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Abstract—This paper describes the structure and functionality
of a dataset designed to enable autonomous vehicles to learn
about off-road terrain using a single monocular image. This
dataset includes over 12,000 images of off-road terrain and
the corresponding sensor data from a global positioning system
(GPS), inertial measurement units (IMUs), and a wheel rotation
speed sensor. The paper also describes eight roughness metrics
derived from IMU z-axis acceleration for labeling the images in
our dataset and evaluating which can be learned most effectively.

The results of our experiments showed that the two metrics
learned most effectively were Label 6 (the standard deviation of a
1-second sampling of z-axis acceleration readings directly ahead
of the image’s timestamp, discretized using k-means clustering
with k = 2) and Label 8 (the standard deviation of a 1-second
sampling of z-axis acceleration readings directly ahead of the
image’s timestamp, discretized using k-means clustering with k
= 4).

Index Terms—Autonomous driving, off-road terrain, terrain
roughness, deep learning, dataset

I. INTRODUCTION

Research on autonomous vehicles has been a key focus in
recent years, leading to the rise of increasingly autonomous
vehicles operating on roadways. For example, in 2019 it
was reported that over 1,400 roadway autonomous vehicles
across over 80 companies were in the testing stages [1] in
the U.S. alone. However, it is also crucial that researchers
explore autonomous vehicles in off-road environments. The
passenger-carrying autonomous vehicle industry eventually
seeks to achieve ”Level 5” autonomy, which enables entirely
autonomous operation in all conditions [2]. Therefore, if a
vehicle ends up in an unexpected situation or on a route
containing unmarked or unpaved terrain, the vehicle should
be equipped to traverse it safely.

In addition, Autonomous Ground Vehicles (AGVs) are au-
tonomous vehicles designed to complete specific tasks without
human supervision [3]. AGVs have applications in search and
rescue, mining [4], [5], and planetary exploration [6]. AGV’s
encounter a wide range of off-road terrain that they must
handle autonomously to complete their tasks safely.

Our research provides an extensive off-road terrain dataset
including over 12,000 images from a monocular camera and
sensor readings from a GPS, IMUs, and a wheel rotation
speed sensor. We also derive eight potential measures of terrain
roughness from the IMU z-axis acceleration readings that can
be used to label images and evaluate their effectiveness.

Past research has performed semantic segmentation for ter-
rain processing [7]–[9] and classification of qualitative terrain

type [4], [10]–[13]. To the best of our knowledge, however,
past research has not examined classifying terrain roughness
as a measure of the vehicle’s future kinetics from a single,
monocular image, as is provided by the labels in our dataset.

II. RESEARCH CHALLENGES AND EXPERIMENTATION
APPROACH

This section first describes the following three challenges
involved in preparing an off-road terrain dataset:
• Lack of relevant off-road terrain data. Data collection

at scale for roadway autonomous vehicles is relatively
feasible due to the vast network of roads on which
humans driving vehicles equipped with sensors can travel
to collect data. In contrast, there is a much smaller
network of relevant off-road drivable terrain.

• Traversing rough off-road terrain can cause an un-
steady camera, which yields images where any drivable
terrain ahead is not clearly visible. Moreover, trees sur-
round most of the drivable portions of off-road terrain.
Images are therefore susceptible to poor lighting and
uneven sunlight that may obstruct the image view.

• Labeling images of upcoming drivable terrain with
a single quantative roughness metric derived from
IMU z-axis acceleration readings is hard because the
length of terrain visible in an image may be unknown.
As a result, determining the z-axis acceleration readings
corresponding to the upcoming drivable terrain in the
image is challenging. Validating that a given roughness
metric effectively labels the images in the dataset is also
hard because a human may not have intuitive insight as
to how the vehicle’s motion will be affected by traversing
this terrain, even though certain visual cues may be
indicative of terrain roughness.

