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ABSTRACT

This research examines the use of attention regions in terrain
roughness prediction for off-road autonomous vehicles. We
approach terrain roughness prediction as an image classifica-
tion problem, labeling images of upcoming drivable terrain
with a measure of roughness derived from the z-axis acceler-
ation readings taken by a vehicle’s inertial measurement unit.
We used deep learning models to learn two roughness labeling
schemas and examined whether an attention region surround-
ing the upcoming drivable terrain could improve the ability of
our classifiers to predict terrain roughness.

The results of our experiments demonstrate that in all
cases, models utilizing images with no attention region show
increased performance compared to those utilizing images
with an attention region. These results indicate there is im-
portant contextual information in the non-path pixels of the
images that assists models in predicting upcoming terrain
roughness.

Index Terms— Autonomous vehicles, off-road terrain,
terrain roughness, deep learning, attention region

1. INTRODUCTION

Enabling autonomous vehicles to drive safely in off-road set-
tings is important to achieve increasing levels of autonomy in
passenger-carrying autonomous vehicles. A key goal of the
automotive industry is to achieve “Level 5” autonomy, where
vehicles can operate safely in all settings without human su-
pervision [1]. To achieve this level it is crucial that passenger-
carrying autonomous vehicles can handle off-road terrain.

Moreover, an Autonomous Ground Vehicle (AGV) is a
type of autonomous vehicle designed to perform specific tasks
[2]. Applications of AGVs include search and rescue, min-
ing [3, 4], and planetary exploration [5]. AGVs are often un-
supervised, so they must be able to handle a wide variety of
terrain they encounter (e.g., slowing down for a rough patch).

Much prior work has focused on classifying terrain into
discrete groups of terrain type [6, 3, 7, 8, 9]. Prior work has
also used semantic segmentation to understand terrain rough-
ness. For example, Dahlkamp et al. [10] used visual and

LiDAR imagery to classify pixels of terrain as drivable or un-
drivable in their robot Stanley [11], which won the DARPA
Grand Challenge in 2005 [12]. Stavens and Thrun [13] used
LiDAR imagery to classify terrain pixels as either “smooth”
or “rugged.” Suryamurthy et al. [14] created a unified method
for terrain segmentation and roughness prediction.

Many studies [3, 9, 13, 15] involving terrain roughness
use z-axis acceleration, which is a measure of a vehicle’s ver-
tical acceleration. Labeling upcoming terrain with a measure
of z-axis acceleration helps gauge terrain roughness. It also
shows how the upcoming terrain will directly affect the vehi-
cle’s movement.

For example, Stavens et al. [13] standardized z-axis ac-
celeration with respect to speed. Our initial approach was to
account for speed in a similar way, though we did not find a
linear relationship between z-axis acceleration and speed in
our data. This finding likely occurred because the speeds of
the vehicle used by Stavens et al. (i.e., a car) were much faster
than the speeds of our vehicle (i.e., a mountain bicycle).

A key question not yet answered by other researchers is
whether or not terrain roughness classification for monocular
images can be aided by an attention region. An attention re-
gion is a way to specify the region of the image where the
focus of the network should be directed. Prior research has
examined classification of qualitative terrain composition and
semantic segmentation to understand terrain roughness.

In contrast, our approach examines terrain roughness
prediction as a classification problem. In particular, we la-
bel monocular images of off-road terrain with a measure of
roughness based on the future outputs of the vehicle’s iner-
tial measurement unit (IMU). We then examine whether an
attention region around the drivable terrain in the images can
assist deep learning classifiers in predicting roughness labels.

2. RESEARCH CHALLENGES AND
EXPERIMENTATION APPROACH

This section first describes the following challenges involved
in training deep learning models to predict terrain roughness:



• Creating a measure of roughness representing the
entirety of the upcoming terrain is hard because the
exact length of terrain visible may be unknown. As
a result, it is hard to determine the z-axis acceleration
readings corresponding to the visible terrain in the im-
age.

• A quantitative roughness metric measuring forces
experienced by the vehicle may not be intuitive.
While certain objects (such as sticks and rocks) may
generally correspond to increased terrain roughness,
the z-axis acceleration of the vehicle as a result of trav-
eling over these objects may be unknown. Labels are
a measure of acceleration experienced by the vehicle,
so it may be hard for humans and/or deep learning
classifiers to derive an image’s label.

