDURE
CALL A
APPLICATION A APPLICATION
CODE CODE

STUB CODE STUB CODE

RPC RPC
RUNTIME RUNTIME
LIBRARY LIBRARY

REQUEST RESPONSE

NETWORK

RPC Automation

e To help make distribution transparent, RPC
hides all the network code in the client stubs
and server skeletons

— These are usually generated automatically...

e This shields application programs from net-
working details

— e.g., sockets, parameter marshalling, network byte
order, timeouts, flow control, acknowledgements,
retransmissions, etc.

e It also takes advantage of recurring com-
muncation patterns in network servers to
generate most of the stub/skeleton code
automatically

Typical Server Startup Behavior

CLIENT HOST

SERVER HOST

SERVER
PROCESS
(1) REGISTER INTERFACE

[(3) ADVERTISE SERVER
LOCATION

[(4) REGISTER ENDPOINTS

[(5) LISTEN FOR CALLS

RPC RUNTI
LIBRARY

NAME SERVICE
HOST

Typical Client Startup Behavior

CLIENT HOST SERVER HOST

CLIENT o MAKE
PROCESS MAKE
PROCEDURE
APPLICATION CALL
___ CODE

>(7) FIND SERVER

SERVER PROCESS
SYSTEM g

—» (8) FIND
SERVER
PROCESS

RPC RUNTIME
LIBRARY

NAME
SERVICE
HOST

Typical Client/Server Interaction

CLIENT HOST

SERVER HOST

CLIENT
PROCESS

APPLICATION
. CODE

SERVER

PROCESS (14) EXECUTE
REMOTE

PROCEDURE

(10) PREPARE
INPUT

15) PREPARE | (13) CONVERT
OUTPUT INPUT

(11) TRANSMIT

INPUT
RPC

RUNTIME a
LIBRARY

(12) RECEIVE
AND

OUTPUT OUTPUT

(16) TRANSMIT [DISPATCH

TO STUB

NAME
SERVICE
HOST

RPC Models RPC Models

-
e There are several variations on the stan- SYNCHRONOUS RPC

dard RPC “synchronous request/response” CLIENT g

4\
model \ m

NOWAIT RPC

e Each model provides greater flexibility, at R (Nowarr) ;
the cost of less transparency v vOIp RERLY

CALLBACK RPC

CLIENT * (NOWAIT) » SERVER

e Certain RPC toolkits support all the differ-

ent models WINDOW + SYNCHRONOUS CALLBACK RPC

LOOP OR
WAITFOR_RPC oi /

BATCH RPC

VOID REPLY *
i g

— e.g., ONC RPC

cuent ¥Y_| |, susl
P E—

VOID REPLY
l¢ » SUB2 SERVER

suB3 >
VOID REPLY susl
SUB2

< SsuB3
SUB3 RETURN

e Other DOC frameworks do not (due to porta-
bility concerns)

— e.g.,, OMG CORBA and OSF DCE

RPC Models (cont’d)

~

BROADCAST RPC

Transparency Issues

CLIENT * " oks
REQUEST * NOT

REPLY

BROADCAST

I A5 oot | SERVER e RPC has a number of limitations that must
O‘\ v be understood to use the model effectively

BROADCAST BROADCAST

=0 %pﬁkvw — Most of the limitations center around transparency

pp— S e Transforming a simple local procedure call
R A L | into system calls, data conversions, and net-

: ﬁ:v work communications increases the chance
;\ (SYNCHRONOUS m)\} SERVER of something going wrong
SERVER

S

THREADED RPC

— j.e., it reduces the transparency of distribution

Tranparency Issues (cont’d)

e Key Aspects of RPC Transparency

1. Parameter passing
. Data representation
. Binding
Transport protocol
. Exception handling
Call semantics
. Security

. Performance

Parameter Passing

e Functions in an application that runs in a
single process may collaborate via parame-
ters and/or global variables

e Functionsin an application that runs in mul-
tiple processes on the same host may col-
laborate via message passing and/or non-
distributed shared memory

e However, passing parameters is typically the
only way that RPC-based clients and servers
share information

— Hence, we have already given up one type of transparency...

Parameter Passing (cont’d)

e Passing parameters across process/host bound-
aries is surprisingly tricky. ..

e Parameters that are passed by value are fairly
simple to handle

— The client stub copies the value from the client
and packages into a network message

— Presentation issues are still important, however

e Parameters passed by reference are much
harder

— e.g., in C when the address of a variable is passed

> e.g., passing arrays

— Or more generally, handling pointer-based data
structures

> e.g., pointers, lists, trees, stacks, graphs, etc.

23

Parameter Passing (cont’d)

e Typical solutions include:

— Have the RPC protocol only allow the client to
pass arguments by value

> However, this reduces transparency even further!

— Use a presentation data format where the user
specifically defines what the input arguments are
and what the return values are

> e.g., Sun's XDR routines

— RPC facilities typically provide an “interface defi-
nition language” to handle this

> e.g.,, CORBA or DCE IDL

Data Representation

e RPC systems intended for heterogeneous Data Representation (cont’d)
environments must be sensitive to byte-ordering
differences

. . . e Examples (cont'd)
— They typically provide tools for automatically per-

forming data conversion (e.g., rpcgen or idl) — DCE RPC (NDR)

> Supports multiple presentation layer formats

e Examples:
> Supports “receiver makes it right” semantics...

