An Efficient Adaptive Load Balancing Service for CORBA

Ossama Othman, Carlos O’'Ryan, and Douglas C. Schmidt
{ossama, coryan, schmjd®uci.edu
Department of Electrical and Computer Engineering
University of California, Irvine
Irvine, CA 92697-2625, USA

February 13, 2001

A subset of this paper will appear in the Distributed Systerdependable distributed computing systems. For example, e-
Engineering Journal’s “Online” edition, March 2000. commerce systems and online stock trading systems concur-
rently service many clients that transmit a large, often bursty,
number of requests. To protect initial hardware investments
Abstract and avoid overcommitting resources these systems scale incre-
L : L . mentally by connecting servers via high-speed networks and
CORBA s increasingly popular as distributed object COMither purchasing new servers as the number of clients increase

puting middleware for systems with stringent quality of Ser'_leasing server cycles during peak hours.

) X .) . 0
vice (QoS) requirements, including scalability and dependrAn increasingly popular and cost effective technique to im-

ability. One way to improve the scalability and dependabilit Love networked server performancéciad balancinawhere
of CORBA-based applications is to balance system proceg P 9

SsS-
ing load among multiple server hosts. Load balancing can

ardware and/or software mechanisms determine which server
help improve system scalability by ensuring that client appYV'" execute each client request. Load balancing mechanisms

; o . istribute client workload equitably among back-end servers
cation requests are distributed and processed equitably across . ;
T) improve overall system responsiveness. These mechanisms
a group of servers. Likewise, it can help improve system de- . . : . .
-can be provided in any or all of the following layers in a dis-
pendability by adapting dynamically to system conflguratlct)n i
. . ributed system:
changes that arise from hardware or software failures.

This paper presents three contributions to research one Network-based load balancing: This type of load bal-
CORBA-based load balancing. First, we describe deficiencigging is provided by IP routers and domain name servers
with common load-balancing techniques, such as introduci@\NS) that service a pool of host machines. For example,
unnecessary overhead or not adapting dynamically to changien a client resolves a hostname, the DNS can assign a dif-
ing load conditions. Second, we present a novel adaptive Idatent IP address to each request dynamically based on current
balancing service that can be implemented efficiently usitegd conditions. The client then contacts the designated back-
standard CORBA features. Finally, we present the resultsesfd server, unaware that a different server could be selected
benchmark experiments that evaluate the pros and cons of #if-its next DNS resolution. Routers can also be used to bind
ferent load balancing strategies empirically by measuring tieeT CP flow to any back-end server based on the current load
overhead of each strategy and showing how well each stratégyditions and then use that binding for the duration of the
balances system load. flow.

Keywords: Middleware, patterns, CORBA, load balancing. High volume Web sites often use network-based load bal-

ancing at thenetworklayer (layer 3) andransportlayer (layer

4). Layer 3 and 4 load balancing (referred to as “switch-
1 Introduction ing” in the trade literature [1]), use the IP address/hostname

and port, respectively, to determine where to forward pack-

Motivation: The growth of online Internet services duringts' Load balancing at these layers is somewhat limited, how-

the past decade has increased the demand for scalable %ﬁ{i by the fact that they do not D accoun_t the content
of client requests. Instead, higher-layer mechanisms—such as

“This work was funded in part by Automated Trading Desk, BBN, Cisc1€ SO'.Ca”?d layer 5 switch'ing described below—perform load
DARPA contract 9701516, and Siemens MED. balancing in accordance with the content of requests, such as

pathname information within a URL. Session Factories Session Factory
(Replicas)

¢ OS-based load balancing: This type of load balancing
is provided by distributed operating systems wulastering
load sharing, andprocess migratiorf2] mechanisms. Clus-
tering is a cost effective way to achieve high-availability and
high-performance by combining many commaodity computers
to improve overall system processing power. Processes can
then be distributed transparently among computers in the clus-
ter.

