Towards an Adaptive Deployment and Configuration
Framework for Component-based Distributed Systems

William R. Otte, Douglas C. Schmidt and Aniruddha Gokhale
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
. Nashville, TN 37203 _
{wotte,schmidt}@dre.vanderbilt.edu, a.gokhale@vanderbilt.edu

ABSTRACT

Software frameworks that support the deployment and con-
figuration (D&C) of large-scale component-based distributed
real-time and embedded (DRE) systems must often adapt
their behavior at runtime to accommodate changing require-
ments and environments. For example, a D&C framework
may need to interact with new deployment targets to inter-
act and integrate with either new or legacy systems that use
different communication or deployment mechanisms. More-
over, the D&C framework itself may require customization
to satisfy domain requirements, e.g., to change the behav-
ior of error handling or event logging. This paper describes
the shortcomings of the OMG D&C standard in terms of
its ability to support heterogeneity and adapt its behavior
in response to changing requirements. We also show how
our Locality-Enabled Deployment and Configuration Engine
(LE-DAnCE) provides novel approaches for addressing these
limitations by enabling heterogeneous deployments, customiz-
able behavior, and runtime adaptation of the deployment
and configuration frameworks for component-based DRE sys-
tems.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems— Distributed Applications Component Middleware;

D.2.13 [Software Engineering]: Reusable Software—Reusable

Libraries

1. INTRODUCTION

Large-scale distributed real-time and embedded (DRE) com-
puting systems, such as shipboard computing environments [6]
and air-traffic management [2] systems, are increasingly be-
ing developed with the use of component-based software
technologies. Component-based development not only offers
useful abstractions for developing large systems [4] by en-
couraging systematic reuse and composition, they also sim-
plify the deployment and configuration process at run-time.

The CORBA Component Model (CCM) [8] along with the
Deployment and Configuration Specification (D&C) from
the Object Management Group [9], and the SOFA compo-
nent model [1] assist in the deployment and configuration of
component-based applications.

Production large-scale distributed computing systems often
cannot be limited to a single component model, particu-
larly if they must integrate and interface with legacy sys-
tems. While it is possible to use multiple individual de-
ployment frameworks to deploy and configure applications,
this approach can complicate the planning process (i.e., as-
signing instances to nodes, ensuring that sufficient resources
exist, performing static verification, etc.), thereby leading
to problems during system integration. These problems
stem from potentially incompatible tooling, metadata for-
mats, and problems coordinating the activity of disparate
deployment infrastructures.

The original Deployment and Configuration Engine (DAnCE)
framework provides an offline deployment and configuration
for the Component Integrated ACE ORB (CIAO) [10] CCM
implementation. The Locality-Enhanced (LE-DAnCE) ver-
sion described in this paper provides a deployment tool-
chain that can handle heterogeneous deployments and adapt
its behavior dynamically to meet changes in the require-
ments of the applications it deploys.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the OMG D&C Specification
and the DAnCE framework; Section 3 summarizes the chal-
lenges motivating the work reported in this paper; Section 4
describes our extensions to the OMG D&C standard and
implementation of LE-DAnCE to address these challenges;
Section 5 compares DAnCE to other deployment and con-
figuration frameworks; and Section 6 presents concluding
remarks.

2. OVERVIEW OF THE OMG D&C SPEC-

IFICATION
The Deployment and Configuration Specification[9] (D&C)
is a standard created by the Object Management Group
(OMG) intended to provide both a comprehensive data model
and a run-time model to manage the development, pack-
aging, deployment, and configuration of component-based
applications. The runtime interfaces and metadata are de-
fined as a platform-independent model (PIM) through a set



of UML models and associated semantic rules to create a
specification that is entirely agnostic to any particular com-
ponent model.

To use the D&C specification with a particular component
model, a platform-specific mapping (PSM) must be created.
This PSM consists of a set of rules that transform the UML
models in the PIM into appropriate concrete language ar-
tifacts most appropriate for the target component model.
Currently, the only PSM transformation standardized by
the OMG is for the CORBA Component Model (CCM) [§],
where the D&C PSM translates the data model into two
formats: XML schema for on-disk storage and interchange
between tools, and IDL for runtime representation and com-
munication between deployment entities. The runtime mod-
els are translated into CORBA 2.x interfaces.