To address these research challenges and assist the au-
tonomous vehicle community in making progress for off-road
environments, we collected and evaluated the off-road terrain
dataset described in this paper. This dataset includes eight
potential roughness labeling schemas for images we collected.
The remainder of this paper is organized as follows: Section III
describes the dataset; Sections IV to VI then address (1) What
roughness metric should be used to label images, (2) how do
we filter and select the images in our dataset, and (3) which
of these potential roughness labeling schemas can be learned
most effectively; and Section VII presents concluding remarks
and outlines future work.



III. OVERVIEW OF THE OFF-ROAD TERRAIN DATASET

The dataset is available at kaggle.com/magnumresearchgroup/

offroad-terrain-dataset-for-autonomous-vehicles. The data
was collected in Percy Warner Park in Nashville, Tennessee,
USA via a mountain bike equipped with the following sensors:
(1) dual GPS receivers (Garmin 830), (2) dual-high resolution
IMU’s (Garmin Virb Ultra), (3) a 4k 30fps camera time
synchronized to both accelerometers (Garmin Virb Ultra), and
(4) a wheel rotation speed sensor (Garmin Bike Speed Sensor
2). Data was collected on five different dates between late July
and early October 2020.

The dataset contains two forms of data: sensor data and
image frames extracted from video data. The videos were
taken by a single monocular camera attached to the bike’s
handlebars. Image frames were extracted at one second inter-
vals to minimize overlap between frames. The frame rate of
our camera was ∼29.97 frames per second. It therefore was
not possible to extract image frames at exactly one second
intervals, so instead we found the image frame most closely
corresponding to each second interval.

Image frames are named by their UTC timestamps in
seconds and milliseconds (e.g., “1000s100ms”). We generated
12,982 images over nearly 44 miles of off-road terrain. We
then excluded all images containing sensitive information (e.g.,
pictures of other bikers and license plates) and images taken
before or after the bike traveled the off-road trail, resulting in
12,730 images included in our public dataset.

These images are not filtered by whether they contain a
path, optimal lighting, or sufficient visible terrain for terrain
learning so that researchers have access to the entire range of
images collected by the vehicle. The size of each image is
3,840 x 2,160 pixels.

Sensor data is store in a format called a “fit file.” We
converted fit files to comma-separated-value (CSV) files using
tools provided by Garmin [14], [15]. We then formatted each
CSV to a state-based representation where each row contains
the readings at a single timestamp and add UTC timestamps
to each reading so the data can be used alongside the image
frames. This dataset contains the information described below.
1. Formatted sensor data. There is a folder for each data
collection session with the following CSVs.

1) accelerometer calibrated split.csv which contains the
calibrated and uncalibrated acceleration readings from
the accelerometer, taken ∼10 ms apart.

2) gyroscope calibrated split.csv which contains the cal-
ibrated and uncalibrated readings from the gyroscope,
taken ∼10 ms apart.

3) magnetometer split.csv, which contains the uncalibrated
magnetometer readings.

4) gps.csv, which contains the vehicle’s latitute, longitude,
altitude, speed, heading, and velocity, taken ∼100 ms
apart.

5) record.csv, which contains the vehicle’s latitude, lon-
gitude, distance traveled, speed, and altitude, taken 1
second apart.

2. Roughness labels for images. CSVs of the eight potential
roughness labels for the subset of images valid for these
labeling schemas are included, as described in Section V.

1) labels tsm1.csv contains Labels 1–4, as described in
Section IV.

2) labels tsm2.csv contians Labels 5–8, as described in
Section IV.

The accelerometer, gyroscope, magnetometer, and GPS
CSV files contain system timestamps that represent the rel-
ative time since the start of the data collection session, and
calculated UTC timestamps. The GPS CSV file also contains a
UTC timestamp recorded by the sensor, which may not always
align with the calculated UTC timestamp due to sensor lags
at certain parts in the forest. Calibrated readings correspond
directly to the x-, y-, and z-axes and are in the conventionally
understood units. Our data did not contain the calibration
factor necessary to calibrate the magnetometer CSV, meaning
that the x-, y-, and z-axis readings may not correspond directly
to these axes. The speed and velocity readings in the GPS CSV
file are GPS estimates and are significantly less accurate than
the speed readings in the record CSV file, which are recorded
from the wheel rotation speed sensor.

