Object-Oriented Design Case
Studies with Patterns and C+4+

Douglas C. Schmidt

http://www.cs.wustl.edu/~schmidt/

schmidt@isis-

server.isis.vanderbilt.edu

Vanderbilt University

Case Studies Using Patterns

e T he following slides describe several case
studies using C+-+ and patterns to build
highly extensible software

e [he examples include
1. System Sort

— e.g., Facade, Adapter, Iterator, Singleton,
Factory Method, Strategy, Bridge, Double-
Checked Locking Optimization

2. Sort Verifier

— e.g., Strategy, Factory Method, Facade, It-
erator, Singleton

Case Study 1: System Sort

e Develop a general-purpose system sort

2

— It sorts lines of text from standard input and
writes the result to standard output

— e.g., the UNIX system sort

% sort < big.file > sorted.file

e In the following, we'll examine the primary

forces that shape the design of this appli-
cation

e For each force, we'll examine patterns that
resolve it

External Behavior of System Sort

e A “line" is a sequence of characters ter-
minated by a newline

e Default ordering is lexicographic by bytes
in machine collating sequence

e [he ordering is affected globally by the
following options:

— Ignore case (-1)

— Sort numerically (-n)

— Sort in reverse (-r)

— Begin sorting at a specified field (-f)

— Begin sorting at a specified column (-c)

e Note, our program need not sort files larger
than main memory

High-level Forces
e Solution should be both time and space
efficient

— e.dg., must use appropriate algorithms and data
structures

— Efficient I/O and memory management are par-
ticularly important

— Our solution uses minimal dynamic binding (to
avoid unnecessary overhead)

e Solution should leverage reusable compo-
nents

— e.g., iostreams, Array and Stack classes, etc.

e Solution should vyield reusable components

— e.g., efficient input classes, generic sort rou-
tines, etc.

Top-level Algorithmic View of the

Solution

e Note the use of existing C+-+ mechanisms
like I/O streams

// Reusable function
template <class ARRAY> void
sort (ARRAY &a);

int main (int argc, char *argvl[])
{
parse_args (argc, argv);
Input_Array input;

cin >> input;

sort (input);
cout << input;

e Avoid the grand mistake of using top-level
algorithmic view to structure the design...

General OOD Solution Approach

e Identify the classes in the application and
solution space

— e.g., stack, array, input class, options, access
table, sorts, etc.

e Recognize and apply common design pat-
terns

— e.g., Singleton, Factory, Adapter, Iterator

e Implement a framework to coordinate com-
ponents

— e.g., use C++ classes and parameterized types

C++ Class Model

System
Sort
Sort AT
Adapter
STRATEGIC Sort ——
COMPONENTS 7 =
/ \ Sort AT
/ Adapter
Sort l ———
| TYHE |
TACTICAL Access
COMPONENTS Table
i 3
T Input / \
Stack Array

C++ Class Components

e Jactical components
— Stack

x Used by non-recursive quick sort

— Array

x Stores pointers to lines and fields

— Access_Table

* Used to store and sort input

— Input

x Efficiently reads arbitrary sized input using
only 1 dynamic allocation and 1 copy

C++ Class Components

e Strategic components
— System_Sort

x Integrates everything...

— Sort_AT _Adapter

* Integrates the Array and the Access _Table

— Options

x Manages globally visible options

— Sort

x e.d., both quicksort and insertion sort

Detailed Format for Solution

Note the separation of concerns

// Prototypes

template <class ARRAY> void sort (ARRAY &a);

void operator >> (istream &,
Access_Table<Line_Ptrs> &);

void operator << (ostream &,
const Access_Table<Line_Ptrs> &);

int main (int argc, char *argvl[])

{
Options::instance ()->parse_args (argc, argv);
cin >> System_Sort::instance ()->access_table ();

sort (System_Sort::instance ()->access_table ());

cout << System_Sort::instance ()->access_table ();

}

10

Reading Input Efficiently

e Problem

— The input to the system sort can be arbitrarily
large (e.g., up to 1/2 size of main memory)

e [orces

— To improve performance solution must mini-
mize:

1. Data copying and data manipulation

2. Dynamic memory allocation

e Solution

— Create an Input class that reads arbitrary in-
put efficiently

11

ACCESS ARRAY

Access Table Format

ACCESS BUFFER

12

The Input Class

e Efficiently reads arbitrary-sized input us-
ing only 1 dynamic allocation

class Input
{
public:
// Reads from <input> up to <terminator>,
// replacing <search> with <replace>. Returns
// pointer to dynamically allocated buffer.
char *read (istream &input,
int terminator = EQOF,
int search = ’\n’,
int replace = ’\0’%);
// Number of bytes replaced.
size_t replaced (void) const;

// Size of buffer.
size_t size (void) const;

private:

// Recursive helper method.
char *recursive_read (void);

// ...
};

13

Design Patterns in System Sort

e Facade

— “Provide a unified interface to a set of inter-
faces in a subsystem”

x Facade defines a higher-level interface that
makes the subsystem easier to use

— e.g., sort provides a facade for the complex
internal details of efficient sorting

e Adapter

— Y“Convert the interface of a class into another
interface clients expect”

x Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

— e.g., make Access_Table conform to inter-
faces expected by sort and iostreams

14

Design Patterns in System Sort
(cont’d)

e Factory

— “Centralize the assembly of resources neces-
sary to create an object”

— e.g., decouple initialization of Line_Ptrs used
by Access _Table from their subsequent use

e Bridge

— “Decouple an abstraction from its implemen-
tation so that the two can vary independently”

— e.g., comparing two lines to determine ordering

e Strategy

— "“Define a family of algorithms, encapsulate each
one, and make them interchangeable”

— e.g., allow flexible pivot selection

15

Design Patterns in System Sort
(cont’d)

e Singleton

— “Ensure a class has only one instance, and pro-
vide a global point of access to it”

— e.g., provides a single point of access for the
system sort facade and for program options

e Double-Checked Locking Optimization

— “Ensures atomic initialization or access to ob-
jects and eliminates unnecessary locking over-
head”

— e.g., allows multiple threads to execute sort

e Iterator

— "Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation”

16

— e.g., provides a way to print out the sorted
lines without exposing representation or initial-
ization

Sort Algorithm

e For efficiency, two types of sorting algo-
rithms are used:

1. Quicksort

— Highly time and space efficient sorting arbi-
trary data

— O(n log n) average-case time complexity
— O(n2) worst-case time complexity
— O(log n) space complexity

— Optimizations are used to avoid worst-case
behavior

2. Insertion sort

— Highly time and space efficient for sorting
“almost ordered” data

— O(n2) average- and worst-case time com-
plexity

— O(1) space complexity

17

1.

2.

3.

4

Quicksort Optimizations

Non-recursive

e Uses an explicit stack to reduce function call
overhead

Median of 3 pivot selection

e Reduces probability of worse-case time com-
plexity

Guaranteed (log n) space complexity

e Always “pushes’ larger partition

. Insertion sort for small partitions

e Insertion sort runs fast on almost sorted data

18

Selecting a Pivot Value

e Problem

— There are various algorithms for selecting a
pivot value

x e.d., randomization, median of three, etc.

e [orces

— Different input may sort more efficiently using
different pivot selection algorithms

e Solution

— Use the Strategy pattern to select the pivot
selection algorithm

19

The Strategy Pattern

e Intent

— Define a family of algorithms, encapsulate each
one, and make them interchangeable

x Strategy lets the algorithm vary independently
from clients that use it

e T his pattern resolves the following forces

1. How to extend the policies for selecting a pivot
value without modifying the main quicksort al-
gorithm

2. Provide a one size fits all interface without
forcing a one size fits all implementation

20

Structure of the Strategy Pattern

STRATEGY
Context Strategy
context_interface() algorithm_interface()
Concrete Concrete
Strategy A Strategy C
algorithm_interface() algorithm_interface()

Concrete
Strategy B

algorithm_interface()

21

Using the Strategy Pattern

quick sort

-
I
I
I
I

pivot_strat->get_pivot (array, lo, hi)

Select
First

Pvot

Strategy

get pivot()

3

Median

Random

of
Three

22

Implementing the Strategy

Pattern

e ARRAY is the particular “context”

template <class ARRAY>
void sort (ARRAY &array)

{
Pivot<ARRAY> x*pivot_strat = Pivot<ARRAY>::make_pivot

(Options::instance ()->pivot_strat ());

quick_sort (array, pivot_strat);

}

template <class ARRAY, class PIVOT_STRAT>
quick_sort (ARRAY &array, PIVOT_STRAT *pivot_strat)

{
for (5;) {
ARRAY: :TYPE pivot; // typename ARRAY::TYPE pivot...

pivot = pivot_strat->get_pivot (array, lo, hi);

// Partition array[lo, hi] relative to pivot...

