
SunOpsis is published monthly by
The Solaris 2.x Migration Support Center

To subscribe or contribute articles please contact:

Solaris 2.x Migration Support Center
100 Renfrew Drive,

Markham, Ontario,Canada
 L3R 9R6

 1-800-363-6200 or email us at
solaris2@Sun.Com

Publisher: Dean Kemp
Editors: Brian A. Onn / Gil Hauer
Design & Layout: Lisa Thompson / Deborah Hummel
Contributing Writers:

Enrico Giuditti
David Guerra
Gil Hauer
Deborah Hummel
Dean Kemp
Richard Marejka
Georg Nikodym
Brian A. Onn
G. Roderick Singleton
Lisa Thompson
Larry Tsui
Srinath Venkat
Ron Winacott

(C) 1992 Sun Microsystems, Inc. Printed in the United States of America. 2550 Garcia Avenue, Mountain
View, California, 94043-1100 U.S.A.

All rights reserved. This product and related documentation is protected by copyright and distributed under
licenses restricting its use, copying, distribution and decompilation. No part of this product or related doc-
umentation may be reproduced in any form by any means without prior written authorization of Sun and
its licensors, if any.

Portions of this product may be derived from the UNIX(R) and Berkeley 4.3 BSD systems, licensed from
UNIX Systems Laboratories, Inc. and the University of California, respectively. Third party font software
in this product is protected by copyright and licensed from Sun’s Font Suppliers. RESTRICTED RIGHTS
LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in sub-
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19. Sun, Sun Microsystems, the Sun Logo, Solaris, SunOS, ONC, NFS, OpenWin-
dows, DeskSet, AnswerBook, SunLink, SunView, SunDiag, NetISAM, NeWS, OpenBoot, OpenFonts,
SunInstall, SunNet, ToolTalk, X11/NeWS and XView are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
PostScript is a registered trademark of Adobe Systems, Inc. All other product names mentioned herein are
the trademarks of their respective owners. All SPARC trademarks, including the SCD Compliant Logo,
are trademarks or registered trademarks of SPARC International, Inc. SPARCstation, SPARCserver,
SPARCengine, SPARCworks and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK(R) and Sun(TM) Graphical User Interfaces were developed by Sun Microsystems, Inc.
for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and develop-
ing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

The X Window System is a product of the Massachusetts Institute of Technology.

SunOpsis 14

Your call will be answered by one of our dispatchers. Informa-
tion obtained will then be used to open up a service call on your
behalf and will be forwarded to the appropriate engineer. The
engineer will then respond within the standard 1 hour call back
time. Email response is much the same, however an email will
be returned to you by the Dispatcher letting you know that the
call has been logged and giving you the Call # for your informa-
tion.

OPCOM Registration
Lisa Thompson / Deborah Hummel

How is support determined and how do I get there from here?

Customers who qualify for support services is determined by
Solaris 2.x Migration Managers.Your SUN Sales Representa-
tive will correspond with management staff and forward the
necessary information required for registration.This registration
is then sent to OPCOM for verification purposes when custom-
ers call for support.

When there are revisions, deletions or additions to be made to
registrations which are currently in the data base you must con-
tact the dispatchers at OPCOM or send email with your changes
to:

solaris2-register@sun.com

Please keep in mind this includes stand-ins for vacation cover-
age.

Future SunOpsis Articles
Porting NIT to DLPI
Driver Debugging
NIS+ Programming Interface
User Level Threads - an example
POSIX compliance
Performance Tuning
MT-safe Xview
and still more Hints & Tips

SunOpsis 13

/* is now being deleted */

The common pitfall is allocating (withmalloc(3c)) storage for
swt_ent[] but neglecting storage forste_path . Don’t fall
into this trap. You must allocate space for eachste_path in
all entries ofswt_ent . The following code fragment illus-
trates a correct way to do this:

swaptbl_t *swtbl;
char *mypath;
struct swapent *myswapent;
int i, n_swap;

. . .

swtbl = (swaptbl_t *)malloc(sizeof(int) +
n_swap * sizeof(struct swapent));
swtbl->swt_n = n_swap;
mypath = (char *)malloc(n_swap * MAXPATHLEN);
myswapent = swtbl->swt_ent;
for (i=0; i<n_swap; i++, myswapent++) {

myswapent->ste_path = mypath;
mypath += MAXPATHLEN;

}

Problems with some HSFS CDROMs
Brian.Onn@Canada.Sun.Com

With some vendor’s HSFS (High Sierra File System)
CDROMs, a directory listing may show files that can not be
found. This is especially evident with a long listing (ls -l) on the
mounted CDROM.

This is caused by non-conformance of the vendor’s CDROM
format to the ISO-9660 Standard, which specifies that all filena-
mes on an HSFS CDROM should be in upper-case only. No
mixed or lower-case file names are permitted.

All versions of SunOS after 4.1.1 map upper-case characters to
lower-case when returning directory listings of HSFS directo-
ries, and map lower-case to upper-case when doing directory
searches. Thus the mixed or lower-case filenames that are stored
in the CDROM directory are not found in a subsequent search,
producing the "file not found" errors fromls(1).

Unfortunately, there is no real fix for this since the vendor’s
CDROM is non-conforming and should be using the Rock
Ridge extensions if they truly desire mixed case filenames. Your
vendor should be contacted for a replacement CDROM, or a
tape version of their software.

As a stopgap solution, a version of the hsfs loadable kernel
module that does not do filename case conversion has been cre-
ated and is available from the OPCOM FTP server (see
page 13) Note that this module should only be used to read these
non-conforming disks, and should not be used for all HSFS
disks. The fact that it does not do filename mapping makes the

driver itself non-conforming. It is also an unsupported solution,
provided only to assist you in getting over a hurdle.

Early access MT Hints
Ron.Winacott@Canada.Sun.Com

1) When compiling MT code, you must#define MTSAFE ,
before any#include lines, either in the source or on the
compiler command line as-DMTSAFE. Note thatMTSAFE
will change to_REENTRANT in future releases.

2) There is a bug in/usr/include/synch.h . You must
#include <sys/time.h> after #include <lock-
types.h> in this file.