The runtime deployment infrastructure, shown in Figure 1
consists of a three-tier architecture that exists at two levels,
i.e., each node contains a NodeManager entity that acts as
the front-end for management deployments on a single node,
while a global ExecutionManager entity coordinates the ac-
tions of a set of NodeManagers to accomplish a distributed

deployment.
Manager

'<<instantiates>>

A
ApplicationManager
A

'<<instantiates>>
Application

Figure 1: Architecture of the OMG D&C Specifica-
tion

During the first phase of the deployment process, a user
agent provides a Deployment Plan to the ExecutionMan-
ager, which splits the plan into locality-constrained plans
(which contains deployment metadata for a single node only)
and provides these locality-constrained plans to individual
NodeManagers. Each NodeManager creates two Applica-
tionManager entities: a DomainApplicationManager at the
global level and a NodeApplicationManager at the node level.

These ApplicationManager entities coordinates the second
phase of deployment during which the application entity
is created and component instances are loaded into mem-
ory. In the third phase of deployment the application entity
coordinates the configuration and connection management,
which provides any configuration present in the deployment
metadata to deployed instances and establishes connections
specified in the plan, respectively.

3. ADAPTIVE D&C CHALLENGES IN COM-

PONENT-BASED DRE SYSTEMS
The LE-DAnCE deployment framework is motivated by a
desire to have a deployment framework that is able to both

deploy heterogeneous applications (consisting of potentially
multiple component frameworks in DRE systems) and adapt
its behavior to meet changing requirement and expectations.

This section describes the key challenges of creating a het-
erogeneous and adaptive D&C tool that have motivated the
key features of LE-DAnCE that are described in Section 4.

3.1 Challenge 1: Support for Heterogeneous

Deployments

The process of applying the PSM to the OMG D&C spec-
ification specializes the PIM using a particular component
model (such as CCM or EJB) as the target for deployment.
Transforming the model with the deployment target, i.e. the
component model we wish to deploy, as the object of the
transformation has the following two categories of important
categories specialization of the UML model and semantics
found in the PIM:

(1) Data Model and runtime model transformation.
The data and runtime model that results from the PIM to
PSM transformation is mapped to a format suited to the
deployment of the target component model. Transforming
an OMG D& C-based model to CCM, for example, results in
the creation of a data model and runtime interfaces that are
specified in the OMG interface definition language (IDL).
This transformation itself does not pose an inherent prob-
lem for supporting heterogeneous deployments (i.e., deploy-
ments consisting of more than one deployment target). This
is due to the fact that almost all of the the IDL data struc-
tures that are created are agnostic to the deployment target
in that they can easily represent non-CCM entities. How-
ever, some of the IDL data structures contain concrete data
elements that are specific to CCM. For example, the data
structures used to communicate connection metadata con-
tains CORBA Object references. If an attempt was made
to reuse the same transformation (including the IDL and
the data structures) for other non-CCM component models
these data structures might not be semantically meaningful.

(2) Configuration property language. The transforma-
tion defines a particular property language that communi-
cates target-specific metadata (such as shared library names,
entry points, and component model specific configuration
data) in the D&C deployment plan. This property language
consists of standard-defined name/value pairs that are en-
coded in property fields that decorate most entries in a de-
ployment plan. These fields are used by a D&C framework
to describe metadata specific to a component model that is
needed to deploy and configure instances.

Section 4.1 describes how LE-DAnCE addresses the chal-
lenge of supporting heterogeneous deployments by introduc-
ing an Installation Handler, a well-defined interface used by
D&C infrastructure to manage instance life-cycles.