Clusters generally employ load sharing and process mi-
gration. Balancing load across processors—or more generally
across network nodes—can be achievedoviess migration
mechanisms [3], where the state of a process is transferred be-
tween nodes. Transferring process state requires significant
platform infrastructure support to handle platform differences
between nodes. It may also limit applicability to programming
languages based on virtual machines, such as Java.

¢ Middleware-based load balancing: This type of load B
balancing is performed in middleware, often on a per-session .
or per-request basis. For example, layer 5 switching [1] has Clients
become a popular technique to determine which Web server Figure 1: A Distributed Online Stock Trading System
should receive a client request for a particular URL. This strat-

egy also allows the detection of “hot spotsg’, frequently ac-)) .
cessed URLS, so that additional resources can be allocatefgl-end servers—calleeplicas-that process session creation

handle the large number of requests for such URLS. requests sent by clients over a network. A rgplica i; an object
This paper focuses on another type of middleware-baé'éﬂt_ca” perform the same tasks as thg original object. Server
load balancing supported mbject request broker€ORBs), rephcag that perform the same opergtlons can be grouped to-
such as CORBA [4]. ORB middleware allows clients to invokgether intoback-end server groupsvhich are also known as
operations on distributed objects without concern for objd€P!ica groupsor object groups
location, programming language, OS platform, communica-For the example in Figure 1, session factory6] is repli-
tion protocols and interconnects, and hardware [5]. Moreovgited in an effort to reduce the load on any given factory. The
ORBs can determine which client requests to route to whi@d in this case is a combination of (1) the average number of
object replicas on which servers. session creation requests per unit time and (2) the total amount
Middleware-based load balancing can be used in conjufRéresources employed currently to create sessions at a given
tion with the specialized network-based and OS-based Id@g@tion. Loads are then balanced across all replicas in the ses-
balancing mechanisms outlined above. It can also be §&" factory replica group. The replicas need not reside at the
plied on top of commodity-off-the-shelf (COTS) network§ame location.
and operating systems, which helps reduce cost. In addition[he sole purpose of session factories is to create stock trad-
middleware-based load balancing can provide semanticalj@ sessions. Therefore, factories need not retain state,
rich customization hooks to perform load balancing based iy arestateless Moreover, in this type of system client re-
a wide range of application-specific load balancing conditiofiests arrive dynamically—not deterministically—and the dura-
such as run-time 1/0 vs. CPU overhead conditions. tion of each request many not be knowpriori.
)]] These conditions require that the distributed online stock
CORBA load balancing example: To illustrate the benefits 44 4ing system be able to redistribute requests to replicas dy-
of middleware-based load balancing, consider the CORBAymically. Otherwise, one or more replicas may potentially
based online stock trading system shown in Figure 1. A digscome overloaded, whereas others will be underutilized. In
trlb.uted on]me_ stock trading system creates sessions thr_ogg{br words, the system mustlaptto changing load condi-
which trading is conducted. This system consists of multiplg,s |n theory, applying adaptivity in conjunction with mul-

tiple back-end servers can

1“Load sharing” should not be confused with “load balancireyg, pro-
cessing resources can bearedamong processors but not necessalidy- B B
anced ¢ Increase the scalability and dependability of the system;

¢ Reduce the initial investment when the number of clientse Per-session- Client requests will continue to be for-
is small; and warded to the same replica for the duration skasioA,

« Allow the system to scale up gracefully to handle more which is usually defined by the lifetime of the client [7].

clients and processing workload in larger configurations.e Per-request- Each client request will be forwarded to a

) o . - potentially different replicai.e., bound to a replica each
In practice, achieving this degree of scalability and depend- {ime a request is invoked.

ability requires a sophisticated load balancing service. Ide-
ally, this service should be transparent to existing online stock®
trading components. Moreover, if incoming requests arrive
dynamically, a load balancing service may not benefit from
a priori QoS specifications, scheduling, or admission control
and must therefore adapt dynamically to changes in run-time
conditions. Balancing policy: When designing a load balancing service

