
Strategized Locking, Thread-safe Interface, and Scoped Locking

Patterns and Idioms for Simplifying Multi-threaded C++ Components

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science

Washington University
St. Louis, MO 63130, USA

This paper will appear in the C++ Report magazine.

1 Introduction

Developing multi-threaded applications is hard since incor-
rect use of locks can cause subtle and pernicious errors.
Likewise, developing multi-threadedreusablecomponents
is hard since it can be time-consuming to customize com-
ponents to support new, more efficient locking strategies.
This paper describes a pair of patterns,Strategized Locking
andThread-safe Interface, and a C++ idiom,Scoped Lock-
ing, that help developers avoid common problems when pro-
gramming multi-threaded components and applications.

2 The Strategized Locking Pattern

2.1 Intent

The Strategized Locking pattern strategizes a component’s
synchronization to increase its flexibility and reusability
without degrading its performance or maintainability.

2.2 Example

A key component used to implement a high-performance
Web server is a file cache, which maps URL pathnames to
memory-mapped files [1]. When a client requests a URL
pathname that is already cached, the Web server can transfer
the contents of the memory-mapped file back to the client
without having to access slower secondary storage via multi-
ple read andwrite operations. A file cache implementa-
tion for a highly portable high-performance Web server must
run efficiently on various multi-threaded and single-threaded
operating systems. One way of achieving this portability is
to develop the following file cache classes:

// A multi-threaded file cache implementation.
class File_Cache_Thread_Mutex {
public:

// Return a pointer to the memory-mapped
// file associated with <filename>.
const char *find (const char *pathname)

{
// Use the Scoped Locking idiom to serialize
// access to the file cache.

Guard<Thread_Mutex> guard (lock_);

// ... look up the file in the cache, mapping it
// into memory if it is not currently in the cache.
return file_pointer;

}
// ...

private:
//File cache implementation...

// Synchronization strategy.
Thread_Mutex lock_;

};

// A single-threaded file cache implementation.
class File_Cache_ST
{
public:

// Return a pointer to the memory-mapped
// file associated with <filename>.
const char *find (const char *pathname)
{

// No locking required since we are
// single-threaded.

// ... look up the file in the cache, mapping it
// into memory if it is not currently in the cache.
return file_pointer;

}
// ...

private:
//File cache implementation...

// No lock required since we are
// single-threaded.

};

These two implementations form part of a compo-
nent family whose classes differ only in their syn-
chronization strategy. One component in the family,
File Cache ST, implements a single-threaded file cache
that requires no locking and the other component in the
family, File Cache Thread Mutex , implements a file
cache that uses a mutex to serialize multiple threads that ac-
cess the cache concurrently. However, maintaining multiple
separate implementations of similar file cache components
can be tedious since future enhancements and fixes must be
updated consistently in each component implementation.

1



2.3 Context

An application or system where reuseable components must
operate in a variety of concurrency use-cases.

2.4 Problem

A family of reusable components whose synchronization
strategies are hard-coded into their implementations fail to
resolve the followingforces:

Ease of performance tuning: It should be straightforward
to tune a component for particular concurrency use-cases.
If the synchronization strategy is hard-coded, however, it is
time-consuming to modify the component to support new,
more efficient synchronization strategies.

For instance, a completely new class must be written to
add support for aFile Cache RWLock implementation
that uses a readers-writer lock instead of a thread mutex
to increase performance on large-scale multi-processor plat-
forms.

Ease of maintenance and enhancement:New enhance-
ments and bug fixes should be straightforward. If there
are multiple copies of the same basic components however,
version-skew is likely to occur since changes to one com-
ponent may not be applied consistently to other component
implementations.

For instance, improvements to the single-threaded file
cache algorithm must be explicitly inserted into all related
classes in the file cache component family, which is tedious,
error-prone, and non-scalable.

2.5 Solution

Strategize a component’s synchronization aspects by mak-
ing them “pluggable” types. Define instances of these plug-
gable types as data members that are used by the compo-
nent’s method implementations to perform synchronization
strategies that are configured into the component by an ap-
plication or a service.

2.6 Implementation

The Strategized Locking pattern can be implemented using
the following steps.

1. Define the component interface and implementation.
The focus of this step is to define a concise component in-
terface and an efficient implementation without concern for
synchronization aspects.