}
}

23

Devising a Simple Sort Interface

e Problem
— Although the implementation of the sort func-

tion is complex, the interface should be simple
to use

e Key forces

— Complex interface are hard to use, error prone,
and discourage extensibility and reuse

— Conceptually, sorting only makes a few assump-
tions about the *array” it sorts

x e.d., supports operator[] methods, size,
and element TYPE

— We don’t want to arbitrarily limit types of ar-
rays we can sort

e Solution

— Use the Facade and Adapter patterns to sim-
plify the sort program

24

Facade Pattern

e Intent

— Provide a unified interface to a set of interfaces
in a subsystem

x Facade defines a higher-level interface that
makes the subsystem easier to use

e T his pattern resolves the following forces:
1. Simplifies the sort interface

— e.g., only need to support operator[] and
size methods, and element TYPE

2. Allows the implementation to be efficient and
arbitrarily complex without affecting clients

25

Structure of the Facade Pattern

Facade

26

Using the Facade Pattern

EXTERNAILLY . Y_i
VISIBLE -7
________ Sort |- — — — _
HIDDEN \
| ARRAY
Quick
ptwind Sort
StaCk / \ iTARRZY_i
Insert

27

The Adapter Pattern

e Intent

— Y“Convert the interface of a class into another
interface clients expect”

x Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

e T his pattern resolves the following forces:

1. How to transparently integrate the Access_Table
with the sort routine

2. How to transparently integrate the Access_Table
with the C++ iostream operators

28

Structure of the Adapter Pattern

1: request ()
>

client Target
request()

Adapter Adaptee

> :
request() 2: specific request() specific_request()

29

Using the Adapter Pattern

r—— - " "
| conforms to
(ARRAY, ARRAY
sort ARRAY:: TYPE
operator]|]
O size()

1: ARRAY::TYPE t /
= array[i]

"conforms to"

Line Ptrs

——— ——

Sort AT Adapter ——— | Typg |

typedef Line Ptrs TYPE Access Table
make_table() —

Operator [] make_table()
size() length()

element()

30

Dynamic Array

e Defines a variable-sized array for use by
the Access Table

template <class T>
class Array

{
public:
typedef T TYPE; // Type "trait"
Array (size_t size = 0);
int init (size_t size);
T &operator[](size_t index);
size_t size (void) const;
/] ...
private:
T *array_;
size_t size_;
};

31

The Access_Table Class

e Efficiently maps indices onto elements in
the data buffer

template <class T>
class Access_Table
{
public:
// Factory Method for initializing Access_Table.
virtual int make_table (size_t num_lines,
char *xbuffer) = 0;
// Release buffer memory.
virtual “Access_Table (void) { delete [] buffer_; }

// Retrieve reference to <indexth> element.
T &element (size_t index) {
return access_array_[index];

}

// Length of the access_array.
size_t length (void) const {
return access_array_.size ();
}
protected:
Array<T> access_array_; // Access table is array of T.
char *buffer_; // Hold the data buffer.

};

32

The Sort AT _Adapter Class

e Adapts the Access Table to conform to
the ARRAY interface expected by sort

struct Line_Ptrs {
// Comparison operator used by sort().
int operator< (const Line_Ptrs &);

// Beginning of line and field/column.
char *bol_, *bof_;

};

class Sort_AT_Adapter :
// Note the use of the "Class form" of the Adapter
private Access_Table<Line_Ptrs> {

public:
virtual int make_table (size_t num_lines, char *buffer);

typedef Line_Ptrs TYPE; // Type "trait".
// These methods adapt Access_Table methods...