The OPCOM FTP Server

The OPCOM FTP server is available 24 hours a day, and con-
tains programs that have been ported to Solaris 2.x, documenta-
tion, selected white papers, RFC’s, etc. Many of the example
programs presented in the text of this newsletter can be down-
loaded from our FTP server.

The server is located internally to Sun Microsystems of Canada,
protected behind Sun’s Internet firewall, and is mirrored to our
Internet hostopcom.sun.ca. If you are not directly connected to
the Internet, or otherwise cannot FTP to our server, you can still
access the files we provide. We have set up an automated email
based file server for this purpose. To find out how you can get
files from this server, send email toftp@opcom.canada.sun.-
com (or ...!uunet!sun!suncan!opcom!ftp), with the subject
help.

If you are internal to Sun Microsystems, Inc., you can access the
server via FTP to opcom.canada. If you are outside Sun, please
use the server at opcom.sun.ca. Note that the opcom.sun.ca link
is noticeably slow.

Calling Solaris 2.x Support Dispatch
Lisa Thompson / Deborah Hummel

We can be reached at1-800-363-6200or email:

solaris2@sun.com - for Solaris 2.x issues
threads@sun.com - for User Level Threads issues

SunOpsis 12

SOLARIS 2.x HINTS AND TIPS

The entries in this section are a series of interesting items dis-
covered by users of Solaris 2.x.

To submit an entry, send email to opcom@sun.com with an
appropriate subject line.

BT and Complex Command LInes
Georg.Nikodym@Canada.Sun.Com

When using the BT scheduling class, it’s sometimes desirable to
run complex commands.

If you simply run:

bt command1 | command2 file

then command2 (as well as the writing to file) will run in time-
share.

To run the entire command in BT, change it to:

echo "command1 | command2 file" | bt sh

Hanging NIS Clients
Brian.Onn@Canada.Sun.Com

There is a potential for Solaris 1.x NIS clients of a Solaris 2.x
NIS+ server (running in YP compatibility mode) to hang. This
is caused by timing variances between the Solaris 1.x client
code and the 2.x server code. This incompatibility will not be
fixed on the older client code (the newer server code is correct),
but there is a simple work-around. The problem lies in the start-
up code/etc/rc.local on the Solaris 1.x client. In that file,
you will find a line that has

ifconfig -a netmask + broadcast + > /dev/null.

During boot, this is the first command that uses the network, and
at this point the machine is not bound to any server. The client
may hang trying to bind to the server while trying to find its net-
mask.

The work-around is to add a line

sleep 5; ypwhich > /dev/null 2>&1; sleep 5

 just below the if statement that starts ypbind. This ensures that
ypbind is bound to a server before the first client request is
received.

DES Key Incompatibility
Richard.Marejka@Canada.Sun.Com

The DES keys used in Solaris 1.x are not compatible with the
those used in Solaris 2.x. The Solaris 1.x keys are commonly
kept in the/etc/publickey file (and NIS map), while the
Solaris 2.x keys are kept in the credentials table. This difference
means that the source of the keys must be the same for the client
and the server. For example, consider:

a) A 4.x server with NIS that exports a filesystem with
secure NFS (that is, using secure RPC), and

b) A Solaris 2.x client of this server using NIS+ with DES
level security.

In this case the client cannot mount the exported filesystem
since the client will send it’s Solaris 2.x/NIS+ credentials with
the mount request and the server will attempt to verify using the
Solaris 1.x/publickey credentials

A Common Pitfall For swapctl(2)
Larry.Tsui@Canada.Sun.Com

Recently there have been questions on the proper use of the
swapctl(2) system call. Some users of swapctl(2) have been see-
ing it return simply EFAULT (bad address), which is not what
they wanted.

The swapctl(2) system call is used as follows:

swapctl(SC_LIST, (void *)swtbl);

According to the man page,swtbl is a pointer to aswaptable
structure containing:

int swt_n; /* number of swapents following */
struct swapent swt_ent[];/* array of swt_n swapents */

The swapent structure contains:

char *ste_path; /* name of the swap file */
off_t ste_start; /* starting block for swapping */
off_t ste_length; /* length of swap area */
long ste_pages; /* number of pages for swapping */
long ste_free; /* number of ste_pages free */
long ste_flags; /* ST_INDEL bit set if swap file */

SunOpsis 11

local.sin_family = AF_INET;
local.sin_port = htons(UDP_PORT);
local.sin_addr.s_addr = htonl(INADDR_ANY);

/* bind the socket */
if (bind(sockfd, (struct sockaddr *) & local,

sizeof local) < 0) {
char s[100];
sprintf(s, "bind: errno = %d", errno);
perror(s);
exit(1);

}

/* read and print what we receive */
while ((retcode = recvfrom(sockfd, buf, sizeof buf,

0, (struct sockaddr *) & remote, &fromlen)) > 0) {
printf("%s: read from %s:\n%s\n",

 argv[0],
 inet_ntoa(remote.sin_addr),
 buf);

fflush(stdout);
}

if (retcode < 0) {
perror("read");
exit(1);

}

close(sockfd);
exit(0);

 }

 /* UDP talker - client program for UDP listener */
/* (c) 1992 SMCC, a division of SMI */

 #ifdef __STDC__
 #include <stddef.h>
 #endif

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netdb.h>

 #ifdef MULTICAST
 #define MCAST_ADDR "224.9.9.2"
 #define INTERFACE "le0"
 #endif

 #define UDP_PORT 2112

 char *text[] = {
"My other car is a SPARC!\n",
"SPARC on board!\n",
"Solaris 2.x!\n",
"Operation Commitment\n"

 };

 int lines = 4;
 /*
 * Usage: talker hostname
 * where hostname is the name of the host running listener
 */
 #ifdef __STDC__
 void main(int argc, char *argv[])
 #else
 main(argc, argv)

int argc;
char *argv[];

 #endif
 {

int sockfd; /* socket to "plug" into
 the socket */

struct sockaddr_in sock;/* socket structure for
 client */

struct hostent *host; /* remote host data */
extern int lines;
extern char *text[];
char buf[BUFSIZ];
int i;
int flags;