The following class defines theFile Cache interface
and implementation.

class File_Cache
{
public:

const char *find (const char *pathname);
// ...

private:
// File_Cache data members and methods go here...

2. Strategize variable synchronization aspects: In this
step, determine which component synchronization aspects
can vary and update the component interface and implemen-
tation to strategize these aspects.

Many reusable components have relatively simple syn-
chronization aspects that can be implemented using common
locking strategies like mutexes and semaphores. These syn-
chronization aspects can be strategized in a uniform manner
using eitherparameterized typesor polymorphism.

� Polymorphism: In this approach, pass a polymorphic
Lock object to the component’s initialization method and
define an instance of thisLock object as a private data mem-
ber that performs the locking strategy in component method
implementations.

A common way to implement a polymorphicLock object
is to use the Bridge pattern[2]. First, we define an abstract
locking class with polymorphicacquire and release
methods, as follows:

class Lockable
{
public:

// Acquire the lock.
virtual int acquire (void) = 0;

// Release the lock.
virtual int release (void) = 0;

// ...
};

Subclasses must override the pure virtual methods in
Lockable to define a concrete locking strategy. For in-
stance, the the following class defines aThread Mutex
lock:

class Thread_Mutex_Lockable
: public Lockable

{
public:

// Acquire the lock.
virtual int acquire (void) {

return lock_.acquire ();
}

// Release the lock.
virtual int release (void) {

return lock_.release ();
}

private:
// Concrete lock type.
Thread_Mutex lock_;

};

Finally, we apply the Bridge pattern to define a non-
polymorphic interface class that holds a reference to the
polymorphicLockable :

class Lock
{
public:

// Constructor stores a reference to the
// base class.
Lock (Lockable &l): lock_ (l) {};
// Acquire the lock by forwarding to the
// polymorphic acquire() method.

2



int acquire (void) { lock_.acquire (); }
// Release the lock by forwarding to the
// polymorphic release() method.
int release (void) { lock_.release (); }

private:
// Maintain a reference to the polymorphic lock.
Lockable &lock_;

};

The purpose of this class is to ensure thatLock can be used
as an object, rather than a pointer to a base class. This design
makes it possible to reuse the Scoped Locking idiom for the
polymorphic locking strategies, as shown in the following
File Cache component:

class File_Cache
{
public:

// Constructor
File_Cache (Lock lock): lock_ (lock) {}

// A method.
const char *find (const char *pathname)
{

// Use the Scoped Locking idiom to
// acquire and release the <lock_>
// automatically.
Guard<Lock> guard (lock_);
// Implement the find() method.

}
// ...

private:
// The polymorphic strategized locking object.
Lock lock_;

// Other File_Cache data members and methods go
// here...

� Parameterized types: In this approach, add an appro-
priateLOCKtemplate parameter to the component and define
the appropriate instances ofLOCKas private data member(s)
that perform the locking strategy used in component method
implementations.

The following illustrates aFile Cache component that
is strategized by aLOCKtemplate parameter:

template <class LOCK>
class File_Cache
{
public:

// A method.
const char *find (const char *pathname)
{

// Use the Scoped Locking idiom to
// acquire and release the <lock_>
// automatically.

Guard<LOCK> guard (lock_);
// Implement the find() method.

}
// ...

private:
// The parameterized type strategized locking object.
LOCK lock_;

// Other File_Cache data members and methods go
// here...

Using this implementation, the template can be instanti-
ated with anyLOCKtype that conforms to theacquire and
release signature expected by the Scoped Locking idiom
described in Section 4. In particular, the instantiated tem-
plate parameter forLOCKneed not inherit from an abstract
base class, such asLockable .

In general, the parameterized type approach should be
used when the locking strategy is known at compile-time and
the polymorphic approach should be used when the locking
strategy is not known until run-time. As usual, the tradeoff
is between the run-time performance of templates vs. the
potential for run-time extensibility with polymorphism.

3. Define a family of locking strategies: Each member of
this family should provide a uniform interface that can sup-
port various application-specific concurrency use-cases. If
appropriate synchronization components do not already ex-
ist, or the ones that exist have incompatible interfaces, use
the Wrapper Facade pattern [3] to implement or adapt them
to conform to signatures expected by the component’s syn-
chronization aspects.

