
Proactor
An Object Behavioral Pattern for Demultiplexing

and Dispatching Handlers for Asynchronous Events

Irfan Pyarali, Tim Harrison, and Douglas C. Schmidt Thomas D. Jordan
firfan, harrison, schmidtg@cs.wustl.edu ace@programmer.net1

Dept. of Computer Science SoftElegance
Washington University2 Hartford, WI 53027

St. Louis, MO 63130, (314) 935-7538 (414) 673-9813

This paper appeared at the4th annual Pattern Languages
of Programming conference held in Allerton Park, Illinois,
September, 1997.

Abstract

Modern operating systems provide multiple mechanisms for
developing concurrent applications. Synchronous multi-
threading is a popular mechanism for developing applica-
tions that perform multiple operations simultaneously. How-
ever, threads often have high performance overhead and re-
quire deep knowledge of synchronization patterns and prin-
ciples. Therefore, an increasing number of operating systems
support asynchronous mechanisms that provide the benefits
of concurrency while alleviating much of the overhead and
complexity of multi-threading.

The Proactor pattern presented in this paper describes
how to structure applications and systems that effectively uti-
lize asynchronous mechanisms supported by operating sys-
tems. When an application invokes an asynchronous opera-
tion, the OS performs the operation on behalf of the appli-
cation. This allows the application to have multiple opera-
tions running simultaneously without requiring the applica-
tion to have a corresponding number of threads. Therefore,
the Proactor pattern simplifies concurrent programming and
improves performance by requiring fewer threads and lever-
aging OS support for asynchronous operations.

1 Intent

The Proactor pattern supports the demultiplexing and dis-
patching of multiple event handlers, which are triggered by
the completionof asynchronous events. This pattern sim-
plifies asynchronous application development by integrating
the demultiplexing of completion events and the dispatching
of their corresponding event handlers.

1Alternative point of contact is thomasjordan@deluxedata.com.
2This research is supported in part by a grant from Siemens MED.

2 Motivation

This section provides the context and motivation for using
the Proactor pattern.

2.1 Context and Forces

The Proactor pattern should be applied when applications
require the performance benefits of executing operations
concurrently, without the constraints of synchronous multi-
threaded or reactive programming. To illustrate these ben-
efits, consider a networking application that needs to per-
form multiple operations concurrently. For example, a high-
performance Web server must concurrently process HTTP
requests sent from multiple clients [1, 2]. Figure 1 shows a
typical interaction between Web browsers and a Web server.
When a user instructs a browser to open a URL, the browser

1: HTTP
request Web

Server

Web
Browser

File
System

3: read file
4: send file

2: parse request

Figure 1: Typical Web Server Communication Software Ar-
chitecture

sends an HTTPGET request to the Web server. Upon re-
ceipt, the server parses and validates the request and sends
the specified file(s) back to the browser.

1

Developing high-performance Web servers requires the
resolution of the following forces:

� Concurrency– The server must perform multiple client
requests simultaneously;

� Efficiency– The server must minimize latency, maxi-
mize throughput, and avoid utilizing the CPU(s) unnec-
essarily.

� Programming simplicity– The design of the server
should simplify the use of efficient concurrency strate-
gies;

� Adaptability – Integrating new or improved transport
protocols (such as HTTP 1.1 [3]) should incur minimal
maintenance costs.

A Web server can be implemented using several concur-
rency strategies, including multiple synchronous threads, re-
active synchronous event dispatching, and proactive asyn-
chronous event dispatching. Below, we examine the draw-
backs of conventional approaches and explain how the
Proactor pattern provides a powerful technique that sup-
ports an efficient and flexible asynchronous event dispatch-
ing strategy for high-performance concurrent applications.

2.2 Common Traps and Pitfalls of Conven-
tional Concurrency Models

Synchronous multi-threading and reactive programming are
common ways of implementing concurrency. This section
describes the shortcomings of these programming models.

2.2.1 Concurrency Through Multiple Synchronous
Threads

Perhaps the most intuitive way to implement a concurrent
Web server is to usesynchronous multi-threading. In this
model, multiple server threads process HTTPGETrequests
from multiple clients simultaneously. Each thread performs
connection establishment, HTTP request reading, request
parsing, and file transfer operations synchronously. As a re-
sult, each operation blocks until it completes.

The primary advantage of synchronous threading is the
simplification of application code. In particular, operations
performed by a Web server to service client A’s request are
mostly independent of the operations required to service
client B’s request. Thus, it is easy to service different re-
quests in separate threads because the amount of state shared
between the threads is low, which minimizes the need for
synchronization. Moreover, executing application logic in
separate threads allows developers to utilize intuitive sequen-
tial commands and blocking operations.

Figure 2 shows how a Web server designed using syn-
chronous threads can process multiple clients concurrently.
This figure shows aSync Acceptor object that encapsu-
lates the server-side mechanism for synchronously accepting
network connections. The sequence of steps that each thread

3: HTTP
request

Web Server

File
System

6: send file

4: parse
request

Web
Browser

Web
Browser

Web
Browser

Sync Acceptor

5: read
file

Web
Browser

2: connect

1:accept

Figure 2: Multi-threaded Web Server Architecture

executes to service an HTTPGET request using a Thread
Per Connection concurrency model can be summarized as
follows:

1. Each thread synchronously blocks in theaccept
socket call waiting for a client connection request;

2. A client connects to the server, and the connection is
accepted;

3. The new client’s HTTP request is synchronously read
from the network connection;

4. The request is parsed;

5. The requested file is synchronously read;

6. The file is synchronously sent to the client.

A C++ code example that applies the synchronous threading
model to a Web server appears in Appendix A.1.