/* make a UDP socket */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror(argv[0]);
exit(1);

}

/* assign the values */
sock.sin_family = AF_INET; /* Address Family -

Internet */
sock.sin_port = htons(UDP_PORT);

 #ifdef MULTICAST
/* convert dotted decimal to network format. */
sock.sin_addr.s_addr = inet_addr(MCAST_ADDR);

 #else
if ((host = gethostbyname(argv[1]))

== (struct hostent *) NULL) {
fprintf(stderr, "unknown host: %s\n", argv[1]);
exit(1);

}
(void) memcpy((char *) &sock.sin_addr,

 (char *) host->h_addr, host->h_length);
 #endif

printf("sending ... \n");

flags = 0;

/* send each line in a separate datagram */
for (i = 0; i < lines; i++) {

sleep(1);
if (sendto(sockfd, text[i], strlen(text[i]) + 1, flags,

(struct sockaddr *) & sock, sizeof sock) < 0) {
perror("sendto");
exit(1);

}
}

close(sockfd);
exit(0);

 }

There are two commands that can be used to look at network
statistics, or watch packets enter on the ethernet interface. The
netstat(1m) command is used to view multicast groups ’netstat
-g’ or you can view statistics using ’netstat -s’. To view live
packets as they arrive use the command ’snoop multicast’.
Refer to thesnoop(1m)manual pages for other options.

IP multicasting has several advantages over network broadcast-
ing. The main advantage is the ability to address a group of
hosts by a single multicast address. Another advantage is the
reduction in packet examination that a given host must perform
to assert whether the packet is destined for the host or should be
discarded. These two features alone should encourage users to
investigate the possibilities of implementing IP Multicasting on
your network.

SunOpsis 10

and is generally the same as ICMP. IGMP does several tasks,
however its main job is to keep hosts and gateways informed on
the status and configuration of multicast groups. This is accom-
plished by querying hosts and waiting for a response to be sent
by the one of the hosts in the group. An IP datagram is the
mechanism used to transport the IGMP message between sys-
tems.

To join a multicast group on Solaris 2.x asetsockopt(3N) must
be used with the appropriate options. eg.

setsockopt (sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(char *)&mreq, sizeof mreq);

where

See the manual pagesip(7) for other appropriate options includ-
ing IP_DROP_MEMBERSHIP.

Below is an example of a client/server program that implements
multicasting. The server program(listener) is User Datagram
Protocol(UDP) based which listens on the socket for packets
destined for the multicast address. The structuremreq has two
memberin_addr structures both being cast to au_long
type. Talker is also UDP based program and merely sends out a
line of text to the intended receiver(listener). The talker pro-
gram is not a member of the multicast group showing that a cli-
ent not be a member of the group to send packets to it.

To compile these programs enter the following commands:

% cc -DMULTICAST -o listener listener.c -lsocket -lnsl
% cc -DMULTICAST -o talker talker.c -lsocket -lnsl

Execute the listener first, then run talker.

/* UDP listener - server program for UDP talker */
/* (c) 1992 SMCC, a division of SMI */

 #ifdef __STDC__
 #include <stddef.h>
 #endif
 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/errno.h>

sockfd File descriptor
of the socket

IPPROTO_IP Protocol num-
ber of the asso-
ciated level

IP_ADD_MEMBERSHIP Add member-
ship to the
group

(char *)&mreq IP multicast
address and
interface addrr

sizeof mreq size of the
structure

 #include <netinet/in.h>
 #include <fcntl.h>

 #ifdef MULTICAST
 #include <net/if.h>
 #include <sys/sockio.h>

 #define MCAST_ADDR "224.9.9.2"
 #define INTERFACE "le0"

 #endif

 #define UDP_PORT 2112

 /*
 * Usage: listen
 */
 #ifdef __STDC__
 void main(int argc, char *argv[])
 #else
 main(argc, argv)

int argc;
char *argv[];

 #endif
 {

extern int errno;

int sockfd; /* fd for the socket */
struct sockaddr_in local;/* local socket

 structure */
struct sockaddr_in remote;/* remote socket

 structure */
int fromlen = sizeof(struct sockaddr_in);
int retcode; /* return code */
char buf[BUFSIZ];

 #ifdef MULTICAST
struct ifreq ifr;/* interface structure */
struct ip_mreq mreq;/* multicast request */
struct sockaddr_in *sa;/* internet specific

 sockaddr */
 #endif

/* open a UDP socket */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket");
exit(1);

}

 #ifdef MULTICAST
/* copy the interface name */
strcpy(ifr.ifr_name, INTERFACE);

/* Retrieve interface address of socket */
ioctl(sockfd, SIOCGIFADDR, &ifr);

/* convert dotted decimal format to suitable
 * internet format
 */
mreq.imr_multiaddr.s_addr

= inet_addr(MCAST_ADDR);

/* assign interface address */
sa = (struct sockaddr_in *) & ifr.ifr_addr;
mreq.imr_interface.s_addr = sa->sin_addr.s_addr;

/* join the multicast group */
if (setsockopt(sockfd, IPPROTO_IP,

IP_ADD_MEMBERSHIP, (char *) &mreq,
sizeof mreq) < 0) {

perror("setsockopt");
exit(1);

}

 #endif
/* register the socket */

SunOpsis 9

on each process running on the system at this time. Thisioctl(2)
call will return a prpsinfo_t structure from which the
rpc.btd can determine if the process is running in BT mode, and
its current priority.

If a process is found running at the requested priority and true
batch mode is on, then the request is moved to a queue for that
priority slot by therpc.btd. Each second, a timer is triggered in
the rpc.btd and the same/proc check is done until the
requested slot is free.

If the queued process gets scheduled to run, therpc.btd will
fork and apriocntl(2) system call is used in the child to put it
into the BT scheduling class. This action sets the priority of the
process correctly. At the same time, the time quantum value is
set toNOCHANGE so that the dispatch table values are used.
Exec(2) is then called which overlays the childrpc.btd, thus
inheriting the current (BT) scheduling class

Thebt_tool continues to monitor therpc.btd for the status of
any running and queued processes that are under its control.
Any output from the running processes is piped back to the
bt_tool to be displayed in a log window. If the process is queued
to run later, the output is sent to a log file for thebt_tool to look
at when the process finally gets scheduled. When the log win-
dow is released from thebt_tool, the log file is removed from
the disk.