In addition to theThread Mutex defined in the Wrap-
per Facade pattern [3], other common locking strategies in-
clude readers/writer locks, semaphores, recursive mutexes,
and file locks. A surprisingly useful locking strategy is the
Null Mutex . This class defines an efficient locking strat-
egy for single-threaded applications and components, as fol-
lows:

class Null_Mutex
{
public:

Null_Mutex (void) { }
˜Null_Mutex (void) { }
int acquire (void) { return 0; }
int release (void) { return 0; }

};

All methods inNull Mutex are empty inlined functions
that can be completely removed by optimizing compilers.
This class is an example of the Null Object pattern [4], which
simplifies applications by defining a “no-op” placeholder.

2.7 Example Resolved

The following illustrates how to apply the parameterized
type form of the Strategized Locking pattern to implement
a Web server file cache that is tuned for various single-
threaded and multi-threaded concurrency use-cases.

� Single-threaded file cache–

typedef File_Cache<Null_Mutex> FILE_CACHE;

� Multi-threaded file cache using a thread mutex–

typedef File_Cache<Thread_Mutex> FILE_CACHE;

� Multi-threaded file cache using a readers/writer lock–

typedef File_Cache<RW_Lock> FILE_CACHE;

3



Note how
in each of these configurations theFile Cache interface
and implementation require no changes. This transparency
stems from the Strategized Locking pattern, which abstracts
the synchronization aspect into a “pluggable” parameterized
type. Moreover, the details of locking have been strategized
via a typedef . Therefore, it is straightforward to define a
FILE CACHEobject without exposing the synchronization
aspect to the application, as follows:

FILE_CACHE file_cache;

2.8 Known Uses

The Booch Components were one of the first C++ class
libraries to parameterize locking strategizes with tem-
plates [5].

The Strategized Locking pattern is used extensively
throughout the ACE OO network programming toolkit [6].

Aspect-Oriented Programming (AOP) [7] is a general
methodology for systematically strategizing aspects that vary
in applications and components.

2.9 See Also

The Scoped Locking idiom described in Section 4 uses
Strategized Locking to parameterize various synchronization
strategies into its guard class.

2.10 Consequences

There are twobenefits that result from applying the
Strategized Locking pattern to reuseable components:

1. Enhanced flexibility and performance tuning. Be-
cause the synchronization aspects of components are strate-
gized, it is straightforward to configure and tune a compo-
nent for particular concurrency use-cases.

2. Decreased maintenance effort for components.It is
straightforward to add enhancements and bug fixes to a com-
ponent because there is only one implementation, rather than
a separate implementation for each concurrency use-case.
This centralization of concerns avoids version-skew.

There is aliability that results from applying the
Strategized Locking pattern to reuseable components:

Obtrusive locking. If templates are used to parameterize
locking aspects this will expose the locking strategies to ap-
plication code. This design can be obtrusive, particularly for
compilers that do not support templates efficiently. One way
to avoid this problem is to apply the polymorphic approach
to strategize component locking behavior.

3 The Thread-safe Interface Pattern

3.1 Intent

The Thread-safe Interface pattern ensures that intra-
component method calls avoid self-deadlock and minimize
locking overhead.

3.2 Example

When designing thread-safe components, developers must
be careful to avoid self-deadlock and unnecessary locking
overhead when intra-component method calls are used. To
illustrate this situation, consider a more complete implemen-
tation of theFile Cache component that was outlined in
the Strategized Locking pattern in Section 2.

template <class LOCK>
class File_Cache
{
public:

// Return a pointer to the memory-mapped file
// associated with <pathname>, adding
// it to the cache if it doesn’t exist.
const char *find (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Guard<Thread_Mutex> guard (lock_);

const char *file_pointer =
check_cache (pathname);

if (file_pointer == 0) {
// Insert the <pathname> into the cache.
// Note the intra-class <bind> method call.
bind (pathname);
file_pointer = check_cache (pathname);

}
return file_pointer;

}

// Add <pathname> to the cache.
void bind (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Guard<LOCK> guard (lock_);
// ... insert <pathname> into the cache...

}

private:
// The strategized locking object.
LOCK lock_;

const char *check_cache (const char *);
// ... other private methods and data omitted...