As described above, each concurrently connected client
is serviced by a dedicated server thread. The thread com-
pletes a requested operation synchronously before servicing
other HTTP requests. Therefore, to perform synchronous
I/O while servicing multiple clients, the Web server must
spawn multiple threads. Although this synchronous multi-
threaded model is intuitive and maps relatively efficiently
onto multi-CPU platforms, it has the following drawbacks:

Threading policy is tightly coupled to the concurrency
policy: This architecture requires a dedicated thread for
each connected client. A concurrent application may be bet-
ter optimized by aligning its threading strategy to available
resources (such as the number of CPUs via a Thread Pool)
rather than to the number of clients being serviced concur-
rently;

2

Increased synchronization complexity: Threading can
increase the complexity of synchronization mechanisms nec-
essary to serialize access to a server’s shared resources (such
as cached files and logging of Web page hits);

Increased performance overhead: Threading can per-
form poorly due to context switching, synchronization, and
data movement among CPUs [4];

Non-portability: Threading may not be available on all
OS platforms. Moreover, OS platforms differ widely in
terms of their support for pre-emptive and non-preemptive
threads. Consequently, it is hard to build multi-threaded
servers that behave uniformly across OS platforms.

As a result of these drawbacks, multi-threading is often not
the most efficient nor the least complex solution to develop
concurrent Web servers.

2.2.2 Concurrency Through Reactive Synchronous
Event Dispatching

Another common way to implement a synchronous Web
server is to use areactive event dispatchingmodel.
The Reactor pattern [5] describes how applications
can registerEvent Handlers with an Initiation
Dispatcher . TheInitiation Dispatcher notifies
theEvent Handler when it is possible to initiate an op-
eration without blocking.

A single-threaded concurrent Web server can use a reac-
tive event dispatching model that waits in an event loop for
a Reactor to notify it to initiate appropriate operations.
An example of a reactive operation in the Web server is the
registration of anAcceptor [6] with the Initiation
Dispatcher . When data arrives on the network con-
nection, the dispatcher calls back theAcceptor . The
Acceptor accepts the network connection and creates an
HTTP Handler . This HTTP Handler then registers
with theReactor to process the incoming URL request on
that connection in the Web server’s single thread of control.

Figures 3 and 4 show how a Web server designed using
reactive event dispatching handles multiple clients. Figure 3
shows the steps taken when a client connects to the Web
server. Figure 4 shows how the Web server processes a client
request. The sequence of steps for Figure 3 can be summa-
rized as follows:

1. The Web Server registers anAcceptor with the
Initiation Dispatcher to accept new connec-
tions;

2. The
Web Server invokes event loop of theInitiation
Dispatcher ;

3. A client connects to the Web Server;

4. The Acceptor is notified by the Initiation
Dispatcher of the new connection request and the
Acceptor accepts the new connection;

Web Server

Web
Browser

Acceptor

Initiation
Dispatcher
(Reactor)

HTTP
Handler

1: register
Acceptor

2: handle
events

4: new
connection5: create

6: register
new connection

3: connect

Figure 3: Client Connects to Reactive Web Server

Web
Browser

File
System

1: GET
/etc/passwd

Web Server

Initiation
Dispatcher
(Reactor)

HTTP
Handler

2: read
ready

3: read request
4: parse request

5: read
file

6: register
connection

7: write
ready

8: send
file

Figure 4: Client Sends HTTP Request to Reactive Web
Server

5. TheAcceptor creates anHTTP Handler to service
the new client;

6. HTTP Handler registers the connection with the
Initiation Dispatcher for reading client re-
quest data (that is, when the connection becomes “ready
for reading”);

7. The HTTP Handler services the request from the
new client.

Figure 4 shows the sequence of steps that the reactive Web
Server takes to service an HTTPGETrequest. This process
is described below:

1. The client sends an HTTPGETrequest;

2. The Initiation Dispatcher notifies theHTTP
Handler when client request data arrives at the server;

3. The request is read in a non-blocking manner such that
the read operation returns EWOULDBLOCK if the op-
eration would cause the calling thread to block (steps 2
and 3 repeat until the request has been completely read);

4. TheHTTP Handler parses the HTTP request;

3

5. The requested file is synchronously read from the file
system;

6. The HTTP Handler registers the connection with
the Initiation Dispatcher for sending file data
(that is, when the connection becomes “ready for writ-
ing”);

7. The Initiation Dispatcher notifies theHTTP
Handler when the TCP connection is ready for writ-
ing;

8. TheHTTP Handler sends the requested file to the
client in a non-blocking manner such that the write
operation returns EWOULDBLOCK if the operation
would cause the calling thread to block (steps 7 and
8 will repeat until the data has been delivered com-
pletely).

A C++ code example that applies the reactive event dispatch-
ing model to a Web server appears in Appendix A.2.

Since theInitiation Dispatcher runs in a single
thread, network I/O operations are run under control of the
Reactor in a non-blocking manner. If forward progress is
stalled on the current operation, the operation is handed off
to the Initiation Dispatcher , which monitors the
status of the system operation. When the operation can make
forward progress again, the appropriateEvent Handler
is notified.

The main advantages of the reactive model are portabil-
ity, low overhead due to coarse-grained concurrency control
(that is, single-threading requires no synchronization or con-
text switching), and modularity via the decoupling of appli-
cation logic from the dispatching mechanism. However, this
approach has the following drawbacks:

Complex programming: As seen from the list above, pro-
grammers must write complicated logic to make sure that the
server does not block while servicing a particular client.

Lack of OS support for multi-threading: Most operating
systems implement the reactive dispatching model through
the select system call [7]. However,select does not
allow more than one thread to wait in the event loop on the
same descriptor set. This makes the reactive model unsuit-
able for high-performance applications since it does not uti-
lize hardware parallelism effectively.

Scheduling of runnable tasks: In synchronous multi-
threading architectures that support pre-emptive threads, it is
the operating system’s responsibility to schedule and time-
slice the runnable threads onto the available CPUs. This
scheduling support is not available in reactive architectures
since there is only one thread in the application. Therefore,
developers of the system must by careful to time-share the
thread between all the clients connected to the Web server.
This can be accomplished by only performing short duration,
non-blocking operations.

As a result of these drawbacks, reactive event dispatching
is not the most efficient model when hardware parallelism

is available. This model also has a relatively high level of
programming complexity due to the need to avoid blocking
I/O.

2.3 Solution: Concurrency Through Proac-
tive Operations

When the OS platform supports asynchronous operations,
an efficient and convenient way to implement a high-
performance Web server is to useproactive event dispatch-
ing. Web servers designed using a proactive event dispatch-
ing model handle thecompletionof asynchronous operations
with one or more threads of control. Thus, the Proactor pat-
ternsimplifies asynchronous Web servers by integrating com-
pletion event demultiplexing and event handler dispatching.