3.2 Challenge 2: Customized Behavior Dur-
ing Deployment

Our experience with the DRE system domains described

in Section 1 has demonstrated that applications may have

different expectations of the behavior of the D&C infras-

tructure based on (1) the domain requirements (e.g., safety-



criticality, QoS requirements), or (2) the stage in the devel-
opment process (e.g., development /testing vs. deployment/-
operation). These differences in behavior include the follow-
ing:

Customized error handling semantics. The deploy-
ment process for an application may result in many types
errors, ranging from incorrect configuration data that may
cause components to initialize improperly to application faults
that cause runtime entities to crash. While some applica-
tions (e.g., in safety-critical domains) should only be acti-
vated if and only if they have error-free deployments, other
applications (i.e., applications that are fault tolerant) may
want their applications activated with “best-effort” deploy-
ment semantics, whereby deployment errors may be sup-
pressed so as to not inhibit successful deployment and acti-
vation. Moreover, some end-users may want to ignore cer-
tain classes of errors (e.g., an invalid CPU affinity setting)
or errors from individual instances in a deployment.

Application liveness/status monitoring. End-users may
want to leverage customized mechanisms to monitor the
liveness/status of particular instances in their applications,
particularly in “best-effort” deployment scenarios. Such mech-
anisms may be constrained by the types of information end-
users want to capture, or the format and/or transport used
to deliver system events. This information may be useful
at the application layer (e.g., to ensure that certain services
are available and to glean information about their configu-
ration) or to a runtime planner/system management service
e.g., to enable automatic failure detection/recovery).

Customized discovery. Proper deployment and function-
ing of applications often depends on discovery services that
can locate elements of the deployment infrastructure or to
accomplish connections between instances in a deployment
plan. Certain domains (e.g., security critical) many have
stringent requirements as to how these discovery services
must secure and manage access to these services that can-
not be foreseen by the D&C implementer

Section 4.2 describes how LE-DAnCE addresses the chal-
lenge of providing easily customized behavior during deploy-
ment by creating a well-defined interfaces users can leverage
to provide customizations invoked during deployment.

3.3 Challenge 3: Customization of Behavior
at Runtime

D&C infrastructure intended for long-running systems—or
intended to provide deployment services to a variety of ap-
plications in DRE systems—must often adapt to changing
conditions and requirements at runtime.

One use-case for adaptive behavior in D&C framework is
the ability to select deployment-time behavior customiza-
tions (see Section 3.2) since not all customizations may be
appropriate for a particular deployment. Moreover, it may
not be possible to know a priori, i.e. before the deployment
tools are distributed to a target computing environment,
which component models a D&C infrastructure may need
to deploy. For example, an application may be assembled
from components implemented with several different CCM
implementations, which while compatible at run-time, have

differing interfaces for deployment. Ideally, the D&C infras-
tructure should be able to upgrade at run-time its capability
to deploy different versions of component models without re-
quiring recompiling or restarting the infrastructure.

Section 4.3 describes how LE-DAnCE addresses the chal-
lenge customizing behavior at run-time by providing a facil-
ity to deploy installation handlers and interceptors at run-
time.

4. DECOUPLING THE D&C SPECIFICATION
FROM TARGET COMPONENT MODEL

To address the challenges described in Section 3, we en-
hanced our existing DAnCE D&C framework with a novel
infrastructure entity called the LocalityManager. The Local-
ityManager represents a key change in how the OMG D&C
specification transforms platform-independent D&C models
to target specific component models. Rather than mapping
the entire specification to a particular component model, we
map the data and runtime model to a particular distribution
middleware that is used only to represent and communicate
deployment metadata and deployment directives at runtime.
Using such an approach for mapping the D&C PIM to con-
crete language elements allows us to reuse much of the data
model which, as outlined in Section 3.1 is largely agnostic
to the deployment target.

NodeApplication

Process Localities
<<spawn>>

callback —
¢

Configuration Plugins

configuration_complete
<
I

preparePlan

— pre_process_plan

| >
startLaunch !
pre_install_instance
|

install_instance

post_install_instance

Connection Information
4>

Figure 2: Locality Manager

The LocalityManager, a key feature in our Locality-Enhanced
DAnCE (LE-DAnCE), is an entity spawned by the NodeAp-
plication entity described in Section 2 The LocalityManager
entity is intended to be a generic application server, main-
taining a strict separation of concerns between generic de-
ployment logic and the specific run-time logic necessary to
deploy a particular deployment target. To provide a well-
defined interface between the NodeApplication and the Lo-
calityManager, we have reused elements from the D&C spec-



ification by including operations from the Manager interface
and inheriting from the ApplicationManager and Applica-
tion interfaces.

