The Design and Performance of a
Real-time CORBA Event Service

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt

{harrison,levine,schmidi@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

June 24, 1998

This paper appeared in the Proceedings of the OOPSLA '97 coeal-time systems. In particular, the dynamic binding proper-
ference, Atlanta, Georgia, October, 1997. It is available from thies of OO programming languages seem antithetical to real-
Washington University, St. Louis, Department of Computer Scien¢eme systems, which require deterministic execution behavior
as Technical Report #WUCS-97-31. and low latency. However, many real-time application do-
mains (such as avionics, telecommunications, process control,
and distributed interactive simulation) can benefit from flexi-
Abstract ble and open distributed object computing architectures, such

The CORBA Event Service provides a flexible model for as§fithose defined in the CORBA specification [1].
chronous communication among objects. However, the stan-

dard CORBA Event Service specification lacks important fea- .

tures required by real-time applications. For instance, op$1 Overview of CORBA

ational flight programs for fighter aircraft have complex realcORBA is a distributed object computing middleware stan-
time processing requirements. This paper describes the degjgry being defined by the Object Management Group (OMG).
and performance of an object-oriented, real-time implementaoRBA is designed to support the development of flexible and
tion of the CORBA Event Service thatis designed to meet thes@able distributed services and applications by (1) separat-
requirements. ing interfaces from remote implementations and (2) automat-
This paper makes three contributions to the design and pﬁg many common network programming tasks (SUCh as ob-

formance measurement of object-oriented real-time systejagt registration, location, and activation; request demultiplex-
First, it illustrates how to extend the CORBA Event Service ﬁ'@; framing and error-hand]ing; parameter marsha”ing and

that it is suitable for real-time systems. These extensions S#emarshalling; and operation dispatching).

port periodic rate-based event processing and efficient eventigure 1 illustrates the primary components in the OMG
filtering and correlation. Second, it describes how to dgeference Model architecture [2]:

velop object-oriented event dispatching and scheduling mecha; ihe heart of the OMG Reference Model is Bbject Re-

anisms that can provide real-time guarantees. Finally, the Pitiest Broke{ORB). ORBs allow clients to invoke operations
per presents benchmarks that demonstrate the performagg€,get object implementations without concern for where

tradeoffg of alternative 'concurrent dispatching mechanisgg, object resides, what language the object is written in, the
for real-time Event Services. OS/hardware platform, or the type of communication proto-

cols and networks used to interconnect distributed objects [3].
This paper focuses on tH@ORBA Event Servi¢avhich is

defined within the CORBA Object Services (COS) component

in Figure 1. The COS specification [4] presents architectural
Hdels and interfaces that factor out common services for de-
loping distributed applications.

“This work was funded in part by McDonnell Douglas Aerospace and in Many di'StribUted applicationg exchange asynchronous re-
part by NSF, grant NCR-9628218. guests usingevent-basecexecution models [5]. To sup-

1 Introduction

There is a widespread belief in the embedded systems com
nity that object-oriented (OO) techniques are not suitable

g\ Puspy
APPLICATION DOMAIN COMMON ‘,“s\\ REAL-TIME Ushy)
AINTER‘FACESA

INTERFACES FACILITIES
A A A A A A

EVENT

CLIENT SERVICE SERVANT

A A

OBJECT REQUEST BROKER

I v RIDL
SKELETON|
OBJECT RIDL ORB QoS Rz;;I:,I;ZT;:IrE
SERVICES STUBS INTERFACE NDATIIR

Figure 1:OMG Reference Model Architecture.

0S KERNEL OS KERNEL
port these common use-cases, t.h(.a CORBA Eve_nt Service 05 1/0 SUBSYSTEM
fines supplier and consumer participants. Suppliers gener

ate events and consumers process events received from su NETWORK
ers. In addition, the CORBA Event Service definesaent
Channel, which is a mediator [6] that propagates events to
consumers on behalf of suppliers. Figure 2:TAO: An ORB Endsystem Architecture for High-
The OMG Event Service model simplifies application sofRerformance, Real-time CORBA.
ware by allowing decoupled suppliers and consumers, asyn-
chronous event delivery, and distributed group communica-)])
tion [7]. In theory, this model seems to address many Cow,d_es real-time thregds, though it lacks certain features re-
mon needs of event-based, real-time applications. In prégired for hard real-time systems [9].
tice, however, the standard CORBA Event Service specifica-
tiqn chks other impor.tant feature_s requi'red by real—timg aPo Related Work
plications such aseal-time event dispatching and scheduling
periodic event processingndefficient event filtering and cor- Conventional approaches to quality of service (QoS) enforce-
relation mechanisms ment have typically adopted existing solutions from the do-
To alleviate the limitations with the standard COS Eventain of real-time scheduling, [8], fair queuing in network
Service, we have developedReal-time Event ServicRT routers [10], or OS support for continuous media applications
Event Service) as part of the TAO project [3] at Washingtghl]. In addition, there have been efforts to implement new
University. TAO is a real-time ORB endsystem that providesncurrency mechanisms for real-time processing (such as the
end-to-end quality of service guarantees to applications faal-time threads of Mach [12] and real-time CPU scheduling
vertically integrating CORBA middleware with OS 1/O subpriorities of Solaris [13]).
systems, communication protocols, and network interfacesHowever, QoS research at the network and OS layers has
Figure 2 illustrates the key architectural components in TAft necessarily addressed key requirements and usage char-
and their relationship to the real-time Event Service. acteristics of distributed object computing middleware. For
TAO’s RT Event Service augments the CORBA Event Sénstance, research on QoS for network infrastructure has fo-
vice model by providing source-based and type-based filtetised largely on policies for allocating bandwidth on a per-
ing, event correlations, and real-time dispatching. To facdlennection basis. Likewise, research on real-time operat-
itate real-time schedulinge(g, rate monotonic [8]), TAO's ing systems has focused largely on avoiding priority inver-
RT Event Channels can be configured to support variaisns and non-determinism in synchronization and scheduling
strategies for priority-based event dispatching and preemptigrechanisms. In contrast, the programming model for develop-
This functionality is implemented using a real-time dispatcbrs of OO middleware focuses on invoking remote operations
ing mechanism that coordinates with a system-wide real-time distributed objects. Determining how to map the results
Scheduling Service. from the network and OS layers to OO middleware is a major
TAO’s RT Event Service runs on real-time OS platfornfecus of our research.
(e.g, VxWorks and Solaris 2.x) that provide real-time schedul- There are several commercial CORBA-compliant Event
ing guarantees to application threads. Windows NT also p8ervice implementations available from multiple vendors

(such as Expersoft, lona, Sun Systems, and Visigenic Sdft3 Organization
ware). lona also sells OrbixTalk, which is a messaging

technology based on IP multicast. Unfortunately, since thig paner is organized as follows: Section 2 describes how
CORBA Event Service specification does not address issyes-ora Event Service model can help to simplify applica-
critical for real-time applications, these implementations &g, gevelopmentin real-time domains like avionics; Section 3
not acceptable solutions for many domains. discusses the real-time extensions we added to the CORBA

The OMG has issued a request for proposals (RFP) off¢ent Service; Section 4 outlines the OO framework for real-
new Notification Service [14] that has generated several #e event dispatching and scheduling that forms the core of
sponses [15]. The RFP specifies that a proposed Notificafid¥?’s Real-time Event Service; Section 5 shows how differ-
Service must be a superset of the COS Event Service withéht implementations of the dispatching and scheduling mecha-
terfaces for the following features: event filtering, event delidisms perform under different workloads on VxWorks running
ery semanticse.g, at least once, at most onag), security, real-time threads; Section 6 discusses our experiences using
event channel federations, and event delivery QoS. The orfg& techniques in a real-time context; and Section 7 presents
nizations contributing to this effort have done some excelldéfincluding remarks.
work in addressing many of the shortcomings of the CORBA
Event Service [16]. However, the OMG RFP documents do
not address the implementation issues related to the Notifica-

tion Service.
2 Overview of the OMG CORBA

Although there has been research on formalisms for real- .
time objects [17], relatively little published research on the Event Service
design and performance of real-time OO systems exists. Our
approach is based on emerging distributed object computin%_
standardsi(e, CORBA) — we focus on the design and perfo@-1 Background
mance of various strategies for implementing QoS in real-time

ORBs [3]. The standard CORBA operation invocation model sup-

The QuO project at BBN [18] has defined a model fjorts twoway, oneway, and deferred synchrpnous interac-
communicating changes in QoS characteristics betweenﬁﬂs between clients and servers. The primary strength
plications, middleware, and the underlying endsystems &qthe twoway model is its intuitive mapping onto the
network. The QuO architecture differs from our work ofPiect->0operation() paradigm supported by OO lan-
RT Event Channels, however, since QuO does not provii#2ges. In principle, twoway invocations simplify the devel-
hard real-time guarantees of ORB endsystem CPU sche@fment of distributed applications by supporting an |mpI|.C|t
ing. SunSoft [19] describes techniques for optimizing the p&fduest/response protocol that makes remote operation invo-
formance of CORBA Event Service implementations. As wiffftions transparent to the client.

QuO, their focus also was not on guaranteeing CPU processn practice, however, the standard CORBA operation in-
ing for events with hard real-time deadlines. vocation models is too restrictive for real-time applications.