An asynchronous Web server would utilize the Proac-
tor pattern by first having the Web server issue an asyn-
chronous operation to the OS and registering a callback
with a Completion Dispatcher that will notify the
Web server when the operation completes. The OS then
performs the operation on behalf of the Web server and
subsequently queues the result in a well-known location.
The Completion Dispatcher is responsible for de-
queueing completion notifications and executing the appro-
priate callback that contains application-specific Web server
code.

Figures 5 and 6 show how a Web server designed using
proactive event dispatching handles multiple clients concur-
rently within one or more threads. Figure 5 shows the se-
quence of steps taken when a client connects to the Web
Server.

4: connect Web Server

Web
Browser Acceptor

Completion
Dispatcher

HTTP
Handler

1: accept
connections

Operating
System

2: accept
(Acceptor,
Dispatcher)

3: handle
events

5: accept
complete

6:
accept

complete

7: create

8: read (connection,
Handler, Dispatcher)

Figure 5: Client connects to a Proactor-based Web Server

1. The Web Server instructs theAcceptor to initiate an
asynchronous accept;

2. The Acceptor initiates an asynchronous accept with the
OS and passes itself as aCompletion Handler
and a reference to theCompletion Dispatcher
that will be used to notify theAcceptor upon com-
pletion of the asynchronous accept;

4

3. The Web Server invokes the event loop of the
Completion Dispatcher ;

4. The client connects to the Web Server;

5. When the asynchronous accept operation completes,
the Operating System notifies theCompletion
Dispatcher ;

6. TheCompletion Dispatcher notifies the Accep-
tor;

7. TheAcceptor creates anHTTP Handler ;

8. TheHTTP Handler initiates an asynchronous opera-
tion to read the request data from the client and passes
itself as aCompletion Handler and a reference
to theCompletion Dispatcher that will be used
to notify theHTTP Handler upon completion of the
asynchronous read.

Figure 6 shows the sequence of steps that the proactive Web
Server takes to service an HTTPGETrequest. These steps

Web Server

Web
Browser

File
System

Completion
Dispatcher

HTTP
Handler

Operating
System

1: GET
/etc/passwd

2: read complete

3: read
complete

4: parse request

6: write (File, Conn.,
Handler, Dispatcher)

7: write
complete

8: write
complete5: read (File)

Figure 6: Client Sends requests to a Proactor-based Web
Server

are explained below:

1. The client sends an HTTPGETrequest;

2. The read operation completes and theOperating
System notifies theCompletion Dispatcher ;

3. TheCompletion Dispatcher notifies theHTTP
Handler (steps 2 and 3 will repeat until the entire re-
quest has been received);

4. TheHTTP Handler parses the request;

5. The HTTP Handler synchronously reads the re-
quested file;

6. TheHTTP Handler initiates an asynchronous oper-
ation to write the file data to the client connection and
passes itself as aCompletion Handler and a ref-
erence to theCompletion Dispatcher that will
be used to notify theHTTP Handler upon completion
of the asynchronous write;

7. When the write operation completes, the Operating Sys-
tem notifies theCompletion Dispatcher ;

8. The Completion Dispatcher then notifies the
Completion Handler (steps 6-8 continue until the
file has been delivered completely).

A C++ code example that applies the proactive event dis-
patching model to a Web server appears in Section 8.

The primary advantage of using the Proactor pattern is that
multiple concurrent operations can be started and can run in
parallel without necessarily requiring the application to have
multiple threads. The operations are started asynchronously
by the application and they run to completion within the I/O
subsystem of the OS. The thread that initiated the operation
is now available to service additional requests.

In the example above, for instance, theCompletion
Dispatcher could be single-threaded. When HTTP
requests arrive, the singleCompletion Dispatcher
thread parses the request, reads the file, and sends the re-
sponse to the client. Since the response is sent asyn-
chronously, multiple responses could potentially be sent si-
multaneously. Moreover, the synchronous file read could be
replaced with an asynchronous file read to further increase
the potential for concurrency. If the file read is performed
asynchronously, the only synchronous operation performed
by anHTTP Handler is the HTTP protocol request parsing.

The primary drawback with the Proactive model is that
the programming logic is at least as complicated as the Re-
active model. Moreover, the Proactor pattern can be difficult
to debug since asynchronous operations often have a non-
predictable and non-repeatable execution sequence, which
complicates analysis and debugging. Section 7 describes
how to apply other patterns (such as the Asynchronous Com-
pletion Token [8]) to simplify the asynchronous application
programming model.

3 Applicability

Use the Proactor pattern when one or more of the following
conditions hold:

� An application needs to perform one or more asyn-
chronous operations without blocking the calling
thread;

� The application must be notified when asynchronous
operationscomplete;

� The application needs to vary its concurrency strategy
independent of its I/O model;

� The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

� An application will perform poorly or fail to meet
its performance requirements when utilizing either the
multi-threaded approach or the reactive dispatching ap-
proach.

5

4 Structure and Participants

The structure of the Proactor pattern is illustrated in Figure 7
using OMT notation.

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
Operation

Completion
Handler

Figure 7: Participants in the Proactor Pattern

The key participants in the Proactor pattern include the
following:

Proactive Initiator (Web server application’s
main thread):

� A Proactive Initiator is any entity in the ap-
plication
that initiates anAsynchronous Operation . The
Proactive Initiator registers aCompletion
Handler and aCompletion Dispatcher with
aAsynchronous Operation Processor , which
notifies it when the operation completes.

Completion Handler (the Acceptor and HTTP
Handler):

� The Proactor pattern usesCompletion Handler in-
terfaces that are implemented by the application for
Asynchronous Operation completion notifica-
tion.

Asynchronous Operation (the methodsAsync Read,
Async Write , andAsync Accept):

� Asynchronous Operations are used to exe-
cute requests (such as I/O and timer operations) on
behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithout borrowing the application’s thread
of control.3 Therefore, from the application’s per-
spective, the operations are performedasynchronously.
WhenAsynchronous Operations complete, the
Asynchronous Operation Processor dele-
gates application notifications to aCompletion
Dispatcher .

3In contrast, the reactive event dispatching model [5] steals the applica-
tion’s thread of control to perform the operation synchronously.