Figure 2 shows the initial start up sequence of the Locality-
Manager.

The remainder of this section describes the structure and
functionality of the LocalityManager.

4.1 Instance Installation Handlers

To address the challenge described in Section 3.1, the im-
plementation of the LocalityManager is entirely agnostic to
the particular component model it is attempting to deploy,
delegating all component model specific life-cycle manage-
ment operations to pluggable Instance Installation Handlers,
which we describe below.

Instance installation handlers represent a well-defined in-
terface that is used by the LocalityManager to manage the
life-cycle of all entities that are installed during deployment.
The operations that are included in this interface were heav-
ily influenced by the typical CCM Component life-cycle,
which is shown in Figure 3. The included operations al-
low the LocalityManager to install/remove an instance, cre-
ate/remove a connection, indicate that configuration is com-
plete, and to activate/passivate an instance. The operations
in this interface are currently used by the locality manager
to perform all initial deployment actions, and can be used
in the future to provide for application re-deployment and
re-configuration in the future.

Configurable

40

Removed

Unloaded

o
4

Figure 3: Typical CCM Component Lifecycle

It is important to note that not all instance types will re-
quire every lifecycle operation in the installation handlers
to be implemented. For example, a total of four installa-
tion handlers were created to support the installation and
management of CIAO components. First, it is necessary to
instantiate a CIAO container to host any components hence
an installation handler was created that initializes the CIAO
runtime and is capable of instantiating containers.

Second, an installation handler was created to support the
installation of CCM Homes. Neither of these first two enti-
ties have the same number of lifecycle states as a CCM com-
ponent. For example, neither have connections nor distinct
active/passive states, so the relevant operations in the han-
dler remain unimplemented. Finally, handlers were created
that are able to load components directly from a dynami-
cally loaded shared library or from an appropriate factory

operation on a CCM Home. These handlers implement all
of the lifecycle operations in the installation handler.

Despite the differences in how each of these entities is in-
stalled and behaves at runtime, the common interface for
managing their lifecycle allows the LocalityManager to treat
each as an abstract instance. More importantly, it allows the
LocalityManager to easily be configured to deploy entirely
new instance types provided appropriate installation han-
dlers are loaded.

For example, assume an application is made of only CTIAO
components. To accomplish this deployment, the Locality-
Manager would require two installed installation handlers
- one for the containers that will host the components, a
second installation handler that manages the life-cycle of
the components. In this case, the deployment plan would
contain a instance that represents a container, and other in-
stances that represent the components to be installed. The
LocalityManager would first select (based on metadata in
the plan) the installation handler for the container and in-
voke the “install” operation, which causes the container han-
dler to bootstrap the CIAO infrastructure. Next, the Local-
ityManager will select the handler for CIAO Components,
and invoke “install” operations for each component instance,
which will cause the handler to interact with the already in-
stalled container to create a component.

As a further example, lets assume that we now wish to in-
troduce heterogeneity into this deployment example by also
including non-CCM component instances. This can be ac-
complished by annotating the instances with an appropriate
identification string and providing appropriate installation
handlers for the new component model.

4.2 Deployment Portable Interceptors
Addressing the challenge described in Section 3.2, by pro-
viding a mechanism for end-users to customize the behavior
of the middleware, the LocalityManager also implements a
mechanism which can be used to modify the elements of the
deployment plan both before and after invocation of each
life-cycle management operation. This mechanism, which
we call “Deployment Portable Interceptors”, was inspired by
CORBA Portable Interceptors [7], and is described below.

The Deployment Portable Interceptor (DPI) facility in the
LocalityManager allows end-users to supplement or modify
behavior during deployment. The operations in the DPI
interface derived from the operations present in the Instal-
lation Handler interface. Each operation in the Installation
Handler interface resulted in two operations added to the
DPI interface — one which is invoked before the lifecycle op-
eration, and another which is invoked after.