T &operator[] (size_t index) {
return element (index);

}

size_t size (void) const { return length (); }

};

33

Centralizing Option Processing

e Problem

— Command-line options must be global to many
parts of the sort program

e Key forces

— Unrestricted use of global variables increases
system coupling and can violate encapsulation

— Initialization of static objects in C+4++4 can be

problematic

e Solution

— Use the Singleton pattern to centralize option
processing

34

Singleton Pattern

e Intent

— “Ensure a class has only one instance, and pro-
vide a global point of access to it”

e T his pattern resolves the following forces:

1. Localizes the creation and use of “global’ vari-
ables to well-defined objects

2. Preserves encapsulation

3. Ensures initialization is done after program has
started and only on first use

4. Allow transparent subclassing of Singleton im-
plementation

35

Structure of the Singleton Pattern

if (unique instance =— 0)
unique_instance = new Singleton;

return unique _instance ;
/

/
/
/
/
/

Singleton
static instance() J '
singleton _operation()
get_singleton_data()
static unique instance
singleton data

36

Using the Singleton Pattern

if (unique instance == 0)
unique_instance = new Options;
return unique instance ;

/
/
/

/

Options /

Z

static instance() ol
bool enabled()
field offset()

static unique_instance
options _

37

Options Class

e T his manages globally visible options

class Options

{

public:

static Options *instance (void);
void parse_args (int argc, char *argvl[]);

// These options are stored in octal order

// so that we can use them as bitmasks!

enum Option { FOLD = 01, NUMERIC = 02,
REVERSE = 04, NORMAL = 010 };

enum Pivot_Strategy { MEDIAN, RANDOM, FIRST };

bool enabled (Option o);
int field_offset (void); // Offset from BOL.

Pivot_Strategy pivot_strat (void);
int (*compare) (const char *1, const char *r);

protected:

Options (void); // Ensure Singleton.

u_long options_; // Maintains options bitmask...

int field_offset_;
static Options *instance_; // Singleton.

38

Using the Options Class

e [he following is the comparison operator
used by sort

int
Line_Ptrs::operator< (const Line_Ptrs &rhs)

{

Options *options = Options::instance ();

if (options->enabled (Options::NORMAL))
return strcmp (this->bof_, rhs.bof_) < 0;

else if (options->enabled (Options::FOLD))
return strcasecmp (this->bof_, rhs.bof_) < 0;

else

// assert (options->enabled (Options::NUMERIC));
return numcmp (this->bof_, rhs.bof_) < 0;

39

Efficiently Avoiding Race
Conditions for Singleton

Initialization

e Problem

— A multi-threaded program might have execute
multiple copies of sort in different threads

e Key forces

— Subtle race conditions can cause Singletons to
be created multiple times

— Locking every access to a Singleton can be too
costly

e Solution

— Use the Double-Checked Locking Optimiza-
tion pattern to efficently avoid race conditions
when initialization Singletons

40

The Double-Checked Locking

Optimization Pattern

e Intent

— Ensures atomic initialization or access to ob-
jects and eliminates unnecessary locking over-
head

e T his pattern resolves the following forces:

1. Ensures atomic initialization or access to ob-
jects, regardless of thread scheduling order

2. Keeps locking overhead to a minimum

— e.g., only lock on first access, rather than for
the entire Singleton instance() method

41

Structure of the Double-Checked

Locking Optimization Pattern

if (unique instance =—=NULL) {
mutex_.acquire ();
if (unique instance =—NULL)
unique_instance = new Singleton;
mutex .release ();

}

return unique _instance ;

Singleton A

static instance() O~
static unique_instance

\ Mutex

42

Using the Double-Checked

Locking Optimization Pattern

e Uses the Adapter pattern to turn ordi-
nary classes into Singletons optimized au-
tomatically with the Double-Checked Lock-
ing Optimization pattern

template <class TYPE, class LOCK>
class Singleton {
public:

static TYPE *instance (void);
protected:

static TYPE *xinstance_;

static LOCK lock_;

};

template <class TYPE, class LOCK> TYPE x*
Singleton<TYPE, LOCK>::instance (void) {
// Perform the Double-Check.