Rajkumar,et al, describe a real-time publisher/subscribé? particular, these m_odelsllack as_:ynchronous message c_ieliv-

ry, do not support timed invocations or group communica-

prototype developed at CMU SEI [5]. Their Publisher/Sufy!

scriber model is functionally similar to the COS Event Sefon and can lead to excessive polling by clients. Moreover,

vice, though it uses real-time threads to prevent priority inv fandard oneway invocations might not implement refiable de-
sion within the communication framework. One interestinfy°"Y and deferred §ynchr0n9us Invocations require thg use of
aspect of the CMU model is the separation of priorities fi e CORBA Dynamic Invocation Interface (DII), which yields

subscription and event transfer so that these activities can BeeSSIve overhead for most real-time applications [20].

handled by different threads with different priorities. How- The Event Service is a CORBA Object Service that is
ever, the model does not utilize any QoS specifications fratesigned to alleviate some of the restrictions with standard
publishers (suppliers) or subscribers (consumers). As a restddRBA invocation models. In particular, the COS Event Ser-
the message delivery mechanism does not assign threadvite supports asynchronous message delivery and allows one
orities according to the priorities of publishers or subscribeos.more suppliers to send messages to one or more consumers.
In contrast, the TAO Event Service utilizes QoS parameté&rgent data can be delivered from suppliers to consumers with-
from suppliers and consumers to guarantee the event delivary requiring these participants to know about each other ex-
semantics determined by a real-time scheduling service. plicitly.

2.2 Structure and Participants for the COS
Event Service

High Level

VO Facade /O Facade) { /O Facade) Apstraction

Figure 3 shows the key participants in the COS Event Service
architecture:

PULL
PULL

1: 1/0 via mterrupt

PUSH
/
Alrcraft L‘ | =1L | Low Level
PUSH - Sensors ; _ Abstraction

Figure 4:Example Avionics Mission Control Application.

Figure 3:Participants in the COS Event Channel Architec- 2-3 Applyi_ng TAC_)’S .ReaHime Event Service to
ture. Real-time Avionics Systems

Modern avionics systems are characterized by processing
tasks with deterministic and statistical real-time deadlines, pe-
é’IOdIC processing requirements, and complex data dependen-

targets of events generated by suppliers. Suppliers and &Gigs: Building flexible application software and OO middle-
sumers can both play active and passive roles. An active pWQﬁe that meets these requirements is challenging because the
supplierpushesan event to a passive push consumer. Lik eed for determinism and predictability often results in tightly

wise, a passive pull supplier waits for an active pull consurr?é’rufleld deIS|grls For mstatncfe Icon\llentltonal ?vclionlcs mlssbul)n
to pull an event from it. control applications consist of closely integrated responsibil-

ities that manage sensors, navigate the airplane’s course, and

« Event Channel: At the heart of the COS Event Service i§°Ntrol weapon release.

the Event Channel, which plays the role of a mediator betweerd ight coupling often yields highly efficient custom imple-
consumers and suppliers. The Event Channel manages o[jrmtations. As the example below shows, however, the inflex-
references to suppliers and consumers. It appears as a “prdijity of tightly coupled software can substantially increase
consumer to the real suppliers on one side of the channel ity effort and cost of integrating new and improved avionics

as a “proxy” supplier to the real consumers on the other sigéeatures. For example, navigation suites are a source of contin-
ual change, both across platforms and over time. The specific

Suppliers use Event Channels to push data to consumeosnponents that make up the navigation suiig,(sensors)
Likewise, consumers can explicitly pull data from suppliershange frequently to improve accuracy and availability. Many
The push and pull semantics of event propagation helpctmventional avionics systems treat each implementation as a
free consumers and suppliers from the overly restrictive sypeint solution,” with built-in dependencies on particular com-
chronous semantics of the standard CORBA twoway comnponents. This tight coupling requires expensive and time con-
nication model. In addition, Event Channels can implemesuming development effort to port systems to newer and more
group communication by serving as a replicator, broadcaspawerful navigation technologies.
or multicaster that forward events from one or more suppliers
to multiple consumers.

There are two models.€., pushvs. pull) of participant col- 2.4 Overview of Conventional Avionics Appli-
laborations in the COS Event Service architecture. This paper cation Architectures
focuses on real-time enhancements to the push model, which
allows suppliers of events to initiate the transfer of event dddgure 4 shows a conventional architecture for distributing pe-
to consumers. Suppliers push events to the Event Channetic I/O events throughout an avionics application. This ex-
which in turn pushes the events to consumers. ample has the following participants:

The role of each participant is outlined below:

e Suppliers and consumers: Consumers are the ultimat

e Aircraft Sensors: Aircraft-specific devices generate ser RS

sor data at regular intervals.g, 30 Hz (.e., 30 times a sec-
ond), 15 Hz, 5 Hzetc). The arrival of sensor data generate
interrupts that notify the mission computing applications to r /O Facade I/O Facade) [1/0 Facade
ceive the incoming data.
M)\ ok

e Sensor Proxies: Mission computing systems must proces

data to and from many types of aircraft sensors, includi 3: push (delmarshaled data)
Global Position System (GPS), Inertial Navigation Set (INS
and Forward Looking Infrared Radar. To decouple the dete
of sensor communication from the applications, Sensor Pr¢

objects are created for each sensor on the aircraft. When

interrupts occur, data from a sensor is givgn to an approj 2: push (demarshaled data)

ate Sensor Proxy. Each Sensor Proxy object demarshals / \

incoming data and notifies I/O Facade objects that depend

the sensor’s data. Since modern aircraft can be equipped \

hundreds of sensors, a large number of Sensor Proxy obij Sensor Sensor Sensor Sensor
Proxy Proxy Proxy Proxy

1\/O via interrupt/

may exist in the system.

¢ /O Facade: 1/O Facades represent objects that depend
data from one or more Sensor Proxies. /O Facade obije

use data from Sensor Proxies to provide higher-level vie [
to other application objects. For instance, the aircraft po Aircraft Iﬁi
tion computed by an I/O Facade is used by the navigation & Sensors 1]

weapon release subsystems. e s S

The pushdriven model described above is commonly used
in many real-time environments, such as industrial procddgure 5:Example Avionics Application with Event Chan-
control systems and military command/control systems. On@J.
positive consequence of this push-driven model is the efficient

and predictable execution of operations. For instance, I/O lE_a

cades only execute when their event dependencies are satisf?eé‘des’. each Sensor Proxy must know which I/O Facades de-
(i.e, when they are called by Sensor Proxies) pend on its data. As a result, changes to the I/0 Facade layer

In contrast, using aull-driven model to design the mis-(e'g’ addition/removal of a consumer) require the modifica-

. L2 . tion of Sensor Proxies. Likewise, consumers that register for
sion control application would require I/O Facades that ac- . ; .]
tively acquire data from the Sensor Proxies. If the data w%%"baCks are tightly coupled with suppller§. If the availability
not available to be pulled, the calling I/0 Facade would ne&g W hardware (such as Forward Looking Infrared Radar)

to block awaiting a result. In order for the 1/O Facade gquwes a new Sensor Proxy, /O Facades must be altered to

pull, the system must allocate additional threads to allow t é<e advantage of the new technology.

application to make progress while the I/O Facade task is

blocked. However, adding threads to the system has mang Alleviating Drawbacks with Conventional

negative consequences (such as mcreased context squ:hlng Avionics Architectures

overhead, synchronization complexity, and complex real-time

thread scheduling policies). Conversely, by using the pusigure 5 shows how an Event Channel can alleviate the disad-

model, blocking is largely alleviated, which reduces the neeahtages of the tightly coupled consumers and suppliers shown

for additional threads. Therefore, this paper focuses on #lmve in Figure 4.

push model. In Figure 5, Sensor Proxy objects are suppliers of I/O events
that are propagated by an Event Channelto I/0O Facades, which

2.5 Drawbacks with Conventional Avionics Ar- consume the demarshalled I/O data. Sensor Proxies push 1/0

chitectures events to the channel without having to know which 1/0O Fa-

cades depend on the data. The benefit of using the Event Chan-

A disadvantage to the architecture shown in Figure 4 is thel is that Sensor Proxies are unaffected when I/O Facades are

strong coupling between suppliers (Sensor Proxies) and cadded or removed. This architectural decoupling is described

sumers (I/0 Facades). For instance, in order to call back to E@ncisely by the Observer pattern [6].

Another benefit of an Event Channel-based architecturesismers can use to specify their execution and scheduling re-
that an 1/0 Facade need not know which Sensor Proxies sgpirements. Therefore, standard COS Event Channels provide
ply its data. Since the channel mediates on behalf of theguarantee that they will dispatch events from suppliers with
Sensor Proxies, I/O Facades can register for certain typeshef correct scheduling priority, relative to the consumers of
events €.g, GPS and/or INS data arrival) without knowinghese events.
which Sensor Proxies actually supply these types of event3AO’s RT Event Service extends the COS Event Service in-
(Section 3.2 discusses typed-filtering). Once again, the uséenfaces by allowing consumers and suppliers to specify their
an Event Channel makes it possible to add or remove Seres@cution requirements and characteristics using QoS param-
Proxies without changing I/O Facades. eters (such as worst-case execution time, rate, etc.). These pa-

rameters are used by the channel’s dispatching mechanism to
integrate with the system-wide real-time scheduling policy to

3 Overview of TAO’s Real-time Event determine event dispatch ordering and preemption strategies.
Service Section 4.2.1 describes these QoS parameters in more detail.