All of the batch intelligence is in therpc.btd andnot in the BT
class.Bt_tool maintains a list of running processes and logs of
all the processes that have run. If the tool is exited before any
queued processes have run therpc.btd will schedule them and
the output will go to a log file. This file will be mailed to the user
and removed from the disk if thebt_tool does not request the
log after one hour of its creation.

THE BT COMMAND
The bt command also uses therpc.btd to control batch pro-
cesses. When the user wishes to start a process in batch mode
using thebt command, the request is sent to therpc.btd and the
process is either started or queued to start later when the
requested slot is free (depending on the command line argu-
ments.)

The output from a non-queued process is sent to the stdout of
the shell it is running from, or it is mailed back to the user if the
process is queued in true batch mode. Thebt command can also
send signals to processes running locally or remotely in batch
mode and can display the status of running processes and
queues.

A beta version of thebt_tool, rpc.btd and thebt command with
the latest version of the BT scheduling class is available from
the OPCOM FTP server (see page 13).

IP Multicasting

Enrico.Giuditti@Canada.Sun.Com

Internet protocol (IP) multicasting is the ability to send an IP
datagram to a finite number of hosts using a single IP address.
This IP address is called a multicast group, and may consist of
zero or more hosts. A single host may belong to many groups,
joining or leaving a group at any time during the life of that
group. A host need not be a member of a group to send a mes-
sage to that group.

There are two types of multicast groups based upon the IP
address of the group (not on membership to the group).

a) Permanent - can have zero or more hosts with a well
known IP address. (eg 224.0.0.1)

b) Transient - all multicast groups except permanent ones

As with unicast and broadcast datagrams, multicast datagrams
are delivered on a best effort basis.

Multicasting is accomplished through the use of IP class D
addressing. The four high order bits are set to "1110" with the
remaining 28 bits used to identify the specific multicast group.
This allows for a permissible range of 224.0.0.0 to
239.255.255.255. Address 224.0.0.0 will never be assigned by
the NIC which issues all formal internet addresses. Address
224.0.0.1 is a permanent group to address all multicast hosts on
a directly connected network.

Multicast IP packets must ultimately resolve down to an ether-
net destination. To create a unique ethernet destination address,
the lower order 23 bits of the IP multicast address are mapped
onto the ethernet address. Coupled with the original upper 24
bits of the ethernet address (01-00-5E) hex, this new hardware
address forms the multicast address at the ethernet level. Note
that there is a potential for conflict here, as there are 28 signifi-
cant bits in a Class D IP address, but only the lower 23 are being
used.

A host can reside in three states when participating on a multi-
casting network. It can either:

a) participate fully by belonging to a multicast group
thereby receiving and sending multicast datagrams, or

b) be configured to send but not receive multicast data-
grams, or

c) not participate in multicasting at all.

The administrative tasks of informing hosts and gateways about
multicasting operations is handled by the Internet Group Man-
agement Protocol(IGMP). This protocol resides in the IP layer

SunOpsis 8

 * At this point we could print out some results.
 */

print_usage(stdout, &pr);
break;

} /* end of switch*/

return(0);
 }

 /*
 * PRINT_USAGE - print (most of) the usage structure.
 *
 */

void
 print_usage(FILE *fp, prusage_t *p) {

double user= ttodouble(&p->pr_utime);
double sys = ttodouble(&p->pr_stime);
double et = ttodouble(&p->pr_term) -

ttodouble(&p->pr_create);

fprintf(fp, "%2.1fu %2.1fs %4.1fet %3.1fl%% %dmin+%dmaj
%di+%dob %di+oc %dv+%dinv\n",

user,
sys,
et,
100.0 * ((user + sys) / et),
p->pr_minf,
p->pr_majf,
p->pr_inblk,
p->pr_oublk,
p->pr_ioch,
p->pr_vctx,
p->pr_ictx

);

return;
 }

 /*
 * TTODOUBLE - convert a timestruc_t to a double.
 *
 */

double
 ttodouble(timestruc_t *t) {

return((double) t->tv_sec + ((double) t->tv_nsec)
/ ((double) NANOSEC));

 }

What Next?
Subsequent articles will further explore/proc and many of the
other ioctl’s that it supports.

The getrusage system call and prusage program can be obtained
from OPCOM via the anonymous FTP server (see page 13).

Batch Processing on Solaris 2.x
Ron.Winacott@Canada.Sun.Com

In the September issue of SunOpsis, you were introduced to the
batch scheduling class, BT. This month’s article will describe an
environment that allows users to run commands in batch mode.
This environment is composed of:

• bt_tool, a user interface

• a command line environment,bt, and

• rpc.btd, an rpc daemon that services local and remote
requests

This environment arose from the need to run commands
sequentially in what could be calledtrue batch mode, as well as
the requirement to borrow idle cpu time from a remote system
that has BT loaded.

In this context,true batch mode is used to mean that if the user
starts a number of processes (for example, P1, P2 and P3) at the
same priority in BT mode, they will each execute sequentially.

There is an inherent problem, however, since BT (the schedul-
ing class) has no way to prevent a process from joining a dis-
patch queue that may have something else running on it. As a
result, this needed functionality has been designed into the
rpc.btd daemon.

Both bt_tool, and thebt command use rpc calls to control pro-
cesses on the local and remote systems running BT.

Some of the other features are:

• Start a process in one of the four priority slots

• Monitor any processes running on your system in batch
mode

• Send STOP, CONTinue, or KILL signals to any process
running in BT that you own on the local or remote host

• Run a command in BT mode on a remote system

• True batch mode queuing of processes when the requested
slot is busy

• Automatic scheduling of a queued process when the slot
becomes free

• Command history for fast recall of a previously run process
in bt_tool

• Process output is saved to a log window in bt_tool, and dis-
played back to you when using thebt command

• Filter the status list in thebt_tool. Any process that is run-
ning in BT mode can be seen by anybt_tool. You may want
to see just the processes that are under the control of your
bt_tool

BT_TOOL
When a command is entered intobt_tool, all the information
about the state of the tool is collected and saved. This informa-
tion includes the true batch mode, the local or remote host
name, and the current working directory of the tool at this time,
the environment, and the command to execute. A request to
start the command is made to therpc.btd.