IV. RESEARCH QUESTION 1: WHAT ROUGHNESS METRIC
SHOULD BE USED TO LABEL IMAGES?

This section explores the derivation of our eight roughness
labeling schemas based on the IMU z-axis acceleration read-
ings for labeling images of off-road terrain.

A. Roughness Metric

Many studies have used z-axis acceleration to examine
terrain roughness [4], [8], [13], [16]. This measure provides
insight about how the vehicle’s motion will be affected by
traversing the upcoming terrain. Although Stavens et al. [8]
standardized their measure of roughness by speed, we used a
different approach with our roughness metrics since our data
did not exhibit a linear relationship between z-axis acceleration
and speed, likely because the speeds of our vehicle (i.e., a
bicycle) were significantly slower than the vehicle (i.e., a car)
used by Stavens et al.

Our roughness metric takes the standard deviation of a 1
second window of z-axis acceleration readings. This metric is
a comprehensive measure of the terrain in the sample and is
stable when the sample’s mean is nonzero (such as traveling
down a hill with increasing acceleration). While our samples
could reflect between 1–7 meters since the vehicle’s speed
was typically between 1–7 m/s, a standard sample size was
important to avoid certain samples being more susceptible to
outliers than others.

We then determined which 1-second window of z-axis
acceleration readings should be used to label each image.
The bike traveled along particularly rough terrain, causing
the angle and position of the camera to vary. The amount
of upcoming terrain and its distance from the vehicle was
therefore not constant across all images. For this reason, we
decided to examine two terrain sampling approaches:



1) Terrain Sampling Method 1 (TSM 1), which used a 1
second sampling of z-axis acceleration readings centered
around the timestamp corresponding to 5 meters ahead
of the image.

2) Terrain Sampling Method 2 (TSM 2), which used a 1
second sampling of z-axis acceleration readings directly
ahead of the image’s timestamp.

We discretized the continuous roughness metric using each
of four methods: (1) data visualization (examining the data
distribution and z-axis acceleration readings alongside the
continuous roughness metric), (2) k-means clustering with k
= 2, (3) k-means clustering with k = 3, and (4) k-means
clustering with k = 4. These methods will be referred to as
original groups, k = 2 groups, k = 3 groups, and k = 4 groups,
respectively. In calculating the 1 second sample for TSM 1,
only 0.99 seconds of readings were included.

B. Labeling Images

Each image was assigned eight labels, one for each possible
combination of the two methods of sampling the terrain and
the four methods of discretizing the roughness metric:

1) Label 1: TSM 1, original groups.
2) Label 2: TSM 1, k = 2 groups.
3) Label 3: TSM 1, k = 3 groups.
4) Label 4: TSM 1, k = 4 groups.
5) Label 5: TSM 2, original groups.
6) Label 6: TSM 2, k = 2 groups.
7) Label 7: TSM 2, k = 3 groups.
8) Label 8: TSM 2, k = 4 groups.

V. RESEARCH QUESTION 2: HOW DO WE SELECT AND
FILTER IMAGES IN OUR DATASET?

We filtered the 12,982 images in our dataset based on
sensor and visual criteria, which resulted in 7,070 images valid
for Labels 1–4. To compare Labels 1–4 and Labels 5–8, we
filtered the images valid for Labels 5–8 to include only images
also valid for Labels 1–4, resulting in 7,061 images valid for
Labels 5–8. The labeling CSVs included in our dataset do not
contain two of the images used in this experiment since these
images included other bikers.