Asynchronous Operation Processor (the Operating
System):

� Asynchronous Operations are run to completion
by the Asynchronous Operation Processor .
This component is typically implemented by the OS.

Completion Dispatcher (theNotification Queue):

� The Completion Dispatcher is responsible
for calling back to the application’sCompletion
Handlers when Asynchronous Operations
complete. When theAsynchronous Operation
Processor completes an asynchronously initiated
operation, theCompletion Dispatcher performs
an application callback on its behalf.

5 Collaborations

There are several well-defined steps that occur for all
Asynchronous Operations . At a high level of ab-
straction, applications initiate operations asynchronously
and are notified when the operations complete. Figure 8
shows the following interactions that must occur between the

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
operation initiated

Completion
Handler

Operation performed
asynchronously

Operation completes

Completion Handler
notified

handle event

Asynchronous
Operation

register (operation, handler, dispatcher)

execute

dispatch

Figure 8: Interaction Diagram for the Proactor Pattern

pattern participants:

1. Proactive Initiators initiates operation: To perform
asynchronous operations, the application initiates the opera-
tion on theAsynchronous Operation Processor .
For instance, a Web server might ask the OS to transmit
a file over the network using a particular socket connec-
tion. To request such an operation, the Web server must
specify which file and network connection to use. More-
over, the Web server must specify (1) whichCompletion
Handler to notify when the operation completes and (2)
which Completion Dispatcher should perform the
callback once the file is transmitted.

2. Asynchronous Operation Processor performs oper-
ation: When the application invokes operations on the
Asynchronous Operation Processor it runs them
asynchronously with respect to other application operations.
Modern operating systems (such as Solaris and Windows
NT) provide asynchronous I/O subsystems within the kernel.

6

3. The Asynchronous Operation Processor noti-
fies the Completion Dispatcher: When operations com-
plete, theAsynchronous Operation Processor re-
trieves theCompletion Handler and Completion
Dispatcher that were specified when the operation was
initiated. TheAsynchronous Operation Processor
then passes theCompletion Dispatcher the result of
the Asynchronous Operation and theCompletion
Handler to call back. For instance, if a file was trans-
mitted asynchronously, theAsynchronous Operation
Processor may report the completion status (such as suc-
cess or failure), as well as the number of bytes written to the
network connection.

4. Completion Dispatcher notifies the application: The
Completion Dispatcher calls the completion hook on
the Completion Handler , passing it any completion
data specified by the application. For instance, if an asyn-
chronous read completes, theCompletion Handler
will typically be passed a pointer to the newly arrived data.

6 Consequences

This section details the consequences of using the Proactor
Pattern.

6.1 Benefits

The Proactor pattern offers the following benefits:

Increased separation of concerns: The Proactor pattern
decouples application-independent asynchrony mechanisms
from application-specific functionality. The application-
independent mechanisms become reusable components that
know how to demultiplex the completion events associated
with Asynchronous Operations and dispatch the ap-
propriate callback methods defined by theCompletion
Handlers . Likewise, the application-specific functional-
ity knows how to perform a particular type of service (such
as HTTP processing).

Improved application logic portability: It improves ap-
plication portability by allowing its interface to be reused in-
dependently of the underlying OS calls that perform event
demultiplexing. These system calls detect and report the
events that may occur simultaneously on multiple event
sources. Event sources may include I/O ports, timers, syn-
chronization objects, signals, etc. On real-time POSIX plat-
forms, the asynchronous I/O functions are provided by the
aio family of APIs [9]. In Windows NT, I/O comple-
tion ports and overlapped I/O are used to implement asyn-
chronous I/O [10].

The Completion Dispatcher encapsulates the con-
currency mechanism: A benefit of decoupling the
Completion Dispatcher from the Asynchronous

Operation Processor is that applications can config-
ure Completion Dispatchers with various concur-
rency strategies without affecting other participants. As dis-
cussed in Section 7, theCompletion Dispatcher can
be configured to use several concurrency strategies includ-
ing single-threaded and Thread Pool solutions.

Threading policy is decoupled from the concur-
rency policy: Since theAsynchronous Operation
Processor completes potentially long-running operations
on behalf ofProactive Initiators , applications are
not forced to spawn threads to increase concurrency. This
allows an application to vary its concurrency policy inde-
pendently of its threading policy. For instance, a Web server
may only want to have one thread per CPU, but may want to
service a higher number of clients simultaneously.

Increased performance: Multi-threaded operating sys-
tems perform context switches to cycle through multiple
threads of control. While the time to perform a context
switch remains fairly constant, the total time to cycle through
a large number of threads can degrade application perfor-
mance significantly if the OS context switches to an idle
thread4. For instance, threads may poll the OS for comple-
tion status, which is inefficient. The Proactor pattern can
avoid the cost of context switching by activating only those
logical threads of control that have events to process. For
instance, a Web server does not need to activate an HTTP
Handler if there is no pendingGETrequest.

Simplification of application synchronization: As long
as Completion Handlers do not spawn additional
threads of control, application logic can be written with lit-
tle or no regard to synchronization issues.Completion
Handlers can be written as if they existed in a conven-
tional single-threaded environment. For instance, a Web
server’s HTTPGET Handler can access the disk through
an Async Read operation (such as the Windows NT
TransmitFile function [1]).

6.2 Drawbacks

The Proactor pattern has the following drawbacks:

Hard to debug: Applications written with the Proactor
pattern can be hard to debug since the inverted flow of con-
trol oscillates between the framework infrastructure and the
method callbacks on application-specific handlers. This in-
creases the difficulty of “single-stepping” through the run-
time behavior of a framework within a debugger since appli-
cation developers may not understand or have access to the
framework code. This is similar to the problems encountered
trying to debug a compiler’s lexical analyzer and parser writ-
ten withLEX andYACC. In these applications, debugging is
straightforward when the thread of control is within the user-
defined action routines. Once the thread of control returns to

4Some older operating system exhibit this behavior; most modern oper-
ating systems don’t.

7

the generated Deterministic Finite Automata (DFA) skele-
ton, however, it is hard to follow the program logic.