};

This implementation ofFile Cache works well only
when strategized with a lock with recursive mutex semantics
(or aNull Mutex ). If it is strategized with a non-recursive
mutex, however, the code will “self-deadlock” when the
find method calls thebind method sincebind reacquires
the LOCKalready held byfind . Moreover, even if this
File Cache implementation is strategized with a recursive
mutex it will incur unnecessary overhead when it reacquires
the mutex inbind .

4



3.3 Context

Components in a multi-threaded application that contain
intra-component method calls.

3.4 Problem

Multi-threaded components typically contain multiple inter-
face and implementation methods that perform computations
on state that is encapsulated by the component. Component
state is protected by a lock that prevents race conditions by
serializing methods in the component that access the state.
Component methods often call each other to carry out their
computations. In multi-threaded components with poorly de-
signed intra-component method invocation behavior, how-
ever, the followingforces will be unresolved:

Avoid Self-deadlock: Thread-safe components should be
designed to avoid ‘self-deadlock.’ Self-deadlock will occur
if one component method acquires a non-recursive compo-
nent lock and calls another method that tries to reacquire the
same lock.

Minimal locking overhead: Thread-safe components
should be designed to incur only the minimal locking over-
head necessary to prevent race conditions. However, if a re-
cursive component lock is selected to avoid the self-deadlock
problem outlined above, additional overhead will be incurred
to acquire and release the lock multiple times across intra-
component method calls.

3.5 Solution

Structure components with intra-component method invoca-
tions according to the following two design conventions:

Interface methods check: All interface methods, such
as C++ public methods, should only acquire/release locks,
thereby performing the synchronization checks at the “bor-
der” of the component. Interface methods are also responsi-
ble for releasing the lock when control returns to the caller.
After the lock is acquired, the interface method should for-
ward to an implementation method, which performs the ac-
tual method functionality.

Implementation methods trust: Implementation meth-
ods, such as C++ private and protected methods, should
just perform work when called by interface methods, that
is, they should should trust that they are called with locks
held and never acquire/release locks. Moreover, implemen-
tation methods should never call interface methods since
these methods acquire locks.

As long as these design conventions are followed, com-
ponents will avoid self-deadlock and minimize locking over-
head.

3.6 Implementation

The Thread-safe Interface pattern can be implemented using
the following steps:

1. Determine the interface and corresponding implemen-
tation methods: These methods define the public interface
to the component. For each interface method, define a corre-
sponding implementation method.

The interface and corresponding implementation methods
for theFile Cache is defined as follows:

template <class LOCK>
class File_Cache
{
public:

// The following two interface methods just
// acquire/release the <LOCK> and forward to
// their corresponding implementation methods.
const char *find (const char *pathname);
void bind (const char *pathname);

private:
// The following two implementation methods
// do not acquire/release locks and perform the
// actual work associated with managing the
// <File_Cache>.
const char *find_i (const char *pathname);
void bind_i (const char *pathname);

// ... Other implementation methods omitted ...

2. Define the interface and implementation methods:
The interface and implementation methods are defined ac-
cording to the Thread-safe Interface conventions described
in theSolutionsection. The following implementation of the
File Cache class applies the Thread-safe Interface pattern
to minimize locking overhead and prevent self-deadlock in
the interface and implementation methods:

template <class LOCK>
class File_Cache
{
public:

// Return a pointer to the memory-mapped
// file associated with <pathname>, adding
// it to the cache if it doesn’t exist.
const char *find (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Guard<LOCK> guard (lock_);
return find_i (pathname);

}

// Add <pathname> to the file cache.
void bind (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Guard<LOCK> guard (lock_);
bind_i (pathname);

}

private:
// The strategized locking object.
LOCK lock_;

// The following implementation methods do not
// acquire or release <lock_> and perform their
// work without calling any interface methods.

const char *find_i (const char *pathname) {
const char *file_pointer =

check_cache_i (pathname);

5



if (file_pointer == 0) {
// If the <pathname> isn’t in the cache
// then insert it nto the cache and
// look it up again.
bind_i (pathname);
file_pointer = check_cache_i (pathname);
// The calls to implementation methods
// <bind_i> and <check_cache_i>, which
// assume that the lock is held and perform
// the work.