if (instance_ == 0) {

Guard<LOCK> mon (lock_);

if (instance_ == 0) instance_ = new TYPE;
+

return instance_;

43

Simplifying Comparisons

e Problem

— The comparison operator shown above is some-
what complex

e forces

— It’s better to determine the type of comparison
operation during the initialization phase

— But the interface shouldn’t change

e Solution

— Use the Bridge pattern to separate interface
from implementation

44

The Bridge Pattern

e Intent

— “Decouple an abstraction from its implemen-
tation so that the two can vary independently”

e T his pattern resolves the following forces
that arise when building extensible soft-
ware

1. How to provide a stable, uniform interface that
is both closed and open, i.e.,

— (Closed to prevent direct code changes
— Open to allow extensibility

2. How to simplify the Line_Ptrs::operator< im-
plementation

45

Structure of the Bridge Pattern

Abstraction

1: method 1mpl()
>

method()

Implementor

method _impl()

e

Concrete
ImplementorA

method_impl() Concrete
ImplementorB

method 1mpl()

46

Using the Bridge Pattern

Line Ptrs

1: compare()

operator<

> Options

compare()

.

strcmp()

numecmp()

strcasecmp()

a7

Using the Bridge Pattern

e [he following is the comparison operator
used by sort

int
Line_Ptrs::operator<(const Line_Ptrs &rhs)

{

return (*Options::instance ()->compare)
(bof_, rhs.bof_);

e [his solution is much more concise

e However, th_ere’s an extra level of function
call indirection...

— Which is equivalent to a virtual function call

48

Initializing the Comparison

Operator

e Problem

— How does the compare pointer-to-method get
assignhed?

int (*compare) (const char *left, const char *right);

e [orces

— There are many different choices for compare,
depending on which options are enabled

— We only want to worry about initialization de-
tails in one place

— Initialization details may change over time

— We'd like to do as much work up front to re-
duce overhead later on

e Solution

— Use a Factory pattern to initialize the compar-
ison operator

49

The Factory Pattern

e Intent

— “Centralize the assembly of resources neces-
sary to create an object”

x Decouple object creation from object use by
localizing creation knowledge

e T his pattern resolves the following forces:

— Decouple initialization of the compare opera-
tor from its subsequent use

— Makes it easier to change comparison policies
later on

x e.d., adding new command-line options

50

Structure of the Factory Pattern

Factory

make_product() Q

Q

creates N
N

N

Product product = ...
return product

Product

51

Using of the Factory Pattern for

Comparisons

Options

parse _args() Q
@) \

creates N

initialize compare

Compare
Function

52

Code for Using the Factory

Pattern

e [he following initialization is done after
command-line options are parsed

Options::parse_args (int argc, char *argv[])
{
/] ...
if (this->enabled (Options::NORMAL))
this->compare = &strcmp;
else if (this->enabled (Options::FOLD))
this->compare = &strcasecmp;
else if (this->enabled (Options::NUMERIC))
this->compare = &numcmp;

/] ...

int numcmp (const char *sl1l, const char * s2)

{
double dl1 = strtod (s1, 0), d2 = strtod (s2, 0);

if (d1 < d2) return -1;

else if (d1 > d2) return 1;

else // if (d1 == d2)
return O;

53

Initializing the Access_Table

e Problem

— One of the nastiest parts of the whole system
sort program is initializing the Access_Table

e Key forces

— We don’t want initialization details to affect
subsequent processing

— Makes it easier to change initialization policies
later on

x €.d., using the Access_Table in non-sort ap-
plications

e Solution

— Use the Factory Method pattern to initialize
the Access_Table

54

Factory Method Pattern

e Intent

— Define an interface for creating an object, but
let subclasses decide which class to instantiate

x Factory Method lets a class defer instantia-
tion to subclasses

e T his pattern resolves the following forces:

— Decouple initialization of the Access_Table
from its subsequent use

— Improves subsequent performance by pre-caching
beginning of each field and line

— Makes it easier to change initialization policies
later on

x e.d., adding new command-line options

55

Structure of the Factory Method

Pattern

Creator

factory method() = 0
make product()
N

AN
N

N
N

Product Product *product = factory _method())
return product

Concrete
Creator

factory method()Q

Concrete \
Product |<-T22%)

return new Concrete Product .-

56

Using the Factory Method
Pattern for Access Table

Initialization

— e ——]