We performed sensor validation to confirm that the sensor
readings either 5 meters or 3 seconds ahead of each image met
the following criteria: (1) the vehicle should not be stopped, (2)
sensor readings should be continuous, and (3) the calculated
UTC timestamp should be within 1 second of the reported
UTC timestamp. In sensor validation for Labels 1–4, we
included the third criterion and GPS continuity in case other
sensor readings were also affected. We did not consider these
criteria for Labels 5–8 because significantly less sensor data
was used to calculate these labels.

The next step of validation was visual validation. We
confirmed that each image contained a clearly visible path. We
trained an image classifier to determine which images met this
criteria. We then performed two rounds of manual validation
to confirm the classifier’s predictions.

TABLE I
SELECTION SET PERFORMANCE OF LABELING SCHEMAS

TSM 1 TSM 2 Difference
(TSM 2 - TSM 1)

Overall
accuracy

Avg class
accuracy

Overall
accuracy

Avg class
accuracy

Overall
accuracy

Avg class
accuracy

Original groups 34.75% 36.48% 45.48% 47.72% 10.73% 11.24%
k = 2 groups 71.19% 71.33% 73.45% 75.06% 2.26% 3.73%
k = 3 groups 55.65% 46.20% 60.17% 52.30% 4.52% 6.10%
k = 4 groups 45.76% 35.72% 50.00% 46.27% 4.24% 10.55%

Average 5.44% 7.91%

VI. RESEARCH QUESTION 3: WHICH OF THE PROPOSED
LABELING SCHEMAS CAN BE LEARNED MOST

EFFECTIVELY?

A. Overview

We evaluated how effectively each of labeling schemas
presented in Section IV-B could be learned by deep learning
models. We trained eight different roughness classifiers, where
each uses one of the eight labeling schemas: Model 1 (Label
1), Model 2 (Label 2), Model 3 (Label 3), Model 4 (Label
4), Model 5 (Label 5), Model 6 (Label 6), Model 7 (Label 7),
Model 8 (Label 8).

B. Method

We split the data randomly as follows. 80% of the data
was set aside for training and validation, 5% of the data was
reserved for a “selection set” to select the most effectively
learned labeling schemas, and 15% of the data was reserved
for the testing set to provide a final evaluation of the selected
models. The classes under each labeling schema were skewed,
so we balanced the training-validation set by undersampling
the majority classes for each labeling schema.

The image classifiers were trained in fastai [17] using
transfer learning with ResNet50 [18]. We resized all images
to 270 x 480 pixels to speed up training time. We used the
fastai default transforms [19], which apply common image
transformations to random images in the training set. We
excluded the horizontal flip transform so that future work can
investigate balancing classes by oversampling images in non-
majority classes with a horizontal flip.

The testing and selection sets remained skewed to reflect
the real-world data. We therefore evaluated the models on two
metrics: overall accuracy and average accuracy by class. Av-
erage accuracy by class more heavily accounts for the model’s
performance on the non-majority classes than overall accuracy,
whereas overall accuracy reflects the model’s performance on
the actual terrain.

C. Analysis of Results

We trained the models and then evaluated their performance
on the selection set to determine which two labeling schemas
were learned most effectively. The selection set results are
shown in Table I.

We first compared TSM 1 with TSM 2 by examining them
side-by-side for each method of discretizing the roughness
metric. TSM 2 consistently performed better than TSM 1 in
both overall accuracy and average accuracy by class for each
method of discretizing the roughness metric.



We then compared methods for discretizing the roughness
metric, examining only TSM 2. The model trained with k = 2
groups had both the highest accuracy and highest accuracy
by class, likely because the classifier had to learn only 2
categories. The jump in performance from the model trained
with the k = 2 groups to the model trained with the k = 3
groups was significantly larger than the jump in performance
from the model trained with the k = 3 groups to the model
trained with the k = 4 groups. Likewise, the k = 4 groups
provided more specific information about the upcoming terrain
than the k = 3 groups. We therefore determined that the k =
4 groups were preferable compared to the k = 3 groups.