If true batch mode is enabled, then, using the/proc file sys-
tem, therpc.btd checks for any other processes running in the
required priority slot. ThePIOCPSINFO ioctl(2) call is used

SunOpsis 7

 * (asynchronous)
 * % cc -DUSE_SIGCHLD -o prusage prusage.c
 *
 * written: RWMarejka; 1992.10.08
 * (c) 1992 SMCC, a division of SMI
 */

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/wait.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <sys/signal.h>
 #include <sys/fault.h>
 #include <sys/syscall.h>
 #include <sys/procfs.h>
 #include <unistd.h>
 #include <limits.h>

 #if defined(USE_SIGCHLD)
 # include <signal.h>
 #endif

 /*
 * External References
 */

 extern int getprusage(pid_t, prusage_t *);
 extern void print_usage(FILE *, prusage_t *);
 extern double ttodouble(timestruc_t *);

 /*
 * External Declarations
 */

 int status; /* child’s exit status*/
 prusage_t pr; /* child’s usage structure*/

 /*
 * SIGCHILD - catch the SIGCHLD event.
 *
 */

 #if defined(USE_SIGCHLD)

void
 sigchild() {

pid_t pid;

if ((pid = waitpid(0, &status, WNOWAIT)) == -1) {
perror("sigchild:waitpid:WNOWAIT");
exit(1);

}

if (getprusage(pid, &pr) == -1)
perror("sigchild:getprusage");

if ((pid = waitpid(pid, &status, 0)) == -1) {
perror("sigchild:waitpid:0");
exit(1);

}

return;
 }

 #endif/* defined(USE_SIGCHLD)*/

 /*
 * GETPRUSAGE - get process usage
 *
 */

int
 getprusage(pid_t pid, prusage_t *pup) {

int s = 0;
int fd;

char buf[PATH_MAX];

sprintf(buf, "/proc/%05d", pid);

if ((fd = open(buf, O_RDONLY)) != -1) {
if (ioctl(fd, PIOCUSAGE, pup) == -1)

s = -1;

if (close(fd) == -1)
s = -1;

}
else

s = -1;

return(s);
 }

 /*
 * Main - Affirmation
 *
 */

int
 main(int argc, char *argv[]) {

pid_t pid; /* process id of child*/
 #if defined(USE_SIGCHLD)

struct sigaction act;
sigset_t set;

act.sa_handler= sigchild;
act.sa_flags= SA_NOCLDSTOP;
sigemptyset(&act.sa_mask);

sigfillset(&set);
sigdelset(&set, SIGCHLD);

if (sigaction(SIGCHLD, &act, NULL) == -1) {
perror("main:sigaction");
exit(1);

}
 #endif

switch (pid = vfork()) {
 case -1 :/* Error*/

perror("fork");
exit(1);

 case 0 :/* Child*/
 /*
 * Go off and run the program.
 */

execvp(argv[1], &argv[1]);
perror("execve");
exit(1);

 default :/* Parent*/
 /*
 * Wait for the child to finish but keep it in a "wait-able" state
 * so that we may "procfs" it.
 */
 #if defined(USE_SIGCHLD)

sigsuspend(&set);
 #else

if (waitpid(pid, &status, WNOWAIT) == -1) {
perror("waitpid:WNOWAIT");
exit(1);

}

if (getprusage(pid, &pr) == -1)
perror("getprusage");

if (waitpid(pid, &status, 0) == -1) {
perror("waitpid:0");
exit(1);

}
 #endif/* defined(USE_SIGCHLD)*/
 /*

SunOpsis 6

that maintains the "running" usage information. It is a simple
matter to traverse these structures and compute a resource usage
structure.

The loadable system call is complete and has been tested. How-
ever, it is not a good solution since:

a) RUSAGE_CHILDREN is not supported,

b) loadable system calls are undocumented,

c) it requires a small stub (the user interface to getrusage)
to be compiled with the application.

The loadable system call is available from the OPCOM FTP
server (see page 13).

Beyond getrusage(2)
Fortunately, Solaris 2.x offers much more powerful instrumen-
tation and usage collection than Solaris 1.x. All of this is avail-
able using the/proc filesystem. The procfs filesystem is
documented in theproc(4) manual page, a seventeen page doc-
ument that fully describes the interface and it’s usage. The core
idea of procfs is to provide a filesystem type interface to the
address space of every process currently executing on a system.
Using a filesystem interface:

• can be cleanly implemented using the existing VFS/
VNODE layer,

• provides a programming interface familiar to program-
mers.

The programming interface is a simple as:

int fd;
charbuf[PATH_MAX];

sprintf(buf, "/proc/%05d", getpid());
fd = open(buf, O_RDONLY);
...
read(2)/lseek(2)/ioctl(2)
...
close(fd);

The only place where the filesystem does not work is if the
opened process exits. In this case the file descriptor is no longer
valid and will generate errors when used. The only thing that
you can do at that point is to close the descriptor.

The above code fragment, while trivial, does illustrate the basic
concept. The procfs is most useful when examining other pro-
cesses and using the large set ofioctl(2) options. One ioctl will
return the resource usage of the opened process (PIOCUSAGE)
and this can be used as a replacement to getrusage. There are
two possible implementation paths: self and child. The self path
is as simple as:

int fd;
char buf[PATH_MAX];
prusage_t pr;

sprintf(buf, "/proc/%05d", getpid());
fd = open(buf, O_RDONLY);
ioctl(fd, PIOCUSAGE, &pr);
close(fd);

You now have the current resource usage of the executing pro-
cess, this includes all LWPs (active and exited).

To obtain resource usage for children there are two possible
methods:

• synchronously usingwaitpid(2)
• asynchronously using a signal handler forSIGCHLD.