Access Table
make table() =0

- = - — =/

!iine Ptrs

I
Sort AT T~~~ ’
Adapter

make table() O

\\

// initialize the table

57

Using the Factory Method

Pattern for the Sort AT Adapter

e T he following iostream Adapter initializes
the Sort AT Adapter access table

template <class T>
void operator>> (istream &is,

{

Access_Table<T> &access_table)
Input input;

// Read entire stdin into buffer.
char *buffer = input.read (is);

// Determine number of lines.
size_t num_lines = input.replaced ();

// Factory Method initializes Access_Table<>.
access_table.make_table (num_lines, buffer);

58

Implementing the Factory Pattern

e [he Access_Table_Factory class has a Fac-
tory Method that initializes Sort_AT _Adapter

// Factory Method initializes Access_Table.
int Sort_AT_Adapter::make_table (size_t num_lines,
char *buffer)

{
// Array assignment op.
this->access_array_.resize (num_lines);
this->buffer_ = buffer; // Obtain ownership.
size_t count = 0;
// Iterate through the buffer and determine
// where the beginning of lines and fields
// must go.
for (Line_Ptrs_Iter iter (buffer, num_lines);
iter.is_done () == 0;
iter.next ())
{
Line_Ptrs line_ptr = iter.current_element ();
this->access_array_[count++] = line_ptr;
}
}

59

Initializing the Access_Table with

Input Buffer

e Problem

— We'd like to initialize the Access_Table without
having to know the input buffer is represented

e Key force

— Representation details can often be decoupled
from accessing each item in a container or col-
lection

e Solution

— Use the Iterator pattern to scan through the
buffer

60

Iterator Pattern

e Intent

— Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation

e [he Iterator pattern provides a way to ini-
tialize the Access_Table without knowing
how the buffer is represented:

Line_Ptrs_Iter::Line_Ptrs_Iter
(char *buffer, size_t num_lines);

Line_Ptrs
Line_Ptrs_Iter::current_element (void)

{
Line_Ptrs 1lp;
// Determine beginning of next line and next field...
lp.bol_ = //
lp.bof_ = //

return 1lp;

61

Iterator Pattern (cont’d)

e [he Iterator pattern also provides a way to
print out the sorted lines without exposing
representation

template <class T>
void operator<< (ostream &os,
const Access_Table<T> &at)
{
if (Options::instance ()->enabled (Options::REVERSE))
for (size_t i = at.size (); i > 0; i--)
os << at[i - 1];

else

for (size_t i = 0; i < at.size (); i++)
os << at[il;

e Note that STL is heavily based on itera-
tors

62

Summary of System Sort Case
Study

e T his case study illustrates using OO tech-
niques to structure a modular, reusable,
and highly efficient system

e Design patterns help to resolve many key
forces

Performance of our system sort is compa-
rable to existing UNIX system sort

— Use of C++4 features like parameterized types
and inlining minimizes penalty from increased
modularity, abstraction, and extensibility

63

Case Study 2: Sort Verifier

e Verify whether a sort routine works cor-
rectly

— j.e., output of the sort routine must be an or-
dered permutation of the original input

e T his is useful for checking our system sort
routine!

— The solution is harder than it looks at first
glance...

e As before, we'll examine the key forces
and discuss design patterns that resolve
the forces

64

General Form of Solution

e T he following is a general use-case for this
routine:

template <class ARRAY> void
sort (ARRAY &a);

template <class ARRAY> int
check_sort (const ARRAY &o, const ARRAY &p);

int main (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

Input_Array input;
Input_Array potential_sort;

cin >> input;

copy (input, potential_sort);
sort (potential_sort);

if (check_sort (input, potential_sort) == -1)
cerr << "sort failed" << endl;
else

cout << "sort worked" << endl;

65

Common Problems

unsorted 7 13 4 15 | 18 | 13 8 4
sorted, but 0 0 0 0 0 0 0 0
not permuted

permuted, but 8 | 13|18 15| 4 |13 4 | 7
not sorted
sorted and 4 4 7 8 | 13| 13| 15| 18
permuted

Several common problems:
— Sort routine may zero out data

*x though it will appear sorted...;-)
— Sort routine may fail to sort data

— Sort routine may erroneously add new values

66

Forces
e Solution should be both time and space
efficient

— e.g., it should not take more time to check
than to sort in the first place!