Scheduling
and controlling outstanding operations: Proactive
Initiators may have no control over the order in which
Asynchronous Operations are executed. Therefore,
the Asynchronous Operation Processor must be
designed carefully to support prioritization and cancellation
of Asynchronous Operations .

7 Implementation

The Proactor pattern can be implemented in many ways.
This section discusses the steps involved in implementing
the Proactor pattern.

7.1 Implementing the Asynchronous Opera-
tion Processor

The first step in implementing the Proactor pattern is build-
ing the Asynchronous Operation Processor .
The Asynchronous Operation Processor is re-
sponsible for executing operations asynchronously on be-
half of applications. As a result, its two primary re-
sponsibilities are exportingAsynchronous Operation
APIs and implementing anAsynchronous Operation
Engine to do the work.

7.1.1 Define Asynchronous Operation APIs

The Asynchronous Operation Processor must
provide an API that allows applications to request
Asynchronous Operations . There are several forces
to be considered when designing these APIs:

Portability: The APIs should not tie an application nor its
Proactve Initiators to a particular platform.

Flexibility: Often, asynchronous APIs can be shared for
many types of operations. For instance, asynchronous I/O
operations can often be used to perform I/O on multiple
mediums (such as network and files). It may be beneficial
to design APIs that support such reuse.

Callbacks: The Proactive Initiators must reg-
ister a callback when the operation is invoked. A com-
mon approach to implement callbacks is to have the call-
ing objects (clients) export an interface known by the caller
(server). Therefore,Proactive Initiators must
inform the Asynchronous Operation Processor
whichCompletion Handler should be called back when
an operation completes.

Completion Dispatcher: Since an application may use
multiple Completion Dispatchers , theProactive
Initiator also must indicate whichCompletion
Dispatcher should perform the callback.

Given all of these concerns, consider the following API
for asynchronous reads and writes. TheAsynch Stream
class is a factory for initiating asynchronous reads
and writes. Once constructed, multiple asynchronous
reads and writes can be started using this class. An
Asynch Stream::Read Result will be passed back to
thehandler when the asynchronous read completes via the
handle read callback on theCompletion Handler .
Similarly, an Asynch Stream::Write Result will
be passed back to thehandler when the asynchronous
write completes via thehandle write callback on
Completion Handler .

class Asynch_Stream
// = TITLE
// A Factory for initiating reads
// and writes asynchronously.

{
// Initializes the factory with information
// which will be used with each asynchronous
// call. <handler> is notified when the
// operation completes. The asynchronous
// operations are performed on the <handle>
// and the results of the operations are
// sent to the <Completion_Dispatcher>.
Asynch_Stream (Completion_Handler &handler,

HANDLE handle,
Completion_Dispatcher *);

// This starts off an asynchronous read.
// Upto <bytes_to_read> will be read and
// stored in the <message_block>.
int read (Message_Block &message_block,

u_long bytes_to_read,
const void *act = 0);

// This starts off an asynchronous write.
// Upto <bytes_to_write> will be written
// from the <message_block>.
int write (Message_Block &message_block,

u_long bytes_to_write,
const void *act = 0);

...
};

7.1.2 Implement the Asynchronous Operation Engine

The Asynchronous Operation Processor must
contain a mechanism that performs the operations asyn-
chronously. In other words, when an application thread
invokes anAsynchronous Operation , the operation
must be performed without borrowing the application’s
thread of control. Fortunately, modern operating systems
provide mechanisms forAsynchronous Operations
(for example, POSIX asynchronous I/O and WinNT over-
lapped I/O). When this is the case, implementing this part of
the pattern simply requires mapping the platform APIs to the
Asynchronous Operation APIs described above.

If the OS platform does not provide support for
Asynchronous Operations , there are several im-
plementation techniques that can be used to build an
Asynchronous Operation Engine . Perhaps the
most intuitive solution is to use dedicated threads to per-
form theAsynchronous Operations for applications.

8

To implement a threadedAsynchronous Operation
Engine , there are three primary steps:

1. Operation invocation: Because the operation will be
performed in a different thread of control from the invok-
ing application thread, some type of thread synchronization
must occur. One approach would be to spawn a thread
for each operation. A more common approach is for the
Asynchronous Operation Processor to control a
pool of dedicated threads. This approach would require that
the application thread queue the operation request before
continuing with other application computations.

2. Operation execution: Since the operation will be per-
formed in a dedicated thread, it can perform “blocking” oper-
ations without directly impeding progress of the application.
For instance, when providing a mechanism for asynchronous
I/O reads, the dedicated thread can block while reading from
socket or file handles.

3. Operation completion: When the operation completes,
the application must be notified. In particular, the dedicated
thread must delegate application-specific notifications to the
Completion Dispatcher . This will require additional
synchronization between threads.

7.2 Implementing the Completion Dispatcher

The Completion Dispatcher calls back to the
Completion Handler that is associated with the appli-
cation objects when it receives operation completions from
theAsynchronous Operation Processor . There are
two issues involved with implementing theCompletion
Dispatcher : (1) implementing callbacks and (2) defining
the concurrency strategy used to perform the callbacks.

7.2.1 Implementing Callbacks

TheCompletion Dispatcher must implement a mech-
anism through whichCompletion Handlers are in-
voked. This requiresProactive Initiators to spec-
ify a callback when initiating operations. The following are
common callback alternatives:

Callback class: TheCompletion Handler exports an
interface known by theCompletion Dispatcher . The
Completion Dispatcher calls back on a method in this
interface when the operation completes and passes it infor-
mation about the completed operation (such as the number
of bytes read from the network connection).

Function pointer: TheCompletion Dispatcher in-
vokes theCompletion Handler via a callback function
pointer. This approach effectively breaks the knowledge
dependency between theCompletion Dispatcher and
theCompletion Handler . This has two benefits:

1. TheCompletion Handler is not forced to export a
specific interface; and

2. There is no need for compile-time dependencies
between theCompletion Dispatcher and the
Completion Handler .

Rendezvous: The Proactive Initiator can estab-
lish an event object or a condition variable, which serves
as a rendezvous between theCompletion Dispatcher
and theCompletion Handler . This is most common
when the Completion Handler is the Proactive
Initiator . While the Asynchronous Operation
runs to completion, theCompletion Handler processes
other activity. Periodically, theCompletion Handler
will check at the rendezvous point for completion status.