¢ No specification for centralized event filtering and cor-
3.1 Motivation relation: Some consumers can execute whenever an event

arrives from any supplier. Other consumers can execute only
As shown in the previous section, the CORBA COS Event Sgjhen an event arrives from a specific supplier. Still other con-
vice provides a flexible model for transmitting asynchronoggmers must postpone their execution until multiple events
events among objects. For example, it removes several{gye arrived from a particular set of supplieesg, a corre-
strictions inherent in synchronous twoway communicatiogtion of events).
Moreover, it frees application programmers from the tediousrqr instance, an I/0 Facade may depend on data from a sub-
and error-prone details of handling registrations from multigt of all Sensor Proxies. Furthermore, it may use data from
ple consumers and suppliers. In addition, the COS Event Sggny Sensor Proxies in a single calculation of aircraft posi-
vice interfaces are fa|r|y intuitive and the Consumel’/suppliﬁgn_ Therefore' the 1/O Facade can not make progress until
connections and event delivery models are symmetrical g{)thf the Sensor Proxy objects receive I/O from their external
straightforward. sensors.

However, the standard COS Event Service Specificationt js possible to implement filtering using standard COS
lacks several important features required by real-time aptizent Channels, which can be chained to create an event fil-
cations. Chief among these miSSing features include real'ti!@ﬁng graph that consumers to register for a subset of the to-
event dispatching and scheduling, periodic event processia@events in the system. However, the filter graph defined in
and centralized event filtering and correlations. To resol¥@&ndard COS increases the number of hops that a message
these limitations, we have developed a Real-time Event S@;st travel between suppliers and consumers. The increased
vice (RT Event Service) as part of the TAO project [3]. TAO'gverhead incurred by traversing these hops is typically unac-
RT Event Service extends the COS Event Service SpeCifica%@ta[ﬂe for real-time app“cations with low |atency require_
to satisfy the quality of service (QoS) needs of real-time aprents. Furthermore, the COS filtering model does not address
plications in domains like avionics, telecommunications, afgk event correlation needs of consumers that must wait for
process control. multiple events to occur before they can execute.

The following list summarizes the features missing in the To alleviate these problems, TAO’s RT Event Service pro-
COS Event Service and outlines how TAO's Real-time Evefiies filtering and correlation mechanisms that allow con-
Service supports them: sumers to specify logical OR and AND event dependencies.
e No guarantees for real-time event dispatching and When those dependencies.are met, the RT Ev,ent Service qlis-
scheduling: In a real-time system, events must be proces c.hes all events that satisfy the consumers dependenmes.
so that consumers can meet their QoS deadlines. For insta %lnstance, the I./O Facade can specify its reqwrements to

Bﬁ RT Event Service so that the channel only notifies the Fa-

the Sensor Proxies shown in Figure 5 generate notificatf) i : .
events that allow the /O Facades who depend on the s zf]\(je.object after all its Sensor Proxies have received I/O. At
t time, the I/O Facade receives an aggregate of all the Sen-

sor data to execute. To enforce a real-time scheduling poli > . :

higher priority I/O Facades must receive events and be allow cﬁ Proxies it depends on via a singlash .

to run to completion before lower priority I/O Facades receiweNo support for periodic processing: Consumers in real-

events. time systems typically requii@ units of computation time ev-
The COS Event Service has no notion of QoS, howevery P milliseconds. For instance, some avionics signal pro-

In particular, there is no Event Channel interface that coressing filters must be updated periodically or else they will

spend a substantial amount of time reconverging. Likewi

an |I/O Facade might guarantee regular delivery of its d:
to higher level components, regardless of whether its Sen
Proxy objects actually generate events at the expected rate 7}

In both cases, consumers have strict deadlines by wh ¥ bush (evenp/'

time they must execute the requestedunits of computa- I
tion time. However, the COS Event Service does not perr Consumer
consumers to specify their temporal execution requiremet Proxies
Therefore, perloldlc.processmg is not supported in stand ST
COS Event Service implementations. Module
TAO’s RT Event Service allows consumers to specify eve EVENT
dependency timeouts. It uses these timeout requeststo p CHANNEL Event Event
agate temporal events in coordination with system schedul Correlation Flow
policies.]n additional to the can_onical use of timeout ever Subscription
(i.e., receiving timeouts at some interval), a consumer can & Filtering
guest to receive a timeout event if its dependencies are
satisfied within some time period€., a real-time “watchdog” Priority| Supplier
timer). For instance, an I/0O Facade can register to receiv Timers| Proxies
timeout event if its Sensor Proxy dependencies are not s¢ P 4 A .
fied after some time interval. This way, it can make best ¢ pushl (event)

fort calculations on the older sensor data and notify interes
higher level components. @

3.2 RT Event Service Architecture

. . . , Figure 6:RT Event Service Architecture.
Figure 6 shows the high-level architecture of TAO’s RT Event

Service implementation.
The role of each componentin the RT Event Service is out-

lined below: Figure 7 shows the types of data exchanged and the inter-
) object collaborations involved when a consumer invokes the
e Event Channel: Inthe RT Event Service model, the EverlbroxyPushSuppIier::connect _push _consumer

Channel plays the same role as it does in the conventional qg&istration operation.
Event Service. Externally, it provides two factory interfaces,
ConsumerAdmin andSupplierAdmin , which allow ap-

plications to obtain consumer and supplier administration ot EVENT

jects, respectively. These administration objects make it pos ~ connect pusk CHANNEL
ble to connect and disconnect consumers and suppliers to CONSUMER
channel. Internally, the channel is comprised of several pr Object Ref Cgposxﬂ;"ser
cessing modules based on the ACE Streams framework [2 RT Info _ :
As described below, each module encapsulates independ - IS g
Correlation Module
tasks of the channel.
Specs Event CONNECT PUSH

. ven_ SUPPLIER
e Consumer Proxy Module: The interface to the Consumer o Correlation
Proxy Module is identical t€onsumerAdmin interface de- Subscription Info SUBSCHpHon Publish Types
fined in the COS Event ServicgosEventChannelAdmin & Filtering
module. It provides factory methods for creating objects tht | Timeoyt Registration [[Priority] Supplier
support theProxyPushSupplier interface. In the COS Timers| Proxies Object Ref
model, theProxyPushSupplier interface is used by con-

sumers to connect and disconnect from the channel.

TAO's RT Event Service model extends the standaggyre 7:Collaborations in the RT Event Service Architec-
COS ProxyPushSupplier interfaces so that consumerg e
can register their execution dependencies with a channel.

e Supplier Proxy Module: The interface to this module by certain suppliers. The event type system includes a
is identical to SupplierAdmin interface defined in the source ID field that allows applications to specify unique
COS Event Servic€osEventChannelAdmin module. It supplier identifiers with each event. The Subscription and
provides factory methods for creating objects that support Filtering Module uses this field to locate consumers that
the ProxyPushConsumer interface. Suppliers use the have subscribed to particular supplier€(iL) worst-case
ProxyPushConsumer interface to connect and disconnect time.

from the channel.

TAO’s RT Event Service model extends the standard co§ '
ProxyPushConsumer interface so that suppliers can spec-
ify the types of events they generate. With this information,
the channel’s Subscription and Filtering Module can build data
structures that allow efficient run-time lookups of subscribed
consumers.

ProxyPushConsumer objects also represent the entry 3. Combined supplier/type-based filtering Consumers
point of events from suppliers into an Event Channel. When can register for any combination of supplier and type-
Suppliers transmit an event to tiroxyPushConsumer based filtering €.g, only supplier-based, only type-
interface via the proxy’push operation the channel forwards based, or supplier-based and type-based). To implement
this event to thepush operation of interested consumer ob- this efficiently, the Subscription and Filtering Module
ject(s). maintains type-based subscription tables for every sup-

o Subscription and filtering: The CORBA Event Service Plierin the system.

defines Event Channels as broadcasters that forward all events\when an event enters the Subscription and Filtering Mod-
from suppliers to all consumers. This approach has several yle, consumers that subscribe to combined supplier/type-
drawbacks. If consumers are only interested in a subset of pased IDs are located with two table lookups. The first
events from the suppliers, they must implement their own |ookup finds all the type-based subscription tables cor-
event fiItering to discard unneeded events. Furthermore, if responding to the event's source ID. The second |00kup

a consumer ultimately discards an event, then delivering the finds the consumers subscribed to the event's type ID.
event to the consumer needlessly wastes bandwidth and pro-

Type-based filtering- Each event contains a type field.
This allows consumers to register for events of a particu-
lar type. Since the type field is represented as an enumer-
ated type, the subscription and Filtering Module utilizes
a lookup structure to find type-based subscribeS(ih)
worst-case time.

