
CS 251: Intermediate Software Design

Program Assignment 3

A queue is an Abstract Data Type (ADT) that implements a priority queue with “first-in, first-out”
(FIFO) behavior. Common operations on a queue include enqueue(), dequeue(), front(), is empty(), and
is full(). This part of your programming assignment focuses upon building and using an array and linked
list implementations of ADT Queue:

1. Array queue (AQueue) – the first queue will use your Array class. You’ll use the Array to imple-
ment a “circular” queue with a “dummy node” to simplify the implementation (especially of the
iterators).

2. Linked list queue (LQueue) – the second queue will use a circular linked list, which is “unbounded”
(at least in principle...) and uses dynamic memory and a “dummy node” for the circular queue.
This class will be more challenging to write correctly than AQueue since it requires you understand
how C++ linked lists work.

You’ll need to implement STL-style iterators for both types of queues. Please see www.oreillynet.
com/pub/a/network/2005/10/18/what-is-iterator-in-c-plus-plus.html and www.oreillynet.com/
pub/a/network/2005/11/21/what-is-iterator-in-c-plus-plus-part2.html for more information
on how to implement STL iterators.

Part A – AQueue

The first implementation you will write is a queue that can be configured to use the class Array
you implemented for your second assignment (it should also be configurable with other STL sequential
containers, such as std::vector). The enqueue(), dequeue(), and front() methods explicitly check
whether the queue is empty or full and throw exceptions if their preconditions aren’t held. It therefore
isn’t necessary for clients to call is empty() or is full() before adding, removing, or viewing a queue
element.

Students taking the class for graduate credit need to implement a bidirectional iterator for AQueue.
Undergraduates taking the class just need to implement a forward iterator, though you can implement a
bidirectional iterator if you’d like. Both graduates and undergraduates should use standard C++ library
generic algorithms to implement their AQueue classes. Moreover, the implementation of AQueue should
exhibit strong exception safety guarantees, just like the underlying Array.

Part B – LQueue

A limitation of the AQueue implementation of the ADT Queue is that queues cannot grow beyond
their initial size. Your second implementation will therefore write an queue using a circular linked list
that allocates memory for new queue nodes dynamically. Note that this change only affects the queue
implementation, but does not affect the queue interface.

To simplify the enqueue(), dequeue(), and LQueue Iterator logic, please add a dummy node to
your LQueue implementation. This will remove all special-case checks in your code.

Students taking the class for graduate credit will need to implement the following enhancements:

• A free list – Implement a free list for LQueue by overloading class-specific operator new and
operator delete in LQueue Node. This free list will cache previously allocated nodes in a static
data member in class LQueue Node. Note that your LQueue::enqueue() and LQueue::dequeue()
methods must not know anything about the free list!

• Reverse iterators – Implement reverse iterators for LQueue and AQueue.

Getting Started

The “shells” for the program reside at www.dre.vanderbilt.edu/∼schmidt/cs251/assignment3.
Once you get these shells you’ll need to add them to a directory called “assignment3” (spelled ex-
actly that way) in your SVN account. The Makefile, AQueue.cpp, AQueue-test.h, LQueue.cpp, and
LQueue-test.h files are written for you. You simply need to edit the AQueue.cpp and LQueue.cpp files
to add the methods that implement the AQueue and LQueue ADTs. Note that you’ll need to reuse the
files from your Array implementation for AQueue.

If you are an undergraduate student please use the shells that are in the ugrad directory at the URL
above. If you are a graduate student please use the shells that are in the grad directory at the URL
above.

1