The synchronous scheme is:

Parent Child

1) fork fork
2) child exec’s program (optional)
3) waitpid
4) child exits
5) waitpid returns
6) open /proc for child
7) ioctl(PIOCUSAGE)
8) close
9) waitpid

Why the two calls to waitpid? The first uses theWNOWAIT
option that will return when the child exits but leaves the child
in the ZOMBIE state. This keeps the/proc entry active and
allows the open, ioctl, close sequence to correctly capture the
results. The second waitpid is called with no options and will
release the ZOMBIE child process from the system.

The asynchronous method is virtually identical, except of
course a signal handler executes the steps 3-9. As a note,
remember to set theSA_NOCLDSTOP option in the flags mem-
ber of thesigaction structure. You probably are not inter-
ested when children stop, only when they exit.

The program below implements (an approximate) equivalent of
thecsh(1) built-in time command.

/*
 * cc -g -o prusage prusage.c
 *
 * PRUSAGE - get process usage (the Solaris way).
 *
 * A simple program that demonstrates how to use
 * the procfs to retreive process usage statistics for
 * children.
 *
 * The program can be compiled to operate synchronously
 * with the child or asynchronously. The former scheme
 * uses waitpid while the latter uses a SIGCHLD handler.
 * To compile use:
 *
 * (synchronous)
 * % cc -o prusage prusage.c
 * or

SunOpsis 5

mutex_lock(&prtmutex);
printf("server:server:tid:%2d,fd:%2d\n", tid, fd);
mutex_unlock(&prtmutex);

while (fgets(buf, BUFSIZ, fp)) {
mutex_lock(&prtmutex);
printf("server:tid:%2d: %s", tid, buf);
mutex_unlock(&prtmutex);

if (strcmp(buf, "END") == 0)
break;

}

fclose(fp);

mutex_lock(&prtmutex);
printf("server:thr_exit:tid:%2d\n", tid);
mutex_unlock(&prtmutex);

thr_exit(fd);
 /* NOTREACHED */
 }

The getrusage(2) Syscall
Richard.Marejka@Canada.Sun.Com

Introduction
If the number of customer calls is any indication, the favourite
system call from Solaris 1.x is getrusage(2).

Being able to instrument a process is probably one of the key
issues in understanding it’s efficiency. Programmers use
resource usage statistics for various purposes such as capacity
planning, fine-grain accounting and system utilization. The
familiar getrusage interface from Solaris 1.x is still present in
Solaris 2.x. However, the amount of useful information has
been reduced to two time fields. The good news is that getrusage
has a replacement that is much better. In this article we’ll
explore the old interface, the new interface, the replacement,
and how it can be used.

Solaris 1.x Behaviour
In Solaris 1.x, the operating system keeps track of both process
and child resource usage in the process structure. The process
usage is current to the last system call or context switch and the
child usage is the total over all exited children (of the process).

The resource usage structure looks like:

struct rusage {
struct timeval ru_utime; /* user time used*/
struct timeval ru_stime; /* system time used*/
int ru_maxrss; /* maximum resident set size*/
int ru_ixrss; /* currently 0*/
int ru_idrss; /* integral resident set size*/
int ru_isrss; /* currently 0*/
int ru_minflt; /* page faults not requiring

physical I/O */
int ru_majflt; /* page faults requiring

physical I/O*/
int ru_nswap; /* swaps */
int ru_inblock; /* block input operations*/
int ru_oublock; /* block output operations*/
int ru_msgsnd; /* messages sent*/
int ru_msgrcv; /* messages received*/
int ru_nsignals; /* signals received*/
int ru_nvcsw; /* voluntary context switches*/
int ru_nivcsw; /* involuntary context switches */

 };

Some of these fields are zero, some are of little interest (signals
and context switches) and some you cannot live without, for
example:ru_minflt , ru_majflt , ru_inblock .

Solaris 2.x Implementation
In Solaris 2.x, numerous aspects of the system have changed.
The kernel scheduling unit is now the LWP (light-weight pro-
cess) and not simply the process. This change allows a process
to have many concurrent threads of execution.

Two of the changes with regard to the process structure are:

1) the structure only has process summary information for
LWP’s that have exited

2) the structure does not accumulate statistics for child pro-
cesses.

Item #1 leads to the conclusion that the old Solaris 1.x code:

struct rusage ru;
...
getrusage(RUSAGE_SELF, &ru);

cannot return any usable information. Since the LWP usage is
added into the process usage only after it exits and most pro-
grams only have a single thread of execution (and hence a single
LWP), the getrusage information will be zero (actually the accu-
mulated system and user time are correct).

A direct result of item #2 is that the old Solaris 1.x system call

struct rusage ru;
...
getrusage(RUSAGE_CHILDREN, &ru);

that used to return child resource usage information cannot
return any usable data (it actually is able to compute child user
and system time usage). The remainder of the structure is zero.

Where does this leave us, since neither form of getrusage
returns much useable data?

There is one possible solution forRUSAGE_SELF, but there is
no solution forRUSAGE_CHILDREN (the data is just not avail-
able). TheRUSAGE_SELF solution involves a loadable system
call to traverse three structures in the kernel: process, thread and
light-weight process. Each process has a list of threads within
the process and each thread is linked to an LWP. It is each LWP

SunOpsis 4

}

if (!(hp = gethostbyname(argv[1]))) {
perror("gethostbyname");
exit(1);

}
else

server_addr= *(u_long *) hp->h_addr;

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

saddr.sin_port= htons(atoi(argv[2]));
saddr.sin_family= AF_INET;
saddr.sin_addr.s_addr= htonl(server_addr);

if (connect(sock, &saddr,
sizeof(struct sockaddr_in)) == -1) {

perror("connect");
exit(1);

}

if (!(fp = fdopen(sock, "w"))) {
perror("client:fdopen");
exit(1);

}

while (gets(buf)) {
fprintf(fp, "%s ", buf);
fflush(fp);

if (strcmp("END", buf) == 0)
break;

}

fclose(fp);
return(0);

 }

The Server
/*
 % cc -L $LD_RUN_PATH -o server server.c -lsocket -lnsl -lthread
 *
 * SERVER - an internet TCP server.
 * (c) 1992 SMCC, a division of SMI
 *
 */