7.2.2 Defining Completion Dispatcher Concurrency
Strategies

A Completion Dispatcher will be notified by the
Asynchronous Operation Processor when oper-
ations completes. At this point, theCompletion
Dispatcher can utilize one of the following concurrency
strategies to perform the application callback:

Dynamic-thread dispatching: A thread can be dynami-
cally allocated for eachCompletion Handler by the
Completion Dispatcher . Dynamic-thread dispatching
can be implemented with most multi-threaded operating sys-
tems. On some platforms, this may be the least efficient tech-
nique of those listed forCompletion Dispatcher im-
plementations due to the overhead of creating and destroying
thread resources.

Post-reactive dispatching: An event object or condition
variable established by theProactive Initiator can
be signaled by theCompletion Dispatcher . Al-
though polling and spawning a child thread that blocks
on the event object are options, the most efficient method
for Post-reactive dispatching is to register the event with a
Reactor . Post-reactive dispatching can be implemented
with aio suspend in POSIX real-time environments and
with WaitForMultipleObjects in Win32 environ-
ments.

Call-through dispatching: The thread of control from the
Asynchronous Operation Processor can be bor-
rowed by theCompletion Dispatcher to execute the
Completion Handler . This “cycle stealing” strategy
can increase performance by decreasing the incidence of idle
threads. In the cases where older operating systems will con-
text switch to idle threads just to switch back out of them, this
approach has a great potential of reclaiming “lost” time.

Call-through dispatching can be implemented in Windows
NT using theReadFileEx and WriteFileEx Win32
functions. For example, a thread of control can use these
calls to wait on a semaphore to become signaled. When
it waits, the thread informs the OS that it is entering into
a special state known as an “alertable wait state.” At this
point, the OS can seize control of the waiting thread of con-
trol’s stack and associated resources in order to execute the
Completion Handler .

9

Thread Pool dispatching: A pool of threads owned
by the Completion Dispatcher can be used for
Completion Handler execution. Each thread of con-
trol in the pool has been dynamically allocated to an avail-
able CPU. Thread pool dispatching can be implemented with
Windows NT’s I/O Completion Ports.

When considering the applicability of theCompletion
Dispatcher techniques described above, consider the
possible combinations of OS environments and physical
hardware shown in Table 1.

Threading model System Type
Single-processor Multi-processor

Single-threaded A B
Multi-threaded C D

Table 1: Completion Dispatcher Concurrency
Strategies

If your OS only supports synchronous I/O, then refer to the
Reactor pattern [5]. However, most modern operating sys-
tems support some form of asynchronous I/O.

In combination A and B from Table 1, the Post-reactive
approach to asynchronous I/O is probably the best, assuming
you are not waiting on any semaphores or mutexes. If you
are, a Call-through implementation may be more responsive.
In combination C, use a Call-through approach. In combina-
tion D, use a Thread Pool approach. In practice, systematic
empirical measurements are necessary to select the most ap-
propriate alternative.

7.3 Implementing Completion Handlers

The implementation ofCompletion Handlers raises
the following concerns.

7.3.1 State Integrity

A Completion Handler may need to maintain state in-
formation concerning a specific request. For instance, the
OS may notify the Web Server that only part of a file was
written to the network communication port. As a result, a
Completion Handler may need to reissue the request
until the file is fully written or the connection becomes in-
valid. Therefore, it must know the file that was originally
specified, how many bytes are left to write, and what was the
file pointer position at the start of the previous request.

There is no implicit limitation that preventsProactive
Initiators from assigning multipleAsynchronous
Operation requests to a singleCompletion Handler .
As a result, theCompletion Handler must tie request-
specific state information throughout the chain of completion
notifications. To do this,Completion Handlers can uti-
lize the Asynchronous Completion Token pattern [8].

7.3.2 Resource Management

As with any multi-threaded environment, the Proactor pat-
tern does not alleviateCompletion Handlers from en-
suring that access to shared resources is thread-safe. How-
ever, aCompletion Handler must not hold onto a shared
resource across multiple completion notifications. If it does,
it risks invoking the dining philosopher’s problem [11].

This problem is the deadlock that results when a logical
thread of control waits forever for a semaphore to become
signaled. This is illustrated by imagining a dinner party at-
tended by a group of philosophers. The diners are seated
around a circular table with exactly one chop stick between
each philosopher. When a philosopher becomes hungry, he
must obtained the chop stick to his left and to his right in or-
der to eat. Once philosophers obtain a chop stick, they will
not release it until their hunger is satisfied. If all philosophers
pick up the chop stick on their right, a deadlock occurs be-
cause the chop stick on the left will never become available.

7.3.3 Preemptive Policy

The Completion Dispatcher type determines if a
Completion Handler can be preemptive while execut-
ing. When attached to Dynamic-thread and Thread Pool dis-
patchers,Completion Handlers are naturally preemp-
tive. However, when tied to a Post-reactiveCompletion
Dispatcher , Completion Handlers are not preemp-
tive with respect to each other. When driven by a Call-
through dispatcher, theCompletion Handlers are not
preemptive with respect to the thread-of-control that is in the
alertable wait state.

In general, a handler should not perform long-duration
synchronous operations unless multiple completion threads
are used since this will significantly decrease the over-
all responsiveness of the application. This risk can be
alleviated by increased programming discipline. For in-
stance, allCompletion Handlers are required to act
as Proactive Initiators instead of executing syn-
chronous operations.

8 Sample Code

This section shows how to use the Proactor pattern to develop
a Web server. The example is based on the Proactor pattern
implementation in the ACE framework [4].

When a client connects to the Web server, the
HTTPHandler ’s open method is called. The server then
initializes the asynchronous I/O object with the object to call-
back when theAsynchronous Operation completes
(which in this case isthis), the network connection for
transferring the data, and theCompletion Dispatcher
to be used once the operation completes (proactor). The
read operation is then started asynchronously and the server
returns to the event loop.

The HTTPHandler::handle read stream is
called back by the dispatcher when theAsync read op-

10

eration completes. If there is enough data, the client request
is then parsed. If the entire client request has not arrived yet,
another read operation is initiated asynchronously.