cessing. _ , , The Subscription and Filtering Module permits consumers
To address these shortcomings, TAO's RT Event Service gXqemnorarily disable event delivery by the channel through

tends the COS interfaces to allow consumers to subscribesfggpend andresume operations. These are lightweight op-

particular subsets of events. The channel uses these SUbSGEo s that have essentially the same effect as de-registering
tions to filter supplier events, only forwarding them to intety 4 re-registering for events. Thereforsyspend and

ested consumers. , . resume are suitable for frequent changes in consumer sets,
There are several reasons why TAO implements filtering,jiich commonly occur during mode changes. By incorpo-
the channel. First, the channel relieves consumers from mp%ng suspension and resumption in the module closest to

menting filtering semantics. Second, it reduces COmMMUNIigas g npliers, Event Channel processing is minimized for sus-
tion channel load by eliminating filtered events in the chan nded consumers

instead of at consumers. Furthermore, to implement filtering

atthe suppliers, the suppliers would require knowledge of cQpriority Timers Proxy: The Supplier Proxy Module con-
sumers. Since this would violate one of the primary motivgsins a special-purposgiority Timers Proxythat manages all
tions for an event service (that is, decoupled consumers @ftkrs registered with the channel. When a consumer regis-
suppliers), TAO integrates filtering into the channel. ters for a timeout, the Priority Timers Proxy cooperates with
Adding filtering to the Event Channel requires a welthe Run-time Scheduler to ensure that timeouts are dispatched
defined type system for events. Although the complete schega@ording to the priority of their corresponding consumer.
for this type system is beyond the scope of this pape, it ine prigrity Timers Proxy uses a heap-based callout queue
cludes source ID, type, data, and timestamp fields (the schefgg?_ Therefore, in the average and worst case, the time re-
is fully described in [22]). Thg RT Event Channel uses ”Eﬁjired to schedule, cancel, and expire a timeDigog N)
event type system in the following ways: (whereN is the total number of timers). The timer mechanism

1. Supplier-based filtering- Not all consumers that connecPreallocates all its memory, which eliminates the need for dy-

to an Event Channel are interested in the same eventd]@fic memory allocation at run-time. Therefore, this mecha-

this case, consumers only register for events generddisin iS well-suited for real-time systems requiring highly pre-
dictable and efficient timer operations.

e Event correlation: A consumer may require certain events
to occur before it can proceed. To implement this functional-
ity, consumers can specify conjunctive (“AND”) or disjunctive
(“OR") semantics when registering their filtering requirements
(i.e., supplier-based and/or type-based). Conjunctive seman-
tics instruct the channel to notify the consumer wiadirnthe
specified event dependencies are satisfied. Disjunctive seman-
tics instruct the channel to notify the consumer(s) waeyof

based filtering, correlations, and priority-based queueing
and dispatching.

e As discussed in Section 4, TAO's Event Channel Dis-
patching Module implements several concurrency strate-
gies. Each strategy caters to the type and availability of
system resources (such as the OS threading model and
the number of CPUs). TAO'’s Event Channel framework
is designed so that changing the number of threads in

the specified event dependencies are satisfied. Consumers Canye system, or changing to a single-threaded concurrency

register their filtering requests with a channel multiple times.
In this case, the channel creates a disjunction relation for each
of its consumer registrations.

strategy, does not require modifications to unrelated com-
ponents in a channel.

Mechanisms that perform filtering and correlation are called The following configurations can be achieved by remov-

Event Filtering Discriminator{EFDs). EFDs allow the run-
time infrastructure to handle dependency-based natifications
that would otherwise be performed by each consumallas
events were pushed to it. Thus, EFDs provide a “data reduc-
tion” service that minimizes the number of events received by
consumers so that they only receive events they are interested
in.

e Dispatching: The Dispatching Module determines when
events should be delivered to consumers and pushes the events
to them accordingly. To guarantee that consumers execute in
time to meet their deadlines, this module collaborates with the
system-wide Scheduling Service (discussed in Section 4.2).
TAQ's Off-line Scheduler initially implements the rate mono-
tonic scheduling policy. Section 4 illustrates how adding
new dispatching implementations is straightforward since this
module is well-encapsulated from other components in the
Event Channel’s OO real-time event dispatching framework.

3.3 Static and Dynamic Event Channel Config-
uration

The performance requirements of an RT Event Service may
vary for different types of real-time applications. The pri-
mary motivation for basing the internal architecture of the
TAO Event Channel on the ACE Streams framework is to al-
low static and dynamic channel configurations. Each module
shown in Figure 7 may contain multiple “pluggable” strate-

ing certain modules from an Event Channel:

— Removing the Dispatching Module from the Event

Channel results in akvent Forwarding Discrimi-
nator (EFD) configuration that supports event fil-
tering and correlations. An EFD configuration is
shown in Figure 9(C). Since TAO'’s Filtering and
Correlation Modules have been implemented to
guarantee deterministic run-time performance, the
EFD configuration is applicable for real-time ap-
plications that do not require priority-based queue-
ing and dispatching in the Event Channel. As dis-
cussed in Section 4.1.1 below, such systems might
implement real-time dispatching in the ORB’s Ob-
ject Adapter level, thereby simplifying the channel.

Removing the Correlation Module from a full TAO
Event Channel yields 8ubscription and Filtering
configuration. This configuration is useful for appli-
cations that have no complex inter-event correlation
dependencies, but simply want to receive events
when they match a simple filter.

A Broadcaster Repeaterconfiguration can be
achieved by removing the Correlation and Dis-
patching Modules. This configuration supports nei-
ther real-time dispatching nor filtering/correlations.
In essence, this implements the semantics of the
standard COS Event Channel push model.

gies, each optimized for different requirements. The Streamsin static real-time environments (such as conventional
based architecture allows independent processing moduleavionics systems), the configuration of an Event Channel is
be added, removed, or modified without requiring changesgenerally performed off-line to reduce startup overhead. In
other modules. dynamic real-time environments (such as telecommunication
TAO’s Event Channel can be configured in the followingall-processing), however, component policies may require al-
ways to support different event dispatching, filtering, and deration at run-time. In these contexts, it may be unaccept-
pendency 34 semantics: able to completely terminate a running Event Channel when a
e The modules implementing a “full” TAO Event Chanscheduling or concurrency policy is updated. In general, there-
nel include the Dispatching, Correlation, Filtering, anfibre, an RT Event Channel framework must support dynamic

Consumer/Supplier Proxy modules. Configuring a chameconfiguration of policies without interruption while continu-

nel with all of these modules supports type and sourdeg to service communication operations [24]. Basing TAO's

RT Event Channel on the ACE Streams framework suppc
both static and dynamic (re)configuration.

Event Channel

Consumer Proxies
Y

Dispatching Modulg

4 An Object-Oriented Framework for
Real-time Event Service Dispatching Dispatcher = =% =
and SChedUIing 6: dequeue (event, consuner)

y Priority Queues
0 1 2 3 4

Applications and middleware components using a real-tir E E E E E
Event Service have deterministic and statistical deadlin > endueue (event. consuner) >
As a result, TAO's RT Event Channel utilizes a real-tim Run-Time Scheduler
Scheduling Service to ensure that events are processed - oush
fore deadlines are missed. Most real-time scheduling pc 4 push (evert, consuer) i
cies (such as rate monotonic and earliest deadline first) req Event Correlation
priority-based event dispatching and preemption. To ma 3 push (event, consuner) T

mize reuse and allow flexibility between multiple schedulir

policies, TAO’s Event Channel framework separates the d Subscription & Filtering

patching mechanism from the scheduling policy. The di 2. push (evert) ?

patching mechanism implements priority-based dispatch . Supblier Proxies
. : Supplier ~ pp

and preemption, but consults a Run-time Scheduler to de 1 push (evert)

mine the priorities of objects and events.
This section discusses the Dispatching Module and

4.1 The Dispatching Module . . _
¢ Run-time Scheduler;: The Dispatching Module collabo-

The Dispatching Module is responsible for implementirrgtes with the Run-time Scheduler to determine priority values
priority-based event dispatching and preemption. When hfethe event/consumer tuples. Given an event and the target
Dispatching Module receives a set of supplier events from ttensumer, the Run-time Scheduler determines the priority at
Event Correlation Module, it queries the Run-time Schedulshich the event should be dispatched to the consumer.
to determine the priority of the consumers that the events ard@’he motivation for decoupling the Run-time Scheduler from
destined for. With that information, the Dispatching Modhe Dispatching Module is to allow scheduling policies to
ule can either (1) insert the events in the appropriate prioréyolve independently of the dispatching mechanism. TAO's
gueues (which are dispatched at a later time) or (2) preempBlun-time Scheduler was initially implemented with a rate
running thread to dispatch the new events immediately. monotonic scheduling policy that used the consumer’s rate to
The following figure shows the structure and dynamics @gtermine the tuple’s priority. Subsequent Run-time Scheduler
the Dispatching Module in the context of the Event Channeimplementations use an Earliest Deadline First (EFD) policy,
The participants in Figure 8 include the following: where the deadline of the event (or consumer) determines the
priority of the tuple. Thus, by separating the responsibilities of
e Consumer and Supplier Proxies: The Event Channel scheduling from dispatching, the Run-time Scheduler can be
utilizes proxies to encapsulate communication with the cdigPlaced without affecting unrelated components in the chan-
sumers and suppliers. For a distributed consumer or supphé¥;
a proxy manages the details of remote communication. Priority Queues: Given an event/consumer tuple, the
o i . Run-time Scheduler returns a preemption priority and a sub-
¢ Event filtering and cor.rela'.uon: When evgnts arrive from priority. The Dispatching Module maintains a priority queue
consumers, the Event Filtering and C_:orrelauon Modules det&f'events for each preemption priority used by the Run-time
mine which consumers should receive the events and Whe@{:ﬂeduler. When an event/consumer tuple arrives, it is in-
dispatch the events. These modules forward the events ©0dfi§q onto the queue corresponding to the preemption priority
Dispatching Module, which handles the details of d'SpatCh'F'&urned by the scheduler. The sub-priority is used by the Dis-

each event to its consumer(s) in accordance with the prioticher to determine where in the Priority Queue the tuple is
of the event/consumer(s) tuple.