}
return file_pointer;

}

const char *check_cache_i (const char *)
{ /* ... */ }
void bind_i (const char *)
{ /* ... */ }

// ... other private methods and data omitted...
};

3.7 Known Uses

The Thread-safe Interface pattern is used extensively
throughout the ACE object-oriented network programming
toolkit [6].

3.8 See Also

The Thread-safe Interface pattern is related to the Decora-
tor pattern [2], which extends an object transparently by dy-
namically attaching additional responsibilities. The intent of
the Thread-safe Interface pattern is similar, in that it attaches
robust and efficient locking strategies to thread-safe compo-
nents. The primary difference is that the Decorator pattern
focuses on attaching additional responsibilities to objects,
whereas the Thread-safe Interface pattern focuses on classes.

Components designed according to the Strategized Lock-
ing pattern described in Section 2 should employ the Thread-
safe Interface pattern because it ensures that the component
will function robustly and efficiently regardless of the type
of locking strategy that is selected.

3.9 Consequences

There are twobenefitsthat result from applying the Thread-
safe Interface pattern to multi-threaded components:

Increased robustness: This pattern ensures that deadlock
does not occur due to intra-component method calls.

Enhanced performance: This pattern ensures that there
are no unnecessary locks acquired or released.

There is a liability that results from applying the
Thread-safe Interface pattern to multi-threaded components:

Additional indirection and extra methods: Each inter-
face method requires at least one implementation method,
which increases the footprint of the component and may also
add an extra level of method-call indirection for each invo-
cation. One way to minimize this overhead is to inline each
interface method.

4 The Scoped Locking Idiom

4.1 Intent

The Scoped Locking idiom ensures that a lock is acquired
when control enters a scope and the lock is released auto-
matically when control leaves the scope.

4.2 Also Known As

Guard, Synchronized Block

4.3 Example

Commercial Web servers typically maintain a “hit count”
component that records the number of times each URL is
accessed by clients over a period of time. To reduce la-
tency, the hit count component can be cached in a memory-
resident table by each Web server process. Moreover, to
increase throughput, Web server processes are often multi-
threaded [1]. Therefore, public methods in the hit count com-
ponent must be serialized to prevent threads from corrupting
the state of its internal table by updating the hit count con-
currently.

One way to serialize access to the hit count component
is to explicitly acquire and release a lock in each public
method:

class Hit_Counter
{
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname)
{

// Acquire lock to enter critical section.
lock_.acquire ();
Table_Entry *entry = find_or_create (pathname);
if (entry == 0) {

// Something’s gone wrong, so bail out.
lock_.release ();
return -1;

} else
// Increment the hit count for this pathname.
entry->increment_hit_count ();
// Release lock to leave critical section.
lock_.release ();
// ...

}
// Other public methods omitted.

private:
// Find the table entry that maintains the hit count
// associated with <pathname>, creating the entry if
// it doesn’t exist.
Table_Entry *find_or_create (const char *pathname);

// Serialize access to the critical section.
Thread_Mutex lock_;

Although this code may work for the currentHit Count
component, this implementation is tedious and error-prone to
develop and maintain. For instance, maintenance program-
mers may forget to release thelock on all return paths out
of the increment method. Moreover, since code is not
exception-safe,lock will not be released if a later version
throws an exception or calls a helper method that throws an

6



exception. If thelock is not released, however, the Web
server process may hang when subsequent threads block in-
definitely trying to acquire thelock .

4.4 Context

A concurrent application that implements shared resources
manipulated concurrently by multiple threads.

4.5 Problem

Multi-threaded applications and components that acquire
and release locks explicitly fail to resolve the following
force:

Robust locking: Locks should always be acquired and re-
leased properly when control enters and leaves critical sec-
tions, respectively. If locks are acquired and released explic-
itly, however, it is hard to ensure all paths through the code
release locks.

A maintenance programmer may revise theincrement
method to check for a new failure condition, as follows:

// ...
else if (entry->increment_hit_count () == -1)

return -1;

Likewise, the find or create method may be
changed to throw an exception if an error occurs. Un-
fortunately, both modifications will cause theincrement
method to return without releasing thelock . Moreover, if
these error cases occur infrequently, the problems with this
code may not show up during the testing process.