 /*
 * Include Files
 */

 #include <stdio.h>
 #include <signal.h>
 #include <errno.h>
 #include <stdlib.h>
 #include <string.h>
 #include <thread.h>
 #include <synch.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>

 /*
 * Constants & Macros
 */

 #define QMAX 5

 /*
 * External References

 */

 extern int server(int);

 /*
 * External Declarations
 */

 mutex_t prtmutex;

 /*
 * Main - The Summer Side of Life
 *
 */

 main(int argc, char *argv[]) {
struct sockaddr_in saddr;
struct sockaddr_in caddr;
int addrlen= sizeof(struct sockaddr_in);
int sock;
int conn;

if (argc != 2) {
fprintf(stderr, "usage: server port\n");
exit(1);

}

saddr.sin_family= AF_INET;
saddr.sin_addr.s_addr= htonl(INADDR_ANY);
saddr.sin_port= htons(atoi(argv[1]));

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

if (bind(sock, &saddr, sizeof(saddr))) {
perror("bind");
exit(1);

}

if (listen(sock, QMAX) == -1) {
perror("listen");
exit(1);

}

while ((conn = accept(sock, &caddr, &addrlen)) != -1) {
thread_t tid;

if (thr_create(NULL, 0, server, conn,
THR_DETACHED, &tid))

perror("server:thr_create");

mutex_lock(&prtmutex);
printf("server: thr_create:%2d:conn:%d\n",

tid, conn);
mutex_unlock(&prtmutex);

addrlen= sizeof(struct sockaddr_in);
}

return(0);
 }

 /*
 * SERVER - the server thread function
 *
 */
 int
 server(int fd) {

char buf[BUFSIZ];
FILE *fp = fdopen(fd, "r");
thread_t tid = thr_self();

if (!fp)
fprintf(stderr, "server:tid:%2d: fdopen failed\n”,tid);

SunOpsis 3

testing your changes. Beware of new synchronization tech-
niques and any new critical sections you may have introduced.

Multithreading
In Solaris 2.x all device drivers must be MT safe. All entry
points of your drivers (except loading, unloading, attaching and
detaching) of your driver must be re-entrant.

Any critical sections of these entry points must be protected by
mutex locks. The calls tomutex_enter andmutex_exit
must always appear in pairs. You should note that the old
method of usingspl() andsplx() no longer protect your
data structures.

The amount of parallelism present in your driver determines
whether it is considered MT-cold or MT-hot. All drivers should
strive for the latter. This quality of drivers is usually propor-
tional to the amount of effort expended in the design process.

More Information
A good source of information is available in theWriting Device
Drivers manual.

Using Threads And Sockets
Richard.Marejka@Canada.Sun.Com

User Level Threads can be used in networking programs as an
alternative to the old paradigm of:

where the server is free to accept further connection after the
fork, and the child is left to service the current connection for
the life of that connection. User Level Threads simplifies this
model considerably. The new (threaded) paradigm is:

where the service thread runs in the same address space as the
main thread (that monitors the rendezvous socket and accepts
network connections). This allows multiple connections to the

Server:
 socket→ bind→ listen→ accept→ fork → close

Child:
fork return→ read/write→ close→ exit

Server (main thread)
socket→ bind→ listen→ accept→ thr_create→ close

Server (service thread):
→ read/write→ close→ thr_exit

same server to operate in parallel, saving the expense and over-
head of a fork while retaining most of the features of the old par-
adigm.

Some of the features that cannot be carried into the new para-
digm are:

• setuid, since the entire process is affected

• chdir, since the entire process is affected

• execve, since the server would disappear

From the above list, any operation that would modify the oper-
ating environment of one thread must be examined. Fortunately
this is not usually a problem since most server children simply
take over the management of one conversation with a client.

The two sample programs below implement a simple server-cli-
ent pair. It should be noted that the client has no knowledge that
its server is multi-threaded. The server required only minor
changes to operate in a threaded environment, in particular, the
accept loop (as demonstrated from the algorithm above) is the
only point of modification. This source code is available elec-
tronically from the OPCOM FTP server (see page 13).

The Client Code
/*
 * cc -o client client.c -lsocket -lnsl
 *
 * CLIENT - an internet TCP client.
 * (c) 1992 SMCC, a division of SMI
 */

 /*
 * Include Files
 */

 #include <stdio.h>
 #include <stdlib.h>
 #include <signal.h>
 #include <errno.h>
 #include <unistd.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/sockio.h>
 #include <sys/ioctl.h>
 #include <netinet/in.h>
 #include <netdb.h>

 /*
 * Main -
 *
 */

 main(int argc, char *argv[]) {
int sock;
long server_addr;
struct sockaddr_in saddr;
struct hostent *hp;
char buf[BUFSIZ];
FILE *fp;

if (argc != 3) {
fprintf(stderr, "usage: client server port");
exit(1);

SunOpsis 2

1) use sigaction(2). sigaction behaves the same way as
Solaris 1.xsignal(2) , with the extra capability to mask out
signals while the signal handler is executed. Although
sigaction is part of the SVID and POSIX.1,it is not defined
in the ANSI-C standard;

2) usesigset(2). The signal is masked after it is received and,
reset when the signal handler returns. Ifsigset(sig,
SIG_HOLD) is executed inside the signal handler, the sig-
nal handler does not get reset. sigset is defined for the SVID
but it is not part of POSIX.1 nor ANSI-C standard

I chose to use sigaction in my port.

One other tricky part with signal handling was with SIGIO
delivery. In Solaris 1.x SIGIO is delivered to the process that
opened the device (e.g./dev/kbd). However, under Solaris
2.x, one has to notify the stream head of the intention to receive
SIGIO (now called SIGPOLL for SVID compliance) with the
following ioctl:

(void) ioctl(kbdFd, I_SETSIG, S_INPUT);

Client applications that form part of X11R5 core distribution
have also been ported. The most difficult wasxload , which is
a cpu perfmeter. The code uses a lot of kernel structures, most
of which have changed in Solaris 2.x; I ended up rewriting
much of the code.

How To Get It
The binary copy of X11R5 for Solaris 2.x can be FTP’ed from
The OPCOM FTP server (see page 13), in/pub/x11r5 , or in
/pub/tars/x11r5.tar.Z . I have done minimal testing on
a 4/75GX (SS2), 4/25 (ELC) and 4/630-GX. I would appreciate
any feedback you may have via direct email.