10

placed (described below). Di:/l%adtﬁlling Di:/l%adtﬁlling Consumer
Proxies
e Dispatcher: The Dispatcher is responsible for removin e L e
gzvent/consumer tuples from the prlorlty'queue's and forwa BEpae Dispatchgy > Push ézlvfh?ﬁ’gc%lsduﬁr)
ing the events to the consumers by calling thpeish opera- - 0 g > > - \
tion. Depending on the placement of each tuple in the Prior /l\3 > 5 hemet — Event
. . . N t, . dequeue (event, ;
Queues, the Dispatcher may preempt a running thread in o / l *sgrllj;‘l:ﬁe(rz " l *cc?nssmer)* l Correlation
: 2: h t,
to dispatch the new tuple. vy NS yry vy e
For instance, consider the arrival of an event/consumer | § B EE|BEEEHE Subscription
ple in a Dispatching Module implemented with real-time pri| 2: enqueue (even 2: enqueue (event, & Filtering
. . . consumer) consumer)
emptive threads. If the Run-time Scheduler assigns the tup r—— ——— 1: push (event)
. = un-lime
preemptlon pI’IOt’I'ty higher than any currently running threa Scheduler Scheduler Supplier
the Dispatcher will preempt a running thread and dispatch - 1: push (event, le push (event Proxies
new tuple. Furthermore, assuming that lower numbers in consumen) consimer)
ple. ! 9 (A) RTU Dispatching (B) Threaded DispatchingC) EFD Dispatching

cate higher priority, the Dispatcher in Figure 8 would dispat.—
all tuples on queue 0 before dispatching any on queue 1. Sim-
ilarly, it would dispatch all tuples on queue 1 before those on Figure 9:Dispatcher Implementations.
gueue 2, and so on.

To remove tuples from Priority Queues, the Dispatcher % uests.

ways dequeues from t.he head of the queue. The Run-t) pt themselves when a higher priority consumer becomes
Scheduler can determine the order of dequeueing by rety{Mnable. This model of

ing different sub-priorities for different event/consumer s eal-time Upcall (RTU) concurrency mechanism [25]
ples. For instance, assume that an implementation of the Ru”l'he primary benefit of the RTU model is its ability to re-
time Scheduler must ensure that some e¥#gris always dis—a?n

This requires that consumers cooperatively pre-

: >~ duce the context switching, synchronization, and data move-
patched before evel;, but does not require that the arrivi g, 5y

¢ hread di hi o hiah ent overhead incurred by preemptive multi-threading imple-
of E, preempt a thread dispatchifg. By assigning a higher o yavions, However, preemption is delayed to the extent that

sub-priority to event/consumer tuples containtag the tu- consumers check to see if they must preempt themselves. This

ple will always b,e queued bgfore any tuples contairﬁ_ag Iahency may be unacceptable in some real-time applications.
Therefore, the Dispatcher will always dequeue and dispatc

E; events befor&, events. ¢ Real-time preemptive thread dispatching: An increas-

A benefit of separating the functionality of the Dispatchd}d number of OS platforms(g, VxWorks, Solaris 2.x, and
from the Priority Queues is to allow the implementation #EC UNIX) support real-time threads. Figure 9(B) shows
the Dispatcher to change independently of the other charffélimPlementation of the Dispatching Module that allocates
components. TAO’s RT Event Channel has been implemen?e@eal'“me thread (or pool of threads) to each priority queue.

with four different dispatching mechanisms, as described in! "€ advantage of this model is that the dispatcher can lever-
the following subsection. age kernel support for preemption by associating appropriate

OS priorities to each thread. For instance, when a thread at
the highest priority becomes ready to run, the OS will pre-
4.1.1 Dispatcher Preemption Strategies empt any lower priority thread that is running and allow the

higher priority thread to run. The disadvantages are that this

An important responsibility of the Event Channel's D'SpatChEFeemption incurs thread context switching overhead, and that

mechanism ipreemption Most real-time scheduling pOIICIeSapplications must identify, and synchronize access to, data that

require preemptior). For example, if consumer A yvit.h a Plian be shared by multipie threads.
ority of 2 is executing when consumer B with a priority of I~ o _ _ _
becomes runnable, consumer A should be preempted so thatBngle-threaded priority-based dispatching: The Dis-

can run until it completes or is itself preempted by a consunfi@tching Module can also be implemented with no support
with a priority of 0. As shown in Figure 9, TAO's Event Chanfor preemption. This is similar to the RTU dispatching mech-

nel Dispatching Module supports several levels of preempt@iSm in the sense that a single-thread is used to dispatch
via the following strategies: events based on priority. However, once a consumer receives

an event, it can run to completion regardless of the arrival of
¢ Real-time upcall (RTU) dispatching (with deferred pre- events for higher priority consumers.
emption): Figure 9(A) shows a single-threaded implementa-As with the RTU model, single-threaded dispatching ex-
tion where one thread is responsible for dispatching all quedmhits lower context switching overhead than the real-time

11

thread dispatching model. Moreover, since the channel maltit.3 Visualization of Dispatching Module Implementa-
tains its own thread of control, it does not borrow supplier tions

threads to propagate events. As aresult, the channelis an asyn-

chronous event delivery mechanism for suppliers. Howev&p, Visualize the semantic differences between the four Dis-
since the channel's dispatching thread does notimplement f@ching Module implementations outlined in Section 4.1.1,
emption, consumers run to completion regardless of priorify¢ implemented a timeline visualization tool in Java. The
As a result, single-threaded dispatching can suffer from pt,lmelme tool reads event logs from RT Event Service test runs

ority inversion, which results in lower system utilization an@nd displays atimeline of supplier and consumer activity. Fig-
non-determinism. ures 10 and 11 show timelines from multi-threaded and single-

threaded implementations of the Dispatching Module, respec-

« EFD dispatching: As discussed in Section 3.3, the I:)ist_ively. Each test run consists of 3 suppliers and 3 consumers,

patching Module can be removed from the channel, yieldin§’gich are listed on the y-axis. Supplieand consumerrun

purely EFD-based Event Channel. This configurationis sho@nthe highest frequency (40 Hz), suppliend consumer

in Figure 9(C). An EFD channel forwards all events to the cofil &t the next highest frequency (20 Hz), and suppléeTd

sumers without any priority queueing, real-time scheduling, §NSuUmey run at the lowest frequency (10 Hz).

context switching. Events are dispatched without attention tol € X-axis denotes time ipseconds. Each consumer and

priority, and there is no preemption of consumers when higtfsPplier outputs a point when it receives an event from the

priority event/consumer tuples become available. Eveqt Channel. Another pomt is o.utpu.t when it finishes pro-
EFD channels are appropriate in systems that do not h56&sing the event. Suppllers receive timeouts and generate a

significant priority-based requirements. In these cases, thfi@le event for each timeout. Each consumer registers for

is no overhead incurred by a Dispatching Module. Howev&?’ents from a single supplier. A horizontal line indicates the

EFD channels are not always suitable when real-time schedi{ii€ span when the respective consumer or supplier runs on

ing policies must be enforced. As shown in Section 5, our ngSa CPU.

formance results show that these drawbacks can cause missE@Ch figure is explained below:
deadlines even under relatively low loads.