4.6 Solution

Define a guard class whose constructor automatically ac-
quires a lock when control enters a scope and whose de-
structor automatically releases the lock when control leaves
the scope. Instantiate instances of the guard class to ac-
quire/release locks in method and block scope(s) that define
critical sections.

4.7 Implementation

The implementation of the Scoped Locking idiom is straight-
forward – define a guard class that acquires and releases
a particular type of lock automatically within a method or
block scope. The constructor of the guard class stores a
pointer to the lock and then acquires the lock before enter-
ing the critical section. The destructor of this class uses the
pointer stored by the constructor to release the lock when the
scope of the critical section is left. A pointer is used since
the C++ wrapper facades for locks disallow copying and as-
signment.

The following class illustrates a guard designed for the
Thread Mutex :

class Thread_Mutex_Guard
{
public:

// Store a pointer to the lock and acquire the lock.
Thread_Mutex_Guard (Thread_Mutex &lock)

: lock_ (lock) { result_ = lock_.acquire (); }

// Release the lock when the guard goes
// out of scope.
˜Thread_Mutex_Guard (void)
{

// Only release the lock if it was acquired.
if (result_ != -1)

lock_.release ();
}

private:
// Reference to the lock we’re managing.
Thread_Mutex &lock_;

// Records if the lock was acquired successfully.
int result_;

};

4.8 Example Resolved

The following C++ code illustrates how to apply the
Scoped Locking idiom to resolve the original problems with
the Hit Counter component in our multi-threaded Web
server.

class Hit_Counter
{
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname)
{

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Thread_Mutex_Guard guard (lock_);
Table_Entry *entry = find_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so bail out.
return -1;
// Destructor releases <lock_>.

else
// Increment the hit count for this pathname.
entry->increment_hit_count ();

// Destructor releases <lock_>.
}

// Other public methods omitted.

private:
// Serialize access to the critical section.
Thread_Mutex lock_;

// ...
};

In this solution theguard ensures that thelock is auto-
matically acquired and released as control enters and leaves
the increment method, respectively.

4.9 Variants

The Scoped Locking idiom has the following variant:

7



Strategized Scoped Locking: Defining a different guard
class for each type of lock is tedious, error-prone, and may
increase the memory footprint of the application or compo-
nent. Therefore, a common variant of the Scoped Locking
idiom is to apply the Strategized Locking pattern described
in Section 2, using eitherparameterized typesor polymor-
phism.

Parameterized types. In this approach, define a template
guard class that is parameterized by the typeLOCKthat will
be acquired and released automatically.

The following illustrates a Guard class that is strategized
by aLOCKtemplate parameter:

template <class LOCK>
class Guard {
public:

// Store a pointer to the lock and acquire the lock.
Guard (LOCK &lock): lock_ (lock) {

result_ = lock_.acquire ();
}

// Release the lock when the guard goes out of scope.
˜Guard (void) {

if (result_ != -1) lock_.release ();
}

private:
// Reference to the lock we’re managing.
LOCK &lock_;

// Records if the lock was acquired successfully.
int result_;

};

Using this implementation, the template can be instanti-
ated with anyLOCKtype that conforms to theacquire and
release signature expected by the Guard template.

Polymorphism. In this approach, pass a polymorphic
Lock object to theGuard ’s constructor and define a in-
stance of thisLock object as a private data member that is
performs the Scoped Locking idiom onLock s. In this im-
plementation, theLock class uses the Bridge pattern [2] to
provide an object interface to a polymorphic lock hierarchy.

The following illustrates a Guard class that controls a
polymorphic lock like the one defined in the implementation
section of the Strategized Locking pattern in Section 2.6:

class Guard {
public:

// Store a pointer to the lock and acquire the lock.
Guard (Lock &lock): lock_ (lock) {

result_ = lock_.acquire ();
}

// Release the lock when the guard goes out of scope.
˜Guard (void) {

if (result_ != -1) lock_.release ();
}

private:
// Reference to the lock we’re managing.
Lock &lock_;

// Records if the lock was acquired successfully.
int result_;

};

In general, the parameterized type approach should be
used when the locking strategy is known at compile-time and
the polymorphic approach should be used when the locking
strategy is not known until run-time. As usual, the tradeoff
is between the run-time performance of templates vs. the
potential for run-time extensibility with polymorphism.