• It may be hard to learn the roughness label. Images
show a number of other intricate objects (such as large
trees and leaves) in addition to the upcoming terrain. A
roughness classifier thus may not be able to “focus” on
the upcoming drivable terrain.

To help address these challenges, we examined the addi-
tion of an attention region surrounding the upcoming drivable
terrain in the images. Our goal was to determine whether an
attention region can assist a deep learning network in focus-
ing on the information relevant for terrain roughness predic-
tion. We hypothesized that coloring all non-path pixels of the
image either black or white would cause the network to fo-
cus only on the visible terrain, ignoring potentially distracting
features (such as large trees), in learning terrain roughness.

The remainder of this paper is organized as follows: Sec-
tion 2.1 describes the data collection process and the labeling
schemas used in this experiment; Section 3 examines our pro-
cess for adding an attention region to the images; Section 4
analyzes the results of experiments we performed to deter-
mine whether an attention region can assist the network in
predicting terrain roughness; and Section 5 presents conclud-
ing remarks.

2.1. Overview of Our Data Collection Method

To create the roughness labels in our data set, we needed to
collect images and label them with a measure of the z-axis
acceleration that was experienced by the vehicle. To collect
this data, we used a mountain bike as the vehicle. The moun-
tain bike was instrumented with: (1) Garmin 830 dual GPS
receivers, (2) Garmin Virb Ultra dual-high resolution IMUs,
(3) a Garmin Virb Ultra 4k 30fps camera time synchronized
to both accelerometers, and (4) a Garmin Bike Speed Sensor
2 wheel rotation speed sensor.

Data was collected from mountain biking trails in Percy
Warner Park in Nashville, Tennessee, USA during daytime in
the late summer and beginning of fall 2020. Each data collec-
tion session obtained video data from the camera attached to

the handlebar of the mountain bike and sensor data from the
bike’s various sensors, such as the IMU.

We extracted video frames roughly 1 second apart to min-
imize overlap. A total of 12,982 images were collected cov-
ering 43.9 miles of terrain. The terrain ranged from relatively
smooth packed earth to 1–2 foot rocks to large exposed tree
roots to muddy creek crossings.

The original images and roughness labels are available
at kaggle.com/magnumresearchgroup/offroad-
terrain-dataset-for-autonomous-vehicles.
Likewise, the attention region images are available at kaggle
.com/magnumresearchgroup/offroad-terrain
-attention-region-images.

2.2. Labeling Images

Images were labeled with each of two roughness metrics:

• Label 1, which measures the standard deviation of
a 1 second sampling of z-axis acceleration readings
taken from directly ahead of the image’s timestamp,
discretized using k-means clustering with k = 2, and

• Label 2, which measures the standard deviation of
a 1 second sampling of z-axis acceleration readings
taken from directly ahead of the image’s timestamp,
discretized using k-means clustering with k = 4.

The selection of these labeling schemas and k values is de-
scribed below.

The standard deviation of a 1 second window of z-axis
acceleration readings describes the entirety of the terrain in
the sample and accounts for cases when the sample’s mean
is nonzero. A 1 second sample could encompass from around
1–7 meters, depending on the speed of the vehicle (which was
typically travelling between 1–7 m/s). However, we decided
that it was best to draw from a standard sample size so no one
sample was more susceptible to outliers than others.

After images and the associated z-axis acceleration data
were collected and the standard deviation of the 1 second win-
dow of z-axis acceleration readings ahead of each timestamp
was calculated, we discretized this roughness metric using the
following two different approaches: (1) the Label 1 approach
used k-means clustering on the standard deviation data with k
= 2 to assign classes to images, and (2) the Label 2 approach
used k-means clustering with k = 4 to derive the class values
for the images.

To select the two methods for discretizing the roughness
metric, we evaluated how effectively image labels discretized
using data visualization, k-means clustering with k = 2, with
k = 3, and with k = 4 could be learned by deep learning clas-
sifiers using an intermediary, held out selection set. Based on
selection set performance, we determined that k-means clus-
tering with k = 2 and k = 4 were the optimal methods for
discretizing the roughness metric.