The current design of the Dispatching Module is motivateﬁ
largely from need to support a single host, real-time eve
propagation mechanism. To allow all CORBA applicatior
to utilize the ORB’s real-time scheduling and dispatching fe _
tures, we are integrating the role of the Dispatching Mody| «=s=::# — i —s
into TAO's Real-time Object Adapter [3]. However, this pa

per focuses on an implementation that integrates real-time (| ™" S bt
patching into TAO’s Real-time Event Service. Faicailh 59
4.1.2 Scheduling Enforcement N

i e - —_— —

The real-time scheduling for the version of TAO’s Event Cha
nel described in this paper is performed off-line. Therefore, e e stk 1
mechanisms for enforcing component behavior are provid . i
Consequently, tasks that overrun their allotted resource a o5 R,
cations can cause other tasks to miss their deadlines. An g EH e R |3 Lﬂ
vantage of this “trusting” policy is there is no overhead ir.
curred by QoS enforcement mechanisms that would otherwise

be necessary to monitor and enforce the scheduling behaviofFigure 10:Timeline from Multi-Threaded Channel.

at run-time. A disadvantage is that all components must be-

have properlyj.e., they must use only the resources allottedReal-time thread dispatching: Figure 10 shows how OS

to them. Though the architecture of our Event Service frameal-time thread support for preemption results in supplier
work supports QoS enforcement, the decision not to incluaied consumegr being preempted whenever higher priority
this mechanism in the Event Channel is motivated by the stdtisks become runnable. Our performance results (discussed in
scheduling characteristics and stringent performance requection 5) demonstrate that Dispatching Module implemen-
ments of real-time avionics applications. tations (such as the real-time thread dispatching) that sup-

-
T

12

port more responsive preemption mechanisms yield higher reOur Real-time Scheduling Service requires that if an ob-
source utilization without missing deadlines. ject is to be scheduled, each of its operations must export an

« Single-threaded dispatching: Figure 11 shows how aRT_Info data structure describing the operation’s execution

single-threaded dispatching module can result in deadlines@f@Perties. During schedulirgpnfiguration rungdescribed in

ing missed if lower priority tasks hold the CPU for excessiveSction 4.2.2 belowRT.Info s contain execution times and

periods of time. The negative values next to the end times 8f€ equirements. At run-time, the static Scheduler need not

supplies, and consumershow the number gfisecs the dead-knOW any information about an operation’s execution charac-
lines were missed. In other words, consugrieeld the CPU teristics. Only the operation’s priority is needed, so the sched-

too long, so that higher rate suppliers and consumers were {f €an determine how the operation should be dispatched.
fus, at run-time, each operatiofRs _Info need only con-

able to execute in time to preserve correct application behg_ o :
ior. tain priority values for the operation.

At run-time, the Dispatching Module queries the Run-time
s s Scheduler for the priority of a consumer’s push operation.
The Run-time Scheduler uses a static repository that identifies
= = the execution requirements (including priority) of each oper-

ation. The Event Channel’s Dispatching Module uses the op-

15 o eration priority returned by the Run-time Scheduler to deter-
— mine which priority queue an event/consumer tuple should be
40 inserted onto.
— - All scheduling and priority computation is performed off-

line. This allows priorities to be computed rapidiye(, looked

up in O(1) time) at run-time. Thus, TAO’s Run-time Sched-
_ g uler simply provides an interface to the results of the Off-line
Scheduler, discussed below.

4.2.2 Off-line Scheduler

g EH ek 1rf |E Lﬂ The Off-line Scheduler has two responsibilities. First, it as-
! signs priorities to object operations. Second, it determines
whether a current Event Channel configuration is schedulable
Figure 11:Timeline from Single-Threaded Channel. given the available resources and the execution requirements
of supplier and consumer operations. Both responsibilities re-
quire that operation interdependencies be calculatedTiagla
. .) Interdependency Compilatigmmocess during during@nfigu-
4.2 Real-time Scheduling Service ration run. Task Interdependency Compilation builds a repos-

The RT Event Service must guarantee that consumers recERigy that records which objects’ operations call each other.
and process events with sufficient time to meet their deadlinE&IS can be visualized as a directed graph where the nodes in
To accomplish this, we have developed a Real-time Schedhg graph are object operations and dwgcte_d edges indicate that
ing Service. The two primary components in the Real-tinf'® Operation calls another, as shown in Figure 12.

Scheduling Service are the Run-time Scheduler and Off-lind2nce Task Interdependency Compilation is complete, the
Scheduler. Although a complete discussion of these compyt-line Scheduler assigns priorities to each object operation.
nents is beyond the scope of this paper, their responsibilité’se implementation of the Event Service described in this pa-

are summarized below ([22] describes these components inRfd-utilizes a rate monotonic scheduling (RMS) policy [8, 26].
tail). Therefore, priorities are assigned based on task raees,

higher priorities are assigned to threads with faster rates. For
instance, a task that needs to execute at 30 Hz would be as-
signed to a thread with a higher priority than a task that needs
The Run-time Scheduler associates priorities with target objecexecute at 15 Hz.

implementation operations at run-time. The implementationMost operating systems that support real-time threads guar-
of the Real-time Scheduling Service described in this papetee higher priority threads will (1) preempt lower prior-
uses a static scheduling policy. Therefore, thread priorities @yethreads and (2) run to completion (or until higher prior-
determined prior to run-time by the Off-line Scheduler. ity threads preempt them). Therefore, object operations with

4.2.1 Run-time Scheduler

13

Single-Threaded implementations support no preemption; the

CALL-CHAIN -/ 23 mis/20 Hz=>prioRiry 1 RTU implementation supports deferred preemptions; and the
LEAF multi-threaded version uses OS support for immediate pre-
— DEPENDENCIES RT_OPERATION| emption. The goal of the benchmarks described below is to
RT - measure the utilization implications of each approach.
Operation 8 ms/20 Hz)
The performance tests discussed below were conducted on a
CALL-CHAIN 15 Ms/10 HZ => PRIORITY 2 smgle—CPp Pen't|um Pro 200 MHz WOI’kS.tatIOI’].WIth'lZS MB
LEAF RAM running Windows NT 4.0. Test configurations included
— DEPENDENCIES RT _OPERATION, 3 suppliers and 3 consumers. As shown in. Figure 13, the time-
RT | | | | | | | | | 5 vs/10 Hz line tool can zoom out to show the periodic nature of the test
Operation s participants.
Work DEPENDENCIES RT_OPERATION3 ain e LA L s e
Operation | | | | | | | [Joms . e E ww
- - I—I - -
Figure 12:Scheduling Service Internal Repository. A
- =1 & &
higher priorities will preempt object operations with lower pri i T
orities. These priority values are computed by the Off-lirf, E 1ol 1 0) M 2 e
Scheduler and are stored in a table that is queried by the R _ P sl
time Scheduler at execution time. el HE e
S e [f il
5 Performance Tests

5.1 Utilization Measurements Figure 13:Wide view of test run.

For non-real-time Event Channels.§, EFD-based), correct- The view in Figure 13 shows the relative frequencies of
ness implies that consumers receive events when their depleg-participants. Suppliglgenerates events for consumat
dencies are meti.e., source/type subscriptions and correlahe highest frequency (40 Hz). Likewise, suppligenerates
tions). Conversely, for real-time Event Chann&gy(RTUs events for consumemat 20 Hz, and suppligigenerates events
and real-time threads), correctness implies that deadlinesfare&onsumey at 10 Hz.

met. Therefore, correct RT Event Service behavior requiresigure 14 shows the total CPU utilization achieved (y-axis)
that (1) consumers receive events when their dependenciegg@reach Event Channel implementatiom{ multi-threaded,
satisfiedand (2) consumers receive these events in time RYU, single-threaded, and EFD), as the workload configura-
meet their deadlines. tion was changed (x-axis).

An important metric for evaluating the performance of the More specifically, the x-axis in Figure 14 represents the per-
RT Event Service is thechedulable boundThe schedulable centage workload given to the 40 Hz supplier and consumer.
bound of a real-time schedule is the maximum resource Wbr instance, at the 10 percent x-axis column, the 40 Hz sup-
lization possible without deadlines being missed [25]. Likglier and consumer were given relatively small amounts of
wise, the schedulable bound of the RT Event Service is tierk (10 percent of the total possible) to perform each iter-
maximum CPU utilization that supplier and consumers cation (40 times second). Then the workload for the 20 Hz and
achieve without missing deadlines. 10 Hz participants was repeatedly increased (thus increasing

For TAO’s Real-time Scheduling Service to guarantee tbeerall CPU utilization) until deadlines started to be missed.
schedulability of a systeni.¢., all tasks meet their deadlines)The maximum utilization achieved was then plotted relative to
high priority tasks must preempt lower priority tasks. Witthe y-axis.

RMS, higher rate tasks preempt lower rate tasks. As the values along the x-axis increase, the workload of the

Each of the RT Event Channel's Dispatching Module stra#9 Hz participants increases and the workload of the 20 Hz
gies support varying degrees of preemption. The EFD azad 10 Hz participants decreases. Likewise, for lower values

14

100

not be dispatched until all other consumers have completed. In
R e —— the single-threaded channel, the timeout would be dispatched
a0 | g _,'f' | |} after the next consumer completed. The EFD’s semantics in-
. ’ i crease the chances of missed deadlines and consequently re-
o || duce utilization.
. | ; It is also instructive to note that the single-threaded imple-
g | mentation performs optimally when the workload of 40 Hz
{ | participants is the greatest. For higher x-axis values, the work-
e , i | load of the 20 Hz and 10 Hz participants is lower. This reduces
80 | 1 the demand for preemption since lower priority suppliers and
y 4 " -.n.rufu_.;..! g :’:::: - | ’ consumers only use the thread of control for a very short time
50 | Zirgle-Throaded Channel - | i 1 (since they are doing less work). Therefore, the graph shows
EFD Ghannal — [| | that as the demand for preemption decreases (x values become

&0] greater), the lack of support for preemption becomes less cru-
B i 20 aa 40 =0 ;i i dl an 10icjal.
GPU Uslieanon ol Highast Raa Tashs