Porting A Device Driver to Solaris 2.x
Gil.Hauer@Canada.Sun.Com

With the introduction of loadable device drivers in SunOS
4.0.3, the task of developing and debugging a device driver was
made somewhat easier. Since the developer didn’t need to
recompile and reboot the operating system, more time could be
spent engineering and qualifying the driver.

With Solaris 2.x introducing several new concepts in the realm
of device drivers, the ability to load and unload drivers is again
a time-saver.

This article tries to provide a simplified guide to porting device
drivers from a Solaris 1.x (SunOS 4.x) environment to the new
Solaris 2.x environment.

Compiling And Loading

The easiest way to tackle the port is one step at a time. Hence,
the first step should be to simply get the driver to compile and
load under Solaris 2.x.

One way to do this is to comment (or #ifdef) out all of the code
and data structures that are not required for loading and unload-
ing. If your driver was not loadable under Solaris 1.x, you will
need to add the required routines. All drivers are loadable in
Solaris 2.x.

You should be left with the_init , _info and_fini rou-
tines, the xx_attach , xx_detach , xx_identify ,
xx_probe and xx_getinfo functions as well as their
related data structures. All of these routines need to be func-
tional and correct before loading and unloading can work.

A few more changes are required in your source file. Specifi-
cally, you may need to change the header files #include-ed in
your driver. All of the required header files are now located in
/usr/include/sys and there are some new ones that are
required in order to support the DDI/DKI interfaces, such as
<sys/ddi.h> and <sys/sunddi.h> .

The makefile that you use also requires a small change. Drivers
should be compiled with the _KERNEL flag defined. You
should do this by adding the -D_KERNEL option to your com-
pile command. Also, you need to add a link step, usingld(1)
since .o files are not loadable in Solaris 2.x.

It is a good idea at this point to review your source and provide
ANSI C function prototypes. This allows the compiler to per-
form more rigorous type-checking and to help you trap any
errorsbefore a kernel panic. As well, you should use the ANSI
volatile and const keywords where appropriate.

Try compiling the driver and fixing any problems. Once the
driver compiles "cleanly" (there are no syntax errors), you may
copy the executable into/usr/kernel/drv and introduce it
to the system using theadd_drv(1m) command. This command
will automatically update files in/etc and try to load the exe-
cutable. If it fails, you will usually need to use therem_-
drv(1m) command to remove the driver, so you can fix the
problem and start again.

Remaining Entry Points
Now that the driver loads and unloads successfully you are
ready to port the remaining entry points of the driver. All of the
entry point definitions must be checked carefully since there are
many new parameters and their functionality has changed
somewhat. Proper use of ANSI C prototypes are very helpful at
this stage.

It is best to tackle this stage bit by bit, removing the comments
(or #ifdefs) for one or two entry points at a time and carefully

100 Renfrew Drive
Markham Ontario Canada L3R-9R6

VOLUME 1, NUMBER 3, October 19921-800-363-6200

SUN MICROSYSTEMS COMPUTER CORPORATION

SunOpsis
The Solaris 2.x Migration Support Center Newsletter

The Publisher’s Corner
Dean.Kemp@Canada.Sun.Com
Mgr Solaris 2.x Migration Support Center

The Beta version of Solaris 2.1 is now available, which features
improved performance at all levels, and window performance that
meets that of Solaris 1.x. For more detailed information on Solaris
2.1, please refer to our preview in last month’s issue. If you don’t
have last month’s issue, you can get it from the OPCOM FTP
server (see page 13), from the OPCOM support channels, or from
your local Sales Account Manager or Systems Engineer. To get
access to the Solaris 2.1 Beta, please contact either your local
Sales Account Manager or Systems Engineer.

The Threads Programmers Guide is now available as well. For
those of you who are on the threads early access program, please
contact us, and we will be happy to send one out to you.

The OpCom T-shirt contest is still on. The complete details are in
the September issue, but I’ll mention them again briefly; Write an
article for publication in a future issue of SunOpsis, and you could
win an OpCom T-shirt. Each article must have something to do
with Solaris 2.x, and the article will become the property of Sun
Microsystems, Inc. It can be any length, but 2 - 2 1/2 pages is pre-
ferred.

And finally, we value your suggestions. Please do not hesitate to
contact me if I can be of assistance.

X11R5 Porting Experience
Larry.Tsui@Canada.Sun.Com

This article summarizes my porting effort of the generic MIT
X11R5. This was a straight port of X11R5 with no enhancements.

The first hurdle was creating suitable configuration files. The MIT
distribution comes with configurations for SunOS4.1.x and
generic SVR4 machines. I merged these two sets of configuration
files and made minor changes to suit the needs of Solaris 2.x; for
an example, the variable SharedLibLoadFlags (inmit/con-
fig/sv4Lib.tmpl) was changed from "-G -z text" to "-G".

Porting the actual code was quite straightforward in most parts.
Most of the library calls that are different in Solaris 2.x have been
documented in the System Transition Guide for Application
Developers (which comes with Solaris 2.x AnswerBook and the
Solaris Migration Kit).

Signal handling in the device dependent layer (mit/server/
ddx/sun) and the os layer (mit/server/os) was a little
more tricky. The traditionalsignal(2) call behaves differently in
Solaris 2.x. After a signal has been caught and before it is deliv-
ered, the signal handler is reset back to its default handler. In
Solaris 1.x, the signal handler remains unchanged after signal dis-
position, but it does not allow signal masking during signal deliv-
ery. There are two ways to address this problem:

INDEX

The Publisher’s Corner 1
X11R5 Porting Experience 1

Porting A Device Driver to Solaris 2.x 2
Using Threads And Sockets 3

The getrusage(2) Syscall 5
Batch Processing on Solaris 2.0 8

IP Multicasting 9
SOLARIS 2.0 HINTS AND TIPS 12

The OPCOM FTP Server 13
Calling Solaris 2.0 Support Dispatch 13

OPCOM Registration 14
Future SunOpsis Articles 14