In response to aGET request, the server memory-
maps the requested file and writes the file data asyn-
chronously to the client. The dispatcher calls back
onHTTPHandler::handle write stream when the
write operation completes, which frees up dynamically allo-
cated resources.

The Appendix contains two other code examples for im-
plementing the Web server using a synchronous threaded
model and a synchronous (non-blocking) reactive model.

class HTTP_Handler
: public Proactor::Event_Handler
// = TITLE
// Implements the HTTP protocol
// (asynchronous version).
//
// = PATTERN PARTICIPANTS
// Proactive Initiator = HTTP_Handler
// Asynch Op = Network I/O
// Asynch Op Processor = OS
// Completion Dispatcher = Proactor
// Completion Handler = HTPP_Handler

{
public:

void open (Socket_Stream *client)
{

// Initialize state for request
request_.state_ = INCOMPLETE;

// Store reference to client.
client_ = client;

// Initialize asynch read stream
stream_.open (*this,

client_->handle (),
proactor_);

// Start read asynchronously.
stream_.read (request_.buffer (),

request_.buffer_size ());
}

// This is called by the Proactor
// when the asynch read completes
void handle_read_stream

(u_long bytes_transferred)
{

if (request_.enough_data
(bytes_transferred))

parse_request ();
else

// Start reading asynchronously.
stream_.read (request_.buffer (),

request_.buffer_size ());
}

void parse_request (void)
{

// Switch on the HTTP command type.
switch (request_.command ()) {
// Client is requesting a file.
case HTTP_Request::GET:

// Memory map the requested file.
file_.map (request_.filename ());

// Start writing asynchronously.
stream_.write (file_.buffer (),

file_.buffer_size ());
break;

// Client is storing a file
// at the server.
case HTTP_Request::PUT:

// ...
}

}

void handle_write_stream
(u_long bytes_transferred)

{
if (file_.enough_data

(bytes_transferred))
// Success....

else
// Start another asynchronous write
stream_.write (file_.buffer (),

file_.buffer_size ());
}

private:
// Set at initialization.
Proactor *proactor_;

// Memory-mapped file_;
Mem_Map file_;

// Socket endpoint.
Socket_Stream *client_;

// HTTP Request holder
HTTP_Request request_;

// Used for Asynch I/O
Asynch_Stream stream_;

};

9 Known Uses

The following are some widely documented uses of the Proc-
tor pattern:

I/O Completion Ports in Windows NT: The Windows
NT operating system implements the Proactor pattern. Var-
ious Asynchronous Operations such as accepting
new network connections, reading and writing to files and
sockets, and transmission of files across a network connec-
tion are supported by Windows NT. The operating system is
theAsynchronous Operation Processor . Results
of the operations are queued up at the I/O completion port
(which plays the role of theCompletion Dispatcher).

The UNIX AIO Family of Asynchronous I/O Operations:
On some real-time POSIX platforms, the Proactor pattern
is implemented by theaio family of APIs [9]. These OS
features are very similar to the ones described above for
Windows NT. One difference is that UNIX signals can be
used to implement an truly asynchronousCompletion
Dispatcher (the Windows NT API is not truly asyn-
chronous).

ACE Proactor: The Adaptive Communications Environ-
ment (ACE) [4] implements a Proactor component that en-
capsulates I/O Completion Ports on Windows NT and the

11

aio APIs on POSIX platforms. The ACE Proactor ab-
straction provides an OO interface to the standard C APIs
supported by Windows NT. The source code for this im-
plementation can be acquired from the ACE website at
www.cs.wustl.edu/ �schmidt/ACE.html .

Asynchronous Procedure Calls in Windows NT: Some
systems (such as Windows NT) support Asynchronous Pro-
cedure Calls (APC)s. An APC is a function that executes
asynchronously in the context of a particular thread. When
an APC is queued to a thread, the system issues a software
interrupt. The next time the thread is scheduled, it will run
the APC. APCs made by operating system are calledkernel-
modeAPCs. APCs made by an application are calleduser-
modeAPCs.

10 Related Patterns

Figure 9 illustrates patterns that are related to the Proactor.

Figure 9: Proactor Pattern’s Related Patterns

The Asynchronous Completion Token (ACT) pattern [8]
is generally used in conjunction with the Proactor pattern.
WhenAsynchronous Operations complete, applica-
tions may need more information than simply the notifica-
tion itself to properly handle the event. The Asynchronous
Completion Token pattern allows applications to efficiently
associate state with the completion ofAsynchronous
Operations .

The Proactor pattern is related to the Observer pattern [12]
(where dependents are updated automatically when a sin-
gle subject changes). In the Proactor pattern, handlers are
informed automatically when events from multiple sources
occur. In general, the Proactor pattern is used to asyn-

chronously demultiplex multiple sources of input to their as-
sociated event handlers, whereas an Observer is usually as-
sociated with only a single source of events.

The Proactor pattern can be considered anasynchronous
variant of the synchronous Reactor pattern [5]. The Reactor
pattern is responsible for demultiplexing and dispatching of
multiple event handlers that are triggered when it is possible
to initiate an operationsynchronouslywithout blocking. In
contrast, the Proactor supports the demultiplexing and dis-
patching of multiple event handlers that are triggered by the
completionof asynchronousevents.

The Active Object pattern [13] decouples method ex-
ecution from method invocation. The Proactor pat-
tern is similar becauseAsynchronous Operation
Processors perform operations on behalf of application
Proactive Initiators . That is, both patterns can be
used to implementAsynchronous Operations . The
Proactor pattern is often used in place of the Active Object
pattern to decouple the systems concurrency policy from the
threading model.

A Proactor may be implemented as a Singleton [12]. This
is useful for centralizing event demultiplexing and com-
pletion dispatching into a single location within an asyn-
chronous application.

The Chain of Responsibility (COR) pattern [12] decouples
event handlers from event sources. The Proactor pattern is
similar in its segregation ofProactive Initiators and
Completion Handlers . However, in COR, the event
source has no prior knowledge of which handler will be
executed, if any. In Proactor,Proactive Initiators
have full disclosure of the target handler. However, the two
patterns can be combined by establishing aCompletion
Handler that is the entry pont into a responsibility chain
dynamically configured by an external factory.