In Figure 2, for example, the LocalityManager invokes a
DPI hook before (a pre hook) and after (a post hook) the
install_instance lifecycle operation. All of the “pre” intercep-
tors receive the same parameters as their associated Instance
Handler operation, and are allowed to manipulate those pa-
rameters to change the behavior of the operation. For ex-
ample, an alternative discovery service for connections may
be implemented by overriding the pre_connect interception
point with logic that would retrieve the appropriate con-



nection reference and modify the parameters passed to the
connect_instance operation.

The “post” interceptors generally receive the same param-
eters of the lifecycle operation that preceded them, in ad-
dition to an additional parameter that contains any error
result (i.e., exception) that may have arisen during execu-
tion. Unlike the “pre” interceptor, the “post” event is only
allowed to manipulate the error parameter, if present. This
parameter allows the interceptor to, for example, log success
or failure of the event (i.e., for a system health and status
service), or to clear the error status, causing that error to
be overlooked by the LocalityManager implementation (s.e.,
for implementation of best-effort deployment semantics).

4.3 Configuration of Handlers and Intercep-

tors
Finally, to address the challenge outlined in Section 3.3 and
provide a mechanism to provision both Installation Handlers
and Deployment Interceptors at runtime, the LocalityMan-
ager is capable of installing these entities during deployment
as they would any other instance as described below.

Allowing runtime adaptation of the deployment framework
requires the ability to dynamically add or remove instance
installation handlers and deployment interceptors on a per-
deployment basis. In the LocalityManager, we have added
a facility which invokes user-supplied configuration plug-ins
during start-up through a well-defined interface. In Figure 2,
this process takes place after the LocalityManager initially
calls back to the NodeApplication to receive configuration
metadata that is present in the deployment plan.

metadata provided to the LocalityManager consists of a se-
ries of name/value pairs. The name of each property is used
to select an appropriate configuration plug-in to which the
value is provided. By including both a property on the Lo-
calityManager instance in the plan that describes the desired
Instance Handlers and Deployment Interceptors for the plan,
and a configuration plug-in that is able to interpret that
property, it is possible to load them before the Locality-
Manager attempts to install any instances in the plan.

This facility has utility outside the configuration of Han-
dlers and Interceptors. For example, we used these plug-ins
to change QoS parameters (such as priority or CPU affin-
ity) of the LocalityManager instance at deployment time
without introducing platform-specific code into the Locali-
tyManager.

5. RELATED WORK

DeployWare [3] is a framework for managing heteroge-
neous software deployments in grid environments. Deploy-
ments in this system are described using a domain-specific
modeling language that captures deployment metadata in a
manner agnostic to the eventual deployment target. Het-
erogeneous deployments are then accomplished by using ap-
propriate “personalities”, which are hierarchies of Fractal
components that implement parts of the deployment pro-
cess. Unlike the OMG D&C specification, DeployWare does
not provide a well-defined set of metadata that can be used
throughout the application development lifecycle nor does it

provide a way to model hardware resources in the computa-
tional domain. Such metadata is desirable for fostering both
reuse and a library of COTS component applications. As a
result, DeployWare can be harder to use in larger projects
in which multiple, independent teams must collaborate.

ADAGE [5] is another grid deployment tool that is capa-
ble of heterogeneous deployment capable of deploying both
CCM and MPI applications. In this system, applications
are described in a middleware-specific description language
which is provided to a “translator” that converts that de-
scription into a middleware agnostic format called the Generic
Application Description (GADe) model. Like the OMG
D&C specification, it provides a description language for
hardware resources, but does not provide an expressive vehi-
cle for component metadata. For example, it is not possible
to capture specific component/node pairings, which are de-
cided by the deployment tool, or to capture QoS attributes,
such as Processor/Core affinity or process priority. While
this automatic planner included in ADAGE makes the plan-
ning process easier for the grid environments for which this
tool is intended, it is not desirable for DRE systems in which
specific control over the application topology may be re-
quired to provide sufficient quality of service for the appli-
cation.

SOFA [1] is a component model with its own D&C frame-
work that provides many advanced features for component-
based software, including behavior specification and veri-
fication, software connectors for supporting many commu-
nication middleware platforms, and a robust redeployment
mechanism. While SOFA’s component model and D&C
framework have many advanced and interesting features, it
supports neither heterogeneous deployment nor adaptation
of the behavior of the D&C framework found in DAnCE.