4.10 Known Uses

The Scoped Locking idiom is used extensively throughout
the ACE object-oriented network programming toolkit [6].

The Rogue Wave Threads.h++ library defines a set of
guard classes that are modeled after the ACE Scoped Lock-
ing designs.

Java defines a programming feature called a synchronized
block [8] that implements the Scoped Locking idiom in the
language.

4.11 See Also

The Scoped Locking idiom is an application of the general
C++ idiom “resource acquisition is object initialization” [9],
where a constructor acquires a resource and a destructor re-
leases the resource when a scope is entered and exited, re-
spectively. When this idiom is applied to concurrent applica-
tions, the resource that is acquired and released is some type
of lock.

4.12 Consequences

There are twobenefits of using the Scoped Locking id-
iom:

1. Increased robustness: By applying this idiom, locks
will be acquired/released automatically when control en-
ters/leaves critical sections defined by C++ method and
block scopes. Therefore, this idiom increases concurrent ap-
plication robustness by eliminating a common class of syn-
chronization programming errors.

2. Decreased maintenance effort: If parameterized types
or polymorphism is used to implement the guard or lock
classes, it is straightforward to add enhancements and bug
fixes because there is only one implementation, rather than
a separate implementation for each type of guard. This cen-
tralization of concerns avoids version-skew.

There are severalliabilities that result from apply-
ing the Scoped Locking idiom to concurrent applications and
components:

Potential for deadlock when used recursively: If a
method that uses the Scoped Locking idiom calls itself re-
cursively then “self-deadlock” will occur if the lock is not
a “recursive” mutex. The Thread-safe Interface pattern doc-
umented in Section 3 avoids this problem by ensuring that
only interface methods apply the Scoped Locking idiom and
the implementation methods do not apply this idiom.

8



Limitations with language-specific semantics: Because
the Scoped Locking idiom is based on a C++ language fea-
ture, it is not necessarily tied into operating system-specific
system calls. Therefore, it may not be able to release locks
when threads or processes are aborted inside of a guarded
critical section.

For instance, the following modification toincrement
will prevent the Scoped Locking idiom from working:

Thread_Mutex_Guard guard (lock_);
Table_Entry *entry = find_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so exit the
// thread.
thread_exit ();
// Destructor will not be called so the
// <lock_> will not be released!

Therefore, it is generally inappropriate to exit a thread
within a component.

5 Concluding Remarks

Knowledge of patterns and idioms are an important method
of alleviating the costly rediscovery and reinvention of
proven concurrent software concepts and component solu-
tions. Patterns and idioms are useful for documenting recur-
ring micro-architectures, which are abstractions of common
object-structures that expert developers apply to solve con-
current software problems, such as deadlock avoidance and
low-cost locking. By studying and applying patterns and id-
ioms, developers can often avoid traps and pitfalls that have
traditionally been learned only by prolonged trial and error.

The locking patterns and idioms described in this paper
are used extensively in the ACE [6] network programming
framework. ACE can be obtained via the Web at the follow-
ing URL:
www.cs.wustl.edu/ �schmidt/ACE.html
Thanks to Brad Appleton, Erik Koerber, and Tom Ziomek
for comments on this article.

References
[1] D. C. Schmidt and J. Hu, “Developing Flexible and High-

performance Web Servers with Frameworks and Patterns,”
ACM Computing Surveys, vol. 30, 1998.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[3] D. C. Schmidt, “Wrapper Facade: A Structural Pattern for En-
capsulating Functions within Classes,”C++ Report, vol. 11,
February 1999.

[4] B. Woolf, “The Null Object Pattern,” inPattern Languages
of Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[5] G. Booch and M. Vilot, “Simplifying the Booch Components,”
C++ Report, vol. 5, June 1993.

[6] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[7] G. Kiczales, “Aspect-Oriented Programming,” inProceedings
of the 11th European Conference on Object-Oriented Program-
ming, June 1997.

[8] J. Gosling and K. Arnold,The Java Programming Language.
Reading, MA: Addison-Wesley, 1996.

[9] Bjarne Stroustrup,The C++ Programming Language, 3rd Edi-
tion. Addison-Wesley, 1998.

9