LI

i & ."-. I

PL Uslizatan

\

Tonal §

.,

Figure 14: CPU Utilization for RTU, Multi-Threaded, 5.2 Latency Measurements

Single-Threaded, and EFD channel implementation. Another important measure of Event Channel performance is

the latency it introduces between suppliers and consumers. To

on the x-axis, the workload of the 20 Hz and 10 Hz participarigsatermIne Event Channel latency, we developed an Event La-

are larger. For each value on the x-axis. the maximum utili ncy Test. This test timestamps each event as it originates in
. ger. . : i R supplier and then subtracts that time from the arrival time
tion achieved without any missed deadlines was then plot he consumer to obtain the end-to-end supplie@onsumer

on the y-axis. The graph in Figure 14 illustrates how the uj-

lization of different channel imolementation " var tatency. The consumer does not do anything with the event
ation ot diierent channetimpiementations can vary as te, . than to keep track of the minimum, maximum, and aver-
configuration of the system changes.

age latencies.
The results of our performance benchmarks show thatrne Minimum Event Spacing Test looks at the average

the RTU and multi-threaded implementations of the chanRgknt delivery time for all of the events that a supplier delivers

achlgve approxmately 95 percent ut|I|z§\t|on for all workload, its consumers. As before, consumers do not do anything
configurations. That these implementations fell 5 percent R, events that are pushed to them. The average event deliv-
hind the maximum utilization results from the overhead ity time includes the event interval (spacing) and Event Chan-
posed by the Event Channel. Although the RTU and mulfj| overhead. Ideally, it should be as close as possible to the
threaded implementations performed consistently for all cQQent interval. As the event interval is reduced, however, the
figurations, utilizations for the single-threaded and EFD ingyent Channel overhead starts to become significant. This test
plementations vary significantly as the workload configurgsqs that minimum event interval.

tions change. These results show how the increased sUpPPofese tests were run on a Sun UltraSPARC 2 with two 167
for preemption provide greater stability across workloads. i, CPUs, running SunOS 5.5.1. The Event Channel and
The differences between the single-threaded and EFD ch@gt applications were built with g++ 2.7.2 with)2 optimiza-
nels can be accounted for by the fact that the single-threadlgl. Consumers, suppliers, and the Event Channel were all
channel provides minimal support for preemption. After eagb-located in the same process to eliminate ORB remote com-
event is propagated to a consumer in the single-threaggshication overhead. Furthermore, there was no other signif-
channel, the channel’s thread (in the Dispatching Modulgint activity on the workstation during testing. All tests were
dispatches the next highest priority event/consumer tuplgn in the Solaris real-time scheduling class, so they had the
Thus, if while an event is being dispatched, a higher prigfighest software priority (but below hardware interrupts) [13].
ity event/consumer tuple arrives in the chanmeg(a timeout With the single-threaded Event Channel, we measured a
for a high priority consumer), the new tuple will be dispatchaskst-case supplier-to-consumer latency-80 psecs. “Best-
as soon as the currently running event completes. case” refers to a single supplier and single consumer regis-
Alternatively, when a supplier generates an event in the EEDed with Event Channel. The supplier received a timeout
channel, it is dispatched immediately to all consumers. If thgery 250 milliseconds and then sent a timestamped event to
EFD channel is dispatching an event to consumers whetha consumer. As the number of suppliers and/or consumers
timeout occurs for a higher priority consumer, the timeout wilicreased, the latency increased as well, as shown in Table 1.

15

Table 1:Event Latency, usecs, Through Event Channel, 250 millisec Event Interval.

Average
per Event, Latency,usec
Suppliers| Consumerg Events millisec || First Consumer Last Consumel
1 1 100 250.035 90 -
1 10 100 250.057 331 603
1 50 100 250.050 1247 2073
2 1 100 250.203 197 -
2 10 100 250.587 337 531
2 50 100 250.379 1250 2330
50 1 100 251.117 393 -
50 10 100 250.859 473 1831
50 50 100 250.626 501 2092
50 50| 1000 250.074 356 1020

Under these conditions, the average event delivery time watn the Latency Test, the consumers registered only for
comparable to the event timeout interval of 250 millisecondsients from a particular supplier of a specified type. So, the
The supplier timeout value was progressively reduced to fitishe spentimpush _source was not used to deliver the event.
the point at which the Event Channel overhead significanfiglditional probes were inserted infiush _source _type .
affected the average delivery time. That timeout interval wllkey show the time spent in the major Event Channel compo-
~20 millisec; below that value, the average event delivery timents that contribute to actual event delivery, in this case.
increased significantly. . _ Performance analysis revealed the following potential areas

We have investigated optimizations for this Event Chaﬂ)—r improvement:
nel implementation to improve these performance numbers.

Probes were inserted to track the progress of an event through

the Event Channel components. The detailed Iatency breaks Bypassing the Correlation Module for uncorrelated

down is shown in Table 2. events:
Table 2:Breakdown of Event Latency. e Optimizing internal data structures (there is a fixed-size
—————— = table that, when initialized, constructs each of its slots
ven anne peration Ime, usec
delivery to Supplier Module (thru Supplier Proxy) 5.4 individually whether or not they will be used);
delivery to Subscription Module 0.9
Subscription Module: ¢ Eliminating dynamic allocation and deallocation;
pushsource 7.9
pushsourcetype: Correlation Module 34.8 o . . .
pushsourcetype: Dispatching Module queuing 7.9 ¢ Streamlining the Dispatching Module to bypass queueing
dispatch (dequeue) the event 29.7 when possible. There are some cases when the Dispatch-
decode the event 0.9 ing Module queuing can be eliminated. For example, if
deliver event to consumer proxy 6.4 h lier th dh h .. h
push event to consumer 34 the supplier thread has the same priority as the target con-
— sumer, and there are no events queued for that priority, the
total 97.3 supplier thread can be used to dispatch the event.

The probes measure the time spent by an eventin each of the

major Event Channel components shown in Figure 6. Most O'fTo estimate the event latency with these optimizations ap-

the time is spent in the Subscription Module. Therefore, \ngd, we developed the estimated latency breakdown shown
inserted additional probes into it to precisely pinpoint its EL Table 3

tency contribution. The two operationsysh _source and This estimate is based on removal of the overhead
push _source _type , correspond to consumer event regi®f “unused” subscriptions, e(g, push _source for a
tration for events from a particular supplier and for events frgmush _source _type message), and the overhead of corre-
a particular supplier of a specified type, respectively. lation when not used.

16

gies for replacing indirect virtual method calls with direct non-

Table 3: Estimated Breakdown of Optimized Event La- virtual calls [27]. The results for the IRIX C++ and Microsoft

tency. VC++ compilers indicate well-optimized virtual method calls.
Estimated

Event Channel Operation Time, usec .
Subscription module delivery (thru Supplier proxy) 6 6.2 The Cost of Polymorphlsm
Subscription module 8 Polymorphism facilitates run-time changes in object behav-
Dispatching Module enqueue 8 . y p_ . : .
check env 2 ior. Real-time systems often require predictable behavior of all
Dispatching Module dequeue 30 components. Initially, the flexibility of polymorphism seems
delivery to Consumer (thru Consumer proxy) 10 to be at odds with the requirement for real-time predictability.
total (estimated) 64 We resolved this issue using the Off-line Scheduler discussed

in Section 4.2. Since scheduling is performed off-line, all ob-
jects and operations must be known in advance. Therefore,
6 Eva|uating the Use of OO for Real- itis the responsibility of the Off-line Scheduler to determine
. whether a particular system configuration will meet all of its
time SyStemS deadlines. As a result, when a virtual method is called at run-
]] time, the system is not concerned with the actual implementa-
While applying OO technologies to real-time systems we &fyp, peing invoked. The Off-line Scheduler has already guar-
countered two issues regarding polymorphism that threategghe that its deadline will be met, based on the published
to compromise the predictability and performance of our s¥$5,ameters of each schedulable operation.
tems. This section briefly dlscus_ses each of the issues and hogy,¢ advantage of our approach is that operation invoca-
our systems address the potential problems. tions only pay the overhead of the C++ virtual method call.
If the schedule was not determined off-line, a run-time (dy-
6.1 The Cost of Dynamic Binding Mechanisms namic) schedu]er would nged _to interced_g before any abstract
operation was invoked, which incurs additional overhead. For
Since our systems are developed using C++, dynamic bindimstance, if a rate monotonic scheduling policy is used, the
is implemented via virtual method tables (VFTs). As a resusicheduler must determine the rate that each object operation
compilers can implement highly optimized virtual method cadkecutes in order to calculate its priority. Furthermore, this
mechanisms that impose constant-time overhead. These algee of dynamic scheduler must make some type of guarantee,
rithms typically involve loading thehis pointer, adjustment either weak or strong, that deadlines will be met.
of the this pointer (for multiple inheritance), lookup of the One way a scheduler could make strong guarantees is to
method offset in the VFT, and final calculation of the agherform admission control, which permits operations to exe-
dress before invoking the method. However, these steps siilte when the necessary resources are available. Admission
have bounded completion times allowing predictable virtugdntrol requires that object operations export execution prop-
method call performance regardless of the degree of inheriies such as worst-case execution time. Alternatively, the
tance used by applications. scheduler might implement a weaker, “best-effort” admission
We measured the cost of virtual method calls on these pladlicy. For example, if an Earliest Deadline First policy is
forms: VxWorks 5.3.1 on a 60 MHz Pentium with Cygnus g+ttsed, object operations with the nearest deadlines are given
2.7.2-960126, VxWorks 5.3.1 on a 200 MHz Pentium witpriority over operations with later deadlines. Such a policy
GreenHills 1.8.8, VxWorks 5.3.1 on a 200 MHz PowerPC witliould require that object operation deadlines be exported or
GreenHills 1.8.8D, Solaris 2.5.1 on a dual-CPU 168 MHz Sgalculated by the scheduler. This type of support for dynamic
UltraSPARC 2 with g++ 2.7.2, Irix 6.4 on a dual-CPU 188cheduling can incur significant overhead, and thus decrease
MHz SGI Origin200 with SGI C++ 7.10, and Windows NTeffective resource utilization. As a result, dynamic scheduling
4.0 on a 200 MHz PentiumPro with Microsoft Visual C++ 5.Golutions are sometimes not viable solutions for systems with
As shown in Table 4, a virtual method call costs roughly 2 teard deadlines and constrained resources.
5 times that of a global function or non-virtual method call. ~ Since all objects and operations in TAO’s Real-time Event
While these ratios seem high, for some platforms, the abSe@rvice are determined off-line, one could argue that no real
lute time penalty (relative to a global function call) for a virtugdolymorphism exists. Although this is true to a certain extent,
method call was less than Qu8ec on the tested platforms. Outhere are more benefits to dynamic binding than just changing
experience has been that this is not an impediment to real-tinebavior at run-time. In particular, we found that the abil-
system performance, though we avoid virtual methods whégeto develop components independently of applications that
not needed. Furthermore, modern compilers implement stratge them significantly increases the potential for reuse in the