— Also, this routine may be run many times con-
secutively, which may faciliate certain space
optimizations

o \We cannojc assume-the existence of a ‘“‘cor-
rect” sorting algorithm...

— Therefore, to improve the chance that our so-
lution is correct, it must be simpler than writ-
ing a correct sorting routine

x QUuIis costodiet ipsos custodes?

67

Forces (cont’d)

e Multiple implementations will be neces-
sary, depending on properties of the data
being examined, e.qg.,

1. if data values are small (in relation to number
of items) and integrals use ...

2. if data has no duplicate values use ...
3. if data has duplicate values use ...

e T his problem illustrates a simple example
of “program families”

— j.e., we want to reuse as much code and/or
design across multiple solutions as possible

63

Strategies
e Implementations of search structure vary
according to data, e.qg.,
1. Range Vector

— O(N) time complexity and space efficient for
sorting “small” ranges of integral values

2. Binary Search (version 1)

— O(n log n) time complexity and space effi-
cient but does not handle duplicates

3. Binary Search (version 2)

— O(n log n) time complexity, but handles du-
plicates

4. Hashing

— O(n) best/average case, but O(n2) worst
case, handles duplicates, but potentially not
as space efficient

69

General OOD Solution Approach
e Identify the "objects” in the application
and solution space

— e.g., use a search structure ADT organiza-
tion with member function such as insert and
remove

e Recognize common design patterns

— e.g., Strategy, Template Method, and Factory
Method

e Implement a framework to coordinate mul-
tiple implementations

— e.d., use classes, parameterized types, inheri-
tance and dynamic binding

70

General OOD solution approach
(cont’d)

o C++ framework should be amenable to:
— Extension and Contraction

x May discover better implementations
* May need to conform to resource constraints
* May need to work on multiple types of data

— Performance Enhancement

* May discover better ways to allocate and
cache memory

* Note, improvements should be transparent
to existing code...

— Portability

* May need to run on multiple platforms

71

High-level Algorithm

e €.9d., pseudo code

template <class ARRAY>
int check_sort (const ARRAY &original,
const ARRAY &potential_sort)
{
Perform basic sanity check to see if the
potential sort is actually in order
(can also detect duplicates here)

If basic sanity check succeeds then
Initialize search structure srchstrct
fori + O to size — 1 loop

insert (potential sort[il])
into srchstrct
fori < O to size — 1 loop
if remove (originalli]) from
srchstrct fails then
return ERROR
return SUCCESS

else
return ERROR

end if

72

C Class Model
| |
Search
/ Struct \
LONG TV
Range Hash
Vector Table
| i
Binary T
Search]SS marl)l'
Nodups care
Dups

73

C++4 Class Interfaces

e Search structure base class.

template <class T>
class Search_Struct_Strategy

{

public:
virtual int insert (const T &new_item) = O;
virtual int remove (const T &existing item) = O;

virtual “Search_Struct_Strategy (void) = O;
s

e Strategy Factory class

template <class ARRAY>
Search_Strategy

{
public:

// Singleton method.
static Search_Strategy *instance (void);

// Factory Method
virtual Search_Struct_Strategy<ARRAY::TYPE> *
make_strategy (const ARRAY &);

};

74

C++ Class Interfaces (cont’d)

e Strategy subclasses

// Note the template specialization
class Range_Vector : public Search_Struct_Strategy<long>
{ typedef long TYPE; /* ... */ };

template <class ARRAY>
class Binary_Search_Nodups : public Search_Struct_Strategy<i

{
typedef T TYPE; /*x ... */

s

template <class ARRAY>
class Binary_Search_Dups : public Search_Struct_Strategy<ARI