Next, we observed that the increase in overall accuracy of
the k = 4 groups compared to the original groups outweighed
the much smaller increase in average accuracy by class of
the original groups, making the k = 4 groups preferable. We
determined that the labels learned most effectively were Labels
6 and 8, the k = 2 and k = 4 groups for discretizing the data
with TSM 2.

D. Evaluation On the Test Set

We evaluated the models corresponding to these two labels
on the test set. The results are included in Table II.

While we chose to extract images from the videos at 1
second intervals to minimize overlap, some images may have
still contained parts of the terrain visible in chronologically
consecutive images. To ensure that the roughness classifiers
were learning, we further minimized potential overlap with a
more intuitive chronological training and testing split: the first
70% of the images in each session were used for training, the
next 15% of the images were used for validation, and the final
15% of the images were used for testing.

We trained models using Labels 6 and 8 with this chrono-
logical split: Model 9 (Label 6) and Model 10 (Label 8). The
results are summarized and compared to Model 6 (Label 6,
random split) and Model 8 (Label 8, random split) in Table
II.

TABLE II
PERFORMANCE OF MODELS 6, 8, 9, AND 10 ON THEIR RESPECTIVE TEST

SETS

Model Labeling schema Split Overall accuracy Accuracy by class

Model 6 Label 6 Random 69.91%
Class 0: 73.62%
Class 1: 58.71%
Average: 66.17%

Model 9 Label 6 Chronological 70.19%
Class 0: 72.76%
Class 1: 62.11%
Average: 67.44%

Model 8 Label 8 Random 51.32%

Class 0: 74.95%
Class 1: 45.50%
Class 2: 18.46%
Class 3: 0.00%
Average: 34.73%

Model 10 Label 8 Chronological 52.92%

Class 0: 72.41%
Class 1: 45.95%
Class 2: 34.22%
Class 3: 7.14%
Average: 39.93%

Not only did Models 9 and 10 achieve comparable accuracy
to Models 6 and 8, respectively, but they surpassed the cor-
responding models with the random splits in both evaluation
metrics. This performance increase may arise since the random
split allocated 5% of the data for the selection set, while these

images were used in the training and validation sets for the
chronological split. The goal of this experiment was to ensure
that the models were learning to predict terrain roughness,
without memorizing potentially overlapping parts of terrain
in chronologically consecutive images, which it succeeded in
doing.

VII. CONCLUDING REMARKS

This research presents a dataset for off-road terrain collected
by a mountain bike that was instrumented with various sensors.
We also include eight schemas for labeling images with a
measure of terrain roughness derived from the IMU z-axis
acceleration readings.

Based on experiments we conducted, we identified two
labeling schemas that were learned most effectively by the
corresponding image classifiers: Labels 6 (TSM 2, k = 2
groups) and 8 (TSM 2, k = 4 groups). We demonstrated
the performance of image classification models on these two
labels, achieving 70.19% overall accuracy and 67.44% average
accuracy by class for Label 6 52.92% overall accuracy and
39.93% average accuracy by class for Label 8.

The following are the key lessons we learned from conduct-
ing this research:
• Data for off-road autonomous vehicles can be collected

at scale by small, agile, and durable vehicles operated
by humans. By equipping a sturdy mountain bike with
a range of sensors, we were able to gather an extensive
off-road terrain dataset.

• We can learn about the future kinetics of the vehicle as
a result of upcoming terrain roughness from a single,
monocular image. While many problems in autonomous
driving are being approached with expensive vehicles
and extensive sensor suites, this research has shown that
we can learn about the upcoming terrain with a simple,
low-cost sensor set-up. However, an open question is
whether these results are sufficient to control autonomous
driving algorithms or if significant advancements will be
necessary.

Future work could expand our dataset by collecting data
from additional sensors (such as LiDAR), in other locations,
or with other vehicles (such as a car or a robot). It would also
be beneficial to determine a roughness metric or a method of
terrain sampling that accounts for all of the visible terrain in
an image. Collecting this information may require advanced
equipment at the time of data collection to store the amount
of terrain visible at any given time.
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