17

Call time, usec ratio
Global Non-Virtual | Virtual Virtual to Virtual to
Platform Function Method Method || Global Function| Non-Virtual
VxWorks/g++/60 MHz Pentium 0.300 0.450 0.900 3.0 2.0
VxWorks/GHS/200 MHz Pentium 0.174 0.358 0.542 3.1 15
VxWorks/GHS/200 MHz PowerPG| 0.021 0.021 0.068 3.2 3.2
Solaris/g++/168 MHz Ultrasparc 0.069 0.061 0.173 25 2.8
IRIX/CC/180 MHz SGI Origin200 0.061 0.061 0.084 1.4 1.4
NT/MSVC++/200 MHz Pentium 0.030 0.035 0.035 1.2 1.0

Table 4:Cost of Virtual Method Calls

avionics domain. For instance, since the Event Channel pustafbware tasks such as connection establishment, event demul-

to abstracPushConsumer interfaces, the code for the Eventiplexing and event handler dispatching, message routing, dy-

Channel remains decoupled from the number and type of apmic configuration of services, and flexible concurrency con-

plicationPushConsumer objects. trol for network services. ACE has been ported to a variety of
real-time OS platforms including VxWorks, Solaris, Win32,

) and most POSIX 1003.1c implementations.

7 Concluding Remarks The RT Event Service is currently deployed at McDonnell

Douglas in St. Louis, MO, where it is being used to de-

The CORBA COS Event Service provides a flexible OO modgd|op operation flight programs for next-generation avionics
where Event Channels dispatch events to consumers on befiaffems.

of suppliers. TAO'S Real-time Event Service described in this
paper augments this model with Event Channels that support
source and type-based filtering, event correlations, and ré3l- Acknowledgments
time event dispatching. TAO’s Event Channels can be con-
figured with multiple scheduling policies @, rate monotonic This work was funded in part by McDonnell Douglas
scheduling and earliest deadline first) by configuring diffeferospace (MDA). We gratefully acknowledge the support
ent Run-time Scheduler strategies. Similarly, channels cargig direction of the MDA Principal Investigator, Bryan Doerr.
built with varying levels of support for preemption by contn addition, we would like to thank Brian Mendel for design-
figuring different Dispatcher preemption strategieg(EFD, ing and implementing the single-processor ORB that was used
single-threaded, RTU, and real-time thread Dispatchers). Tigisour Event Channel tests, and Seth Widoff for building the
flexibility allows applications to adapt their scheduling andava visualization tool that generated the time lines shown in
dispatching policies to obtain optimal utilization for differSections 4 and 5.
ent application requirements and platform resource character-
istics.

Our performance results demonstrate that dispatch%g References
mechanisms with finer-grained support for preemption yield
more consistent CPU utilization across different applicaticReferenceS
configurations. These results also indicate that the dynamic])
binding mechanisms used by our C++ compilers are not fut] OPject Management Groughe Common Object Request Bro-
damentally at odds with the deterministic execution behavior ker: _ArCh'_tecwre and Spec'f'c_at'oﬁjz ed., Feb'_ 1998' -
required by real-time applications. In addition, our results il SD" \t/mbostklé ‘::OtRBA: Integraéng_ Diverse Agg'%at'ons Within
lustrate that it is'feasible to apply CORBA iject Serviqes i éi;'h;’azazifesg?_gf 2 egggru;r\crfggﬁenﬂf ommunica-
to deyelop rgal-tlme systems. . TAO’s Real-time Schedulin D. C. Schmidt A Gokhale. T. Harrison. and G. Parulkar
Servpe arChltegture was submitted as a response t9 the O “A High-Perfor’mance Endsy’stem Archite’cture for Real-timé
Real-time Special Interest Grolequest for Informatioon

: CORBA,” IEEE Communications Magazineol. 14, February
Real-time CORBA [22]. 1997.

_ The current implementation of TAO's Real-time Event Serps) opject Management GrouORBAServices: Common Object
vice is written in C++ using components from the ACE frame- = Services Specification, Revised Editi®6-3-31 ed., Mar. 1995.

work [21]. ACE is a yvidely used_ communication frame-5] r. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Pub-
work that contains a rich set of high-performance compo- lisher/Subscriber Inter-Process Communication Model for Dis-
nents. These components automate common communication tributed Real-Time Systems: Design and Implementation,” in

18

(6]

(7]

(8]

E)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

First IEEE Real-Time Technology and Applications Symposiufl]
May 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995. [22]

S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA,” inProceedings of the Conference on
Object-Oriented Technologie@Monterey, CA), USENIX, June [23]
1995.

C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time EnvironmeniACM, vol. 20,
pp. 46—61, January 1973. [24]

M. Timmerman and J.-C. Monfret, “Windows NT as Real-Time
0S?,” Real-Time Magazine2Q 1997. http://www.realtime- [25]
info.be/encyc/magazine/97q2/winntasrtos.htm.

L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switched Networks,” iRroceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMMR6]
(Philadelphia, PA), pp. 19-29, ACM, Sept. 1990.

G. Coulson, G. Blair, J.-B. Stefani, F. Horn, and L. Hazard,
“Supporting the Real-time Requirements of Continuous Media
in Open Distributed Processing;omputer Networks and ISDN[27]
Systemspp. 1231-1246, 1995.

H. Tokuda, T. Nakajima, and P. Rao, “Real-Time Mach: To-
wards Predictable Real-time Systems,USENIX Mach Work-
shop USENIX, October 1990.

S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conferenpp. 375-390,
USENIX Association, 1992.

Object Management Group\otification Service Request For
Proposa] OMG Document telecom/97-01-03 ed., January
1997.

Object Management Group Telecommunications Domain Task
Force, “Notification Service RFP (Telecom RFP3),” 1997.

D. C. Schmidt and S. Vinoski, “Object Interconnections: Over-
coming Drawbacks in the OMG Events Servic€¥+ Report,
vol. 9, July-August 1997.

I. Satoh and M. Tokoro, “Time and Asynchrony in Interactions
among Distributed Real-Time Objects,” Rroceedings of 9th
European Conference on Object-Oriented Programmitgg.
1995.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
port for Quality of Service for CORBA ObjectsTheory and
Practice of Object Systemeol. 3, no. 1, 1997.

Y. Aahlad, B. Martin, M. Marathe, and C. Lee, “Asynchronous
Notification Among Distributed Objects,” iRroceedings of the
2n¢ Conference on Object-Oriented Technologies and Systems
(Toronto, Canada), USENIX, June 1996.

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” iProceed-
ings of GLOBECOM '96(London, England), pp. 50-56, IEEE,
November 1996.

19

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6!" USENIX C++ Technical ConferencgCambridge, Mas-
sachusetts), USENIX Association, April 1994.

D. C. Schmidt, D. L. Levine, and T. H. Harrison, “An ORB
Endsystem Architecture for Hard Real-Time Scheduling,” Feb.
1997. Submitted to OMG in response to RFI ORBOS/96-09-02.

R. E. Barkley and T. P. Lee, “A Heap-Based Callout Imple-
mentation to Meet Real-Time Needs,” Rroceedings of the
USENIX Summer Conferengep. 213-222, USENIX Associ-
ation, June 1988.

J.-B. Stefani, “Requirements for a real-time ORB,” tech. rep.,
ReTINA, 1996.

R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference(Philadelphia, PA),
ACM, May 1996.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour,A Practitioner's Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systersrwell,
Massachusetts: Kluwer Academic Publishers, 1993.

S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Yahav,
“Compiler Optimization of C++ Virtual Function Calls,” iro-
ceedings of the"? Conference on Object-Oriented Technolo-
gies and SysteméToronto, Canada), USENIX, June 1996.