{
typedef T TYPE; /*x ... */

s

template <class T>
class Hash_Table : public Search_Struct_Strategy<T>

{
typedef T TYPE; /* ... */

s

75

Design Patterns in Sort Verifier

e Factory Method
— "“Define an interface for creating an object, but
let subclasses decide which class to instanti-
ate”

x Factory Method lets a class defer instantia-
tion to subclasses

e In addition, the Facade, Iterator, Single-
ton, and Strategy patterns are used

76

Using the Strategy Pattern

—— — -

| TYPE |
check sort Search
- Struct

Strategy
| TYPE |
| long |

Range | TYPE | | TYPE |
Vector Binary Binary
Search Search
Dups Nodups

e T his pattern extends the strategies for check-
ing if an array is sorted without modifying
the check_sort algorithm

77

The Factory Method Pattern

e Intent

— Define an interface for creating an object, but
let subclasses decide which class to instantiate

x Factory Method lets a class defer instantia-
tion to subclasses

e T his pattern resolves the following force:

1. How to extend the initialization strategy in the
sort verifier transparently

78

Structure of the Factory Method

Pattern

Product

Concrete
Product

Creator

factory method() = 0

make product()
N

N
N

N
N

Product *product = factory_method())
return product

Concrete

Creator

< CREATES

factory method()(Q

\

\
\

—_—
_——
—_—
—_—
—_—

return new Concrete Product

79

Using the Factory Method

Search
Struct

New Search
Struct

- CREATES

Pattern

Search
Strategy
make_strategy()

New Search
Strategy

make strategy() O

—
—_——
—_——
—
—_—

return new New_Search Struct /-

80

Implementing the check_sort

Function

o e.9g., C++ code for the sort verification
strategy

template <class ARRAY> int
check_sort (const ARRAY &orig, const ARRAY &p_sort)

{
if (orig.size () != p_sort.size ())
return -1;

auto_ptr < Search_Struct_Strategy<ARRAY::TYPE> > ss =
Search_Strategy<ARRAY>::instance ()->make_strategy
(p_sort);

for (int i = 0; i < p_sort.size (); i++)
if (ss—>insert (p_sortl[i]) == -1)
return -1;

for (int i = 0; i < orig.size (); i++)
if (ss->remove (origl[i]) == -1)

return -1;

return O;
// auto_ptr’s destructor deletes the memory...

81

Initializing the Search Structure

e Factory Method

template <class ARRAY> Search_Struct_Strategy<ARRAY::TYPE> :
Search_Strategy<ARRAY>: :make_strategy
(const ARRAY &potential_sort)

{
int duplicates = 0;

for (size_t i = 1; i < potential_sort.size (); i++)
if (potential_sort[i] < potential_sort[i - 1])
return O;
else if (potential_sort[i] == potential_sort[i - 1])
duplicates++;

if (duplicates == 0)
return new Binary_Search_Nodups<ARRAY>
(potential_sort);
else if (size % 2)
return new Binary_Search_Dups<ARRAY>
(potential_sort, duplicates)
else return new Hash_Table<ARRAY::TYPE>
(size, &hash_function);

82

Specializing the Search Structure

for Range Vectors

template <Array<long> > Search_Struct_Strategy<long> *
Search_Strategy<Array<long> >::make_strategy
(const Array<long> &potential_sort)

{

int duplicates = O;

for (size_t i = 1; i < size; i++)
if (potential_sort[i] < potential_sort[i - 1])
return O;
else if (potential_sort[i] == potential_sort[i - 1])
duplicates++;

long range = potential_sort[size - 1] -
potential_sort[0];
if (range <= size)
return new Range_Vector (potential_sort[O],
potential_sort[size - 11])
else if (duplicates == 0)
return new Binary_Search_Nodups<long>
(potential_sort);
else if (size % 2)
return new Binary_Search_Dups<long>
(potential_sort, duplicates)
else return new Hash_Table<long>
(size, &hash_function);

83

Summary of Sort Verifier Case
Study
e T he sort verifier illustrates how to use OO

techniques to structure a modular, exten-
sible, and efficient solution

— The main processing algorithm is simplified

— The complexity is pushed into the strategy ob-
jects and the strategy selection factory

— Adding new solutions does not affect existing
code

— The appropriate ADT search structure is se-
lected at run-time based on the Strategy pat-
tern

84