11 Concluding Remarks

The Proactor pattern embodies a powerful design paradigm
that supports efficient and flexible event dispatching strate-
gies for high-performance concurrent applications. The
Proactor pattern provides the performance benefits of exe-
cuting operations concurrently, without constraining the de-
veloper to synchronous multi-threaded or reactive program-
ming.

References
[1] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact

of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,” inProceedings of
the2nd Global Internet Conference, IEEE, November 1997.

[2] J. Hu, I. Pyarali, and D. C. Schmidt, “Applying the Proactor
Pattern to High-Performance Web Servers,” inProceedings of
the 10th International Conference on Parallel and Distributed
Computing and Systems, IASTED, Oct. 1998.

[3] J. C. Mogul, “The Case for Persistent-connection HTTP,” in
Proceedings of ACM SIGCOMM ’95 Conference in Computer

12

Communication Review, (Boston, MA, USA), pp. 299–314,
ACM Press, August 1995.

[4] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[5] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[6] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages
of Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[7] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operat-
ing System. Addison Wesley, 1996.

[8] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” inPattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

[9] “Information Technology – Portable Operating System Inter-
face (POSIX) – Part 1: System Application: Program Inter-
face (API) [C Language],” 1995.

[10] Microsoft Developers Studio, Version 4.2 - Software Develop-
ment Kit, 1996.

[11] E. W. Dijkstra, “Hierarchical Ordering of Sequential Pro-
cesses,”Acta Informatica, vol. 1, no. 2, pp. 115–138, 1971.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[13] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” inProceed-
ings of the2nd Annual Conference on the Pattern Languages
of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

A Alternative Implementations

This Appendix outlines the code used to develop alterna-
tives to the Proactor pattern. Below, we examine both syn-
chronous I/O using multi-threading and reactive I/O using
single-threading.

A.1 Multiple Synchronous Threads

The following code shows how to use synchronous I/O with
a pool of threads to develop a Web server. When a client con-
nects to the server a thread in the pool accepts the connec-
tion and calls theopen method in classHTTP Handler .
The server then synchronously reads the request from the
network connection. When the read operation completes,
the client request is then parsed. In response to aGETre-
quest, the server memory-maps the requested file and writes
the file data synchronously to the client. Note how block-
ing I/O allows the Web server to follow the steps outlined in
Section 2.2.1.

class HTTP_Handler
// = TITLE
// Implements the HTTP protocol
// (synchronous threaded version).
//
// = DESCRIPTION
// This class is called by a
// thread in the Thread Pool.

{
public:

void open (Socket_Stream *client)
{

HTTP_Request request;

// Store reference to client.
client_ = client;

// Synchronously read the HTTP request
// from the network connection and
// parse it.
client_->recv (request);

parse_request (request);
}

void parse_request (HTTP_Request &request)
{

// Switch on the HTTP command type.
switch (request.command ())
{

// Client is requesting a file.
case HTTP_Request::GET:

// Memory map the requested file.
Mem_Map input_file;
input_file.map (request.filename());

// Synchronously send the file
// to the client. Block until the
// file is transferred.
client_->send (input_file.data (),

input_file.size ());
break;

// Client is storing a file at
// the server.
case HTTP_Request::PUT:

// ...
}

}

private:
// Socket endpoint.
Socket_Stream *client_;

// ...
};

A.2 Single-threaded Reactive Event Dispatch-
ing

The following code shows the use of the Reactor pattern to
develop a Web server. When a client connects to the server,
theHTTPHandler::open method is called. The server
registers the I/O handle and the object to callback (which in
this case isthis) when the network handle is “ready for
reading.” The server returns to the event loop.

When the request data arrives at the server, thereactor
calls back theHTTPHandler::handle input method.
The client data is read in a non-blocking manner. If there is

13

enough data, the client request is parsed. If the entire client
request has not yet arrived, the application returns to the re-
actor event loop.

In response to aGET request, the server memory
maps the requested file and registers with the reactor
to be notified when the network connection becomes
“ready for writing.” The reactor then calls back on
HTTPHandler::handle output method when writ-
ing data to the connection would not blocking the calling
thread. When all the data has been sent to the client, the
network connection is closed.

class HTTP_Handler :
public Reactor::Event_Handler
// = TITLE
// Implements the HTTP protocol
// (synchronous reactive version).
//
// = DESCRIPTION
// The Event_Handler base class
// defines the hooks for
// handle_input()/handle_output().
//
// = PATTERN PARTICIPANTS
// Reactor = Reactor
// Event Handler = HTTP_Handler

{
public:

void open (Socket_Stream *client)
{

// Initialize state for request
request_.state_ = INCOMPLETE;

// Store reference to client.
client_ = client;

// Register with the reactor for reading.
reactor_->register_handler

(client_->handle (),
this,
Reactor::READ_MASK);

}

// This is called by the Reactor when
// we can read from the client handle.
void handle_input (void)
{

int result = 0;

// Non-blocking read from the network
// connection.
do

result = request_.recv (client_->handle ());
while (result != SOCKET_ERROR

&& request_.state_ == INCOMPLETE);

// No more progress possible,
// blocking will occur
if (request_.state_ == INCOMPLETE

&& errno == EWOULDBLOCK)
reactor_->register_handler

(client_->handle (),
this,
Reactor::READ_MASK);

else
// We now have the entire request
parse_request ();

}

void parse_request (void)
{

// Switch on the HTTP command type.
switch (request_.command ()) {
// Client is requesting a file.
case HTTP_Request::GET:

// Memory map the requested file.
file_.map (request_.filename ());

// Transfer the file using Reactive I/O.
handle_output ();
break;

// Client is storing a file at
// the server.
case HTTP_Request::PUT:
// ...

}
}

void handle_output (void)
{

// Asynchronously send the file
// to the client.
if (client_->send (file_.data (),

file_.size ())
== SOCKET_ERROR

&& errno == EWOULDBLOCK)
// Register with reactor...

else
// Close down and release resources.
handle_close ();

}

private:
// Set at initialization.
Reactor *reactor_;

// Memory-mapped file_;
Mem_Map file_;

// Socket endpoint.
Socket_Stream *client_;

// HTTP Request holder.
HTTP_Request request_;

};

14