The labels discretized with the k = 2 groups were learned
most effectively, likely because only two classes had to be
learned. The labels discretized with the k = 4 groups showed a
smaller jump in performance from the k = 3 groups than from
the k = 2 groups to the k = 3 groups and provided more speci-
ficity than the k = 3 groups. Moreover, the k = 4 groups were
learned more effectively than the data visualization groups.

2.3. Filtering Images

The dataset consisted of 12,982 images. However, we per-
formed both sensor and visual validation to filter the images
in our dataset. There were 7,061 images that met both sets of
criteria described below.

For each image, we confirmed that there was sufficient
data to calculate the image’s label. If so, we confirmed that in
the time window relevant to labeling the image (both 5 meters
ahead of the bike and 3 seconds ahead of the bike), the data
met certain criteria. For example, we checked whether the
relevant sensor readings were continuous and that the bike’s
speed was nonzero.

An important consideration was ensuring that the images
we selected showed a forward-facing image that was unob-
structed. To verify this property for each image, we manually
checked each image for obstructions and removed any images
that did not clearly show a visible path in front of the vehicle.

3. CREATING ATTENTION REGIONS AROUND
UPCOMING DRIVABLE TERRAIN

The key question that we investigated in our research was
whether or not an attention region would improve terrain
roughness classification performance. To create an attention
region around the drivable terrain, we first trained a semantic
segmentation network to identify the pixels in the image cor-
responding to the path. We then colored all non-path pixels
outside the attention region either black or white.

We experimented with three variations of the images in
our dataset, as shown in Figure 1: (1) the original images,
(2) images where the attention region was specified by col-
oring all non-path pixels black (which will be referred to as
the “dark attention region”), and (3) images where the atten-
tion region was specified by coloring all non-path pixels white
(which will be referred to as the “light attention region”).

Fig. 1. Example Image, Dark Attention Region, Light Atten-
tion Region

To determine if the attention region aided roughness clas-
sification, we began by training a semantic segmentation net-

work to classify the pixels in our images as either “path” or
“other.” We randomly selected 187 images for training and 63
images for testing. We labeled each pixel as either “path” or
“other.” The segmentation model was evaluated on two met-
rics: pixel-wise accuracy and Intersection over Union (IoU).

We trained a segmentation network in fastai using the
UNet architecture and the default transformations, which ap-
ply common image transformations to random images in the
training set. We excluded the horizontal flip transform in
case our network did not achieve sufficient performance and
we needed to augment all images in the training set with a
horizontal flip. The network achieved an accuracy of 96.96%
and an IoU of 0.9687 on the test set.

The next iteration of the network introduced two methods
for improving performance. The training set was expanded to
376 images and included the horizontal flip transformation,
which was applied randomly to some training set images. We
achieved an accuracy of 97.78% and IoU of 0.9772.

When examining the test set, we noticed that the network
struggled to make the correct predictions on images with dark
lighting. We therefore trained another version of this network
that added more images with dark lighting to the training set.
This network produced much more desirable results on im-
ages with dark lighting. Moreover, this network was inclined
to predict wider—rather than narrower—paths, which we felt
was a desirable characteristic for our purposes.

We would prefer that images with an attention region have
some non-path regions visible, as opposed to not enough vis-
ible path. This network achieved an accuracy of 97.15% and
an IoU of 0.9704 on the test set. It is important to note, how-
ever, that the results of the previous versions of this network
on this same test set influenced the data we added to the train-
ing set. These metrics are thus not an indicator of how well
the network will generalize.

Subsequent analysis showed that these metrics—along
with our visual confirmation in the network’s ability to detect
the path in images with dark lighting—indicated that this
version of the network was ideal for our purposes. We moved
forward with this version of the network to apply the attention
region to our images.

3.1. Preparing the Dataset

We used the resulting network to save a version of each of
the 7,061 images in our dataset where the pixels classified
as “path” were tinted dark blue and the pixels classified as
“other” were tinted light blue, referred to as the “overlay.”
Figure 2 shows an image with its correct label and overlay.

Fig. 2. Example Image, Correct Label, Overlay



We then manually validated each of these 7,061 images
with overlays and assigned them a score from -2 to 2 based
on the following criteria. A score of -2 indicated that many
“path” pixels were classified as “other”, a score of -1 indi-
cated that a moderate amount of “path” pixels were classified
as “other,” a score of 0 indicated that most pixels were cor-
rectly classified, a score of 1 indicated that a moderate amount
of “other” pixels were classified as “path,” and a score of 2 in-
dicated that many “other” pixels were classified as “path.”