— Sun RPC (XDR)
- Allows the sender to use its own internal for-

> Imposes “canonical” big-endian byte-ordering mat, if it is supported

> The receiver then converts this to the appropri-

> Minimum size of any field is 32 bits
ate format, if different from the sender’s format

— Xerox Courier

= - This is more efficient than ‘“canonical”’ big-
)) endian format for little-endian machines
> Uses big-endian

> Minimum size of any field is 16 bits

Binding Binding (cont’d)

e Binding is the process of mapping a request e There are two components to binding:
for a service onto a physical server some-
where in the network 1. Finding a remote host for a desired service

— Typically, the client contacts an appropriate name
server or “location broker” that informs it which
remote server contains the service

2. Finding the correct service on the host

— i.e., locating the “process” on a given host that

> Similar to calling 411... is listening to a well-known port

o If service migration is Supported, it may be e T here are several technique_s that C_lientS use
necessary to perform this operation multiple gf]g éoegaitcee a host that provides a given type
\%

times

— These techniques differ in terms of their perfor-

— Also may be necessary to leave a “forwarding” ad-
mance, transparency, accuracy, and robustness

dress

Binding (cont’d)

_ _ Binding (cont’d)
e “Hard-code” magic numbers into programs

(ugh...;-))) .
e Superserver: inetd and listen

e Another technique is to hard-code this in- — Motivation
formation into a text file on the local host

> Originally, system daemon processes ran as sep-

— e.g., /etc/services arate processes that started when the system

was booted

— Obviously, this is not particularly scalable...

> However, this increases the number of processes
on the machine, most of which are idle much of
e Another technique requires the client to name the time
the host they want to contact

— This host then provides a “superserver” that knows — Solution — superserver

the port number of any services that are available

on that host > Instead of having multiple daemon processes asleep

waiting for communication, inetd or 1listen lis-
— Some example super servers are: tens on behalf of all of them and dynamically
starts the appropriate one “on demand”

> inetd and listen -- ID by port number . i.e., upon receipt of a service request

> tcpmux -- ID by name (e.g., "ftp”)

Binding (cont’d) Binding (cont’d)

e Superservers (cont'd) e Location brokers and traders

This reduces total number of system processes — These more general techniques maintain a dis-
tributed database of “service — server” mappings

It also simplifies writing of servers, since many
start-up details are handled by inetd — Servers on any host in the network register their
. . willingness to accept RPCs by sending a special
> e.g., socket, bind, listen, accept registration message to a mapping authority, e.g.,

See /etc/inetd.conf for details... port.:mapper o IE‘>"by PROERAM/VERSION number
orbixd -- ID by “interface
N . — Clients contact the mapping authority to locate a
- _o_tg that these super servers combine several ac- particular service
tivities
L . > Note, one extra level of indirection...
> e.g., binding and execution

Binding (cont’d)

e [ocation brokers and traders

— A location broker manages a hierarchy consisting
of pairs of names and object references

> The desired object reference can be found if its
name is known

— A trader service can locate a suitable object given
a set of attributes for the object

> e.g., supported interface(s), average load and
response times, or permissions and privileges

— The location of a broker or trader may be set via
a system administrator or determined via a name
server discovery protocol

> e.g., may use broadcast or multicast to locate
name server...

Transport Protocol

e Some RPC implementations use only a sin-
gle transport layer protocol

— Others allow protocol section either implicitly or
explicitly

e Some examples:
— Sun RPC
> Earlier versions support only UDP, TCP
> Recent versions are “transport independent”
— DCE RPC
> Runs over many, many protocol stacks
> And other mechanisms that aren’t stacks
- e.g., shared memory
— Xerox Courier

> SPP

Transport Protocol (cont’d)

e When a connectionless protocol is used, the
client and server stubs must explicitly han-
dle the following:

1. Lost packet detection (e.g., via timeouts)
2. Retransmissions

3. Duplicate detection

e This makes it difficult to ensure certain RPC
reliability semantic guarantees

e A connection-oriented protocol handles some
of these issues for the RPC library, but the
overhead may be higher when a connection-
oriented protocol is used

— e.g., due to the connection establishment and ter-
mination overhead

Exception Handling

e With a local procedure call there are a lim-
ited number of things that can go wrong,
both with the call/return sequence and with
the operations

— e.g., invalid memory reference, divide by zero, etc.

e With RPC, the possibility of something go-
ing wrong increases, e.g.,

. The actual remote server procedure itself generate
an error

. The client stub or server stub can encounter net-

work problems or machine crashes

e Two types of error codes are necessary to
handle two types of problems

1. Communication infrastructure failures

2. Service failures

Exception Handling (cont’d)

e Both clients and servers may fail indepen-
dently

— If the client process terminates after invoking a
remote procedure but before obtaining its result,
the server reply is termed an orphan

e Important question: “how does the server
indicate the problems back to the client?”

e Another exception condition is a request by
the client to stop the server during a com-
putation

Exception Handling (cont’d)

e DCE and CORBA define a set of standard
“Ycommunication infrastructure errors”

e For C4++4 mappings, these errors are often
translated into C+-+4 exceptions

e In addition, DCE provides a set of C macros
for use with programs that don't support
exception handling

Call Semantics

e When a local procedure is called, there is
never any question as to how many times
the procedure executed

e With a remote procedure, however, if you
do not get a response after a certain inter-
val, clients may not know how many times
the remote procedure was executed

— j.e., this depends on the “call semantics”

— Of course, whether this is a problem or not is
“application-defined”

Call Semantics (cont’d)

e When an RPC can be executed any number
of times, with no harm done, it is said to
be idempotent.