6. CONCLUDING REMARKS

This paper described the LocalityManager, which is an ex-
tension to the OMG D&C specification and key feature of
LE-DAnCE, that adds three important capabilities to the
original standardized deployment framework to support het-
erogeneous deployment and adaptation. First, the Locality-
Manager uses Instance Installation Handlers to deploy ap-
plications that use heterogeneous component models by en-
capsulating middleware-specific deployment logic in a well-
defined interface that handles all lifecycle events. Second,
it can adapt the behavior of the deployment tool-chain at
runtime through the use of Deployment Portable Intercep-
tors. Third, the D&C tool-chain can adapt more readily to
changing requirements by having the ability to load both
installation handlers and interceptors at runtime.

The implementation of heterogeneous deployment and in-
terceptors found in the LocalityManager described in this
paper is complicated by the fact that the deployment plan
metadata defined by the D&C specification is poorly suited
to capture deployment ordering or dependencies. It is there-
fore hard to determine the order in which instances should be
installed when there are implicit dependencies, e.g., CIAO
containers must be installed prior to the components they
host. We addressed this challenge in the LocalityManager by
following a FIFO approach to select the order of installing
instance types. While sufficient for our current end-users,



this approach will not scale as the number of installed inter-
ceptors and/or installation handlers increase.

We plan to address this issue by adapting the hierarchical
deployment specification techniques in the DeployWare and
SOFA component models. In particular, as outlined in Sec-
tion 4.1, we will leverage this prior work to build robust re-
deployment and reconfiguration capabilities into DAnCE to
support adaptive deployment behavior in applications man-
aged by this framework. Moreover, as we gain a complete
understanding of the shortcomings of the OMG D&C spec-
ification and the associated PIM to PSM mapping process,
we will work within the OMG to produce an updated spec-
ification.

All the software described in this paper is available in open-
source form in the 0.8.2 release of CIAO and DAnCE avail-
able at download.dre.vanderbilt.edu.

7. REFERENCES

[1] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0:
Balancing advanced features in a hierarchical
component model. Software Engineering Research,
Management and Applications, ACIS International
Conference on, 0:40-48, 2006.

[2] C. Esposito and D. Cotroneo. Resilient and timely
event dissemination in publish/subscribe middleware.
International Journal of Adaptive, Resilient and
Autonomic Systems, 1:1 — 20, 2010.

[3] A. Flissi, J. Dubus, N. Dolet, and P. Merle. Deploying
on the grid with deployware. In CCGRID ’08:
Proceedings of the 2008 Eighth IEEFE International
Symposium on Cluster Computing and the Grid, pages
177-184, Washington, DC, USA, 2008. IEEE
Computer Society.

[4] G. T. Heineman and B. T. Councill. Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley, Reading, Massachusetts, 2001.

[5] S. Lacour, C. PAl'rez, and T. Priol. Generic
application description model: Toward automatic
deployment of applications on computational grids. In
In 6th IEEE/ACM International Workshop on Grid
Computing (Grid2005. Springer, 2005.

[6] P. Lardieri, J. Balasubramanian, D. C. Schmidst,

G. Thaker, A. Gokhale, and T. Damiano. A
Multi-layered Resource Management Framework for
Dynamic Resource Management in Enterprise DRE
Systems. Journal of Systems and Software: Special
Issue on Dynamic Resource Management in
Distributed Real-time Systems, 80(7):984-996, July
2007.

[7] Object Management Group. Interceptors FTF Final
Published Draft, OMG Document ptc/00-04-05
edition, Apr. 2000.

[8] Object Management Group. CORBA Components
v4.0, OMG Document formal/2006-04-01 edition, Apr.
2006.

[9] OMG. Deployment and Configuration of
Component-based Distributed Applications, v4.0,
Document formal/2006-04-02 edition, Apr. 2006.

[10] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues,
B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D.

Gill. QoS-enabled Middleware. In Q. Mahmoud,
editor, Middleware for Communications, pages
131-162. Wiley and Sons, New York, 2004.