We included all images with a score of 0 or 1 in our dataset
for a total of 5,375 images. Images scoring -2 or -1 may not
contain enough of the path for terrain learning, while images
scoring 2 may include too many non-path pixels, thereby de-
feating the purpose of an attention region. Images scoring 0
were almost perfectly segmented. Images scoring 1 contained
a little extra information, but not enough to detract from the
attention region.

4. ATTENTION REGION EXPERIMENTS AND
RESULTS

This section describes the results of experiments conducted
to assess whether adding an attention region around the up-
coming drivable terrain assisted deep learning classifiers in
predicting terrain roughness. We trained a roughness classi-
fier for each combination of the two labeling schemas (Labels
1 and 2) and the three attention region variations (original,
dark, and light), resulting in six models discussed below.

4.1. Models

The roughness classifiers were implemented with fastai [16]
using transfer learning with the ResNet50 [17]. The compo-
sition of our dataset with respect to each labeling schema was
skewed. We balanced the training and validation sets by un-
dersampling the majority classes.

All images were resized from their original size of 2,160
by 3,840 pixels to 270 by 480 pixels to decrease training time.
We used the default transformations in fastai [18], which ap-
plies commonly used image transformations to images in the
training set selected at random. We excluded the horizontal
flip transform because it is a topic for future work, e.g., bal-
ancing classes by oversampling non-majority classes with a
horizontal flip.

4.2. Analysis of Results

The results are summarized in Table 1. In all cases, the mod-
els trained with the original images had greater overall accu-
racy and average accuracy by class. However, the model uti-
lizing Label 1 and the dark attention region was able to best
identify Class 1, despite having the lowest overall accuracy
between all models utilizing Label 1. The model utilizing La-
bel 2 and the dark attention region did not predict Class 3 for

a single image in the test set.

Table 1. Test Set Performance of Attention Region Models
Label 1 Label 2
Overall
accuracy

Avg class
accuracy

Overall
accuracy

Avg class
accuracy

Original
images 68.28%

Class 0: 66.92%
Class 1: 72.32%
Average: 69.62%

55.19%

Class 0: 71.95%
Class 1: 52.25%
Class 2: 34.94%
Class 3: 8.82%
Average: 41.99%

Dark attention
region 49.55%

Class 0: 39.73%
Class 1: 78.57%
Average: 59.15%

44.92%

Class 0: 67.42%
Class 1: 43.54%
Class 2: 9.04%
Class 3: 0.00%
Average: 30.00%

Light attention
region 67.38%

Class 0: 72.36%
Class 1: 52.68%
Average: 62.52%

42.44%

Class 0: 62.89%
Class 1: 15.02%
Class 2: 62.05%
Class 3: 2.94%
Average: 35.72%

The results in Table 1 suggest that while the drivable ter-
rain holds some indicators of upcoming terrain roughness,
there are other contextual clues in the non-path regions of the
image that assist the classifier in learning terrain roughness.

5. CONCLUDING REMARKS

The study presented in this paper examined whether an atten-
tion region surrounding the upcoming drivable terrain in a sin-
gle monocular image could improve off-road terrain rough-
ness prediction. The following are the key lessons we learned
from conducting this research:

• Images of upcoming drivable terrain can be used
to learn about terrain roughness as a measure of the
vehicle’s future kinetics. Roughness classifiers trained
utilizing images both with and without an attention re-
gion showed some ability to predict terrain roughness.
Our future work will investigate whether our results can
be further improved via custom architectures or balanc-
ing classes by oversampling with a horizontal flip.

• Roughness classifiers utilizing images without an at-
tention region around the upcoming drivable ter-
rain demonstrated increased performance, indicat-
ing that there is important contextual information in the
non-path pixels of the image. Our future work will ex-
amine other attention region variations, such cropping
images around the upcoming drivable terrain or pass-
ing the attention region as an additional parameter to
avoid losing background information [19]. Moreover,
our models utilized images where some non-path pix-
els could be included in the attention region. We will
replicate these experiments with a manual, precise at-
tention region drawn for all images in the dataset.
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