— j.e., there are no harmful side-effects. ..

— Some examples of idempotent RPCs are:

> Returning time of day

> Calculating square root

> Reading the first 512 bytes of a disk file

> Returning the current balance of a bank account

— Some non-idempotent RPCs include:

> A procedure to append 512 bytes to the end of
a file

> A procedure to subtract an amount from a bank
account

Call Semantics (cont’d)

e Handling non-idempotent services typically
requires the server to maintain state

e However, this leads to several additional com-
plexities:

1. When is it acceptable to relinquish the state?

2. What happens if crashes occur?

Call Semantics (cont’d)

e There are three different forms of RPC call
semantics:

1. Exactly once (same as local IPC)

— Hard/impossible to achieve, because of server
crashes or network failures ...

2. At most once

— If normal return to caller occurs, the remote pro-
cedure was executed one time

— If an error return is made, it is uncertain if re-
mote procedure was executed one time or not
at all

3. At least once

— Typical for idempotent procedures, client stub
keeps retransmitting its request until a valid re-
sponse arrives

— If client must send its request more than once,
there is a possibility that the remote procedure
was executed more than once

> Unless response is cached...

Call Semantics (cont’d)

e Note that if a connectionless transport pro-
tocol is used then achieving “at most once”
semantics becomes more complicated

— The RPC framework must use sequence numbers
and cache responses to ensure that duplicate re-
quests aren’'t executed multiple times

e Note that accurate distributed timestamps
are useful for reducing the amount of state
that a server must cache in order to detect
duplicates

Security

e Typically, applications making local proce-
dure calls do not have to worry about main-
taining the integrity or security of the caller/callee

— i.e., calls are typically made in the same address
space

> Note that shared libraries may complicate this...

e L ocal security is usually handled via access
control or special process privileges

e Remote security is handled via distributed
authentication protocols

— e.g., Kerberos...

Performance

e Usually the performance loss from using RPC
is an order of magnitude or more, compared
with making a local procedure call due to

1. Protocol processing
Context switching
. Data copying
. Network latency

Congestion

e Note, these sources of overhead are ubiqui-
tous to networking. ..

Performance (cont’d)

e RPC also tends to be much slower than us-
ing lower-level remote IPC facilities such as
sockets directly due to overhead from

1. Presentation conversion
2. Data copying

3. Flow control

— e.g., stop-and-wait, synchronous client call be-
havior

4. Timer management

— Non-adaptive (consequence of LAN upbringing)

e Note, these sources of overhead are typical
of RPC...

Performance (cont’d)

e Another important aspect of performance is
how the server handles multiple simultane-
ous requests from clients

— An iterative RPC server performs the following
functionality:

loop {
wait for RPC request;
receive RPC request;
decode arguments;
execute desired function;
reply result to client;

}

— Thus the RPC server cannot accept new RPC re-
quests while executing the function for the previ-
ous request

> This is undesirable if the execution of the func-
tion takes a long time

- e.g., clients will time out and retransmit, in-
creasing network and host load

Performance (cont’d)

e In many situation, a concurrent RPC server
should be used:

loop {
wait for RPC request;
receive RPC request;
decode arguments;
spawn a process or thread {
execute desired function;
reply result to client;

e Threading is often preferred since it requires
less resources to execute efficiently

Performance (cont’d)

e However, the primary justification for RPC
is not just replacing local procedure calls

— i.e., it is a method for simplifying the development
of distributed applications

e In addition, using distribution may provide
higher-level improvements in:

1. Performance
2. Functionality

3. Reliability

Performance (cont’d)

e Servers are often the bottleneck in distributed
communication

e Therefore, another performance consider-
ation is the technique_used to invoke_ the
server every time a client request arrives,

e.g.,

— Iterative -- server handles in the same process

> May reduce throughput and increase latency

— Concurrent -- server forks a new process or thread
to handle each request

> May require subtle synchronization, programming,
and debugging techniques to work successfully

- Thread solutions may be non-portable

> Note also that multi-threading removes the need
for synchronous client behavior...

Summary

e RPC is one of several models for implement-
ing distributed communication

— It is particular useful for transparently supporting
request/response-style applications

— However, it is not appropriate for all applications
due to its performance overhead and lack of flexi-
bility

Before deciding on a particular communica-
tion model it is crucial to carefully analyze
the distributed requirements of the applica-
tions involved

— Particularly the tradeoff of security for performance...