The CORBA load balancing service described in this pis important to select an appropriate algorithm that decides
per fulfills the needs of applications with high scalability revhich replica will process each incoming request. For exam-
quirements, such as the online stock trading system describksl applications where all requests generate nearly identical
above. In contrast, neither the network-based nor OS-baggtpunts of load can use a simple round-robin algorithm, while
load balancing solutions provide as straightforward, portab¥plications where load generated by each request cannot be
and economical a means of adapting load balancing decisigfslicted in advance may require more advanced algorithms.
based on application-level request characteristics, such as ¢argeneral, load balancing policies can be classified into the
tent and duration. following categories:

On-demand- Client requests can be re-bound to another
replica whenever deemed necessary by the load balancer.
This design forces a client to send its requests to a differ-
ent replica than the one it is sending requests to currently.

Paper organization: The remainder of this paper is orga- o Non-adaptive- A load balancer can use non-adaptive
nized as follows: Section 2 outlines the pros and cons of al- ngjicies, such as a simple round-robin algorithm or a ran-
ternative load balancing architectures; Section 3 evaluates the gomization algorithm, to select which replica will handle

performance of alternative load balancing strategies empiri- 5 particular request.

cally; Section 4 compares our adaptive middleware-based load

balancing service with related work; and Section 5 presents Ahdapt',\ll_e_ A load b.a:cancer-can usc; adar;]mve poI|C|esf
concluding remarks. that utilize run-time information, such as the amount o

idle CPU available on each back-end server, to select the
replica that will handle a particular request.

2 Overview of Alternative CORBA

Load Balancing Strategies and Ar- 2.2 Load Balancing Architectures

chitectures By combining the strategies described above in various ways,
it is possible to create the alternative load balancing architec-
In this section we describe a variety of strategies and architéges described below. In the ensuing discussion, we evaluate
tures for devising CORBA load balancing services. the pros and cons of these strategieslitatively Section 3
then evaluates these different strategjeantitatively

2.1 Load Balancing Strategies Non-adaptive per-session architectures: One way to de-

)) o sign a CORBA load balancer is make to the load balancer
There are various strategies for designing CORBA load bgkject the target replica when a client/server session is first

ancing services. These stra}tegi.es can be classified along,figpjishedi.e, when a client obtains an object reference to
following orthogonal dimensions: a CORBA object—namely the replica—and connects to that ob-

Client binding granularity: A load balancebindsa client j€ct, as shownin Figure2.. _ _
request to a replica each time a load balancing decision idlote that the balancing policy in this architecturenisn-
made. Specifically, a client's requests are bound to the repRétptivesince the client interacts with the same server to
selected by the load balancer. Client binding mechanisms\ftich it was directed originally, regardless of that server’s load
clude GIOPLOCATION_FORWARD messages, modified stanconditions. This architecture is suitable for load balancing
dard CORBA services, .(Hd hqcpropngtary interfaces. . Re_ 2In the context of CORBA, aessiondefines the period of time during
gard!ess Of the mechgn|sm, client binding can be classified @zh a client is connected to a given server for the purpose of invoking re-
cording to its granularity, as follows: mote operations on objects in that server.

Adaptive per-session architecture: This architecture is
NN similar to the non-adaptive per-session approach. The pri-
\@%\&V@ mary difference is that an adaptive per-session can use run-
time load information to select the replica, thereby alleviat-
ing the need to bind new clients to heavily loaded replicas.
3. send_request()—» This strategy only represents a slight improvement, however,
@ since the load generated by clients can change after binding
decisions are made. In this situation, the adaptive on-demand
architecture offers a clear advantage since it can respond to
dynamic changes in client load.

: Client

Figure 2: A Non-Adaptive Per-Session Architecture

o _ _ _ Adaptive per-request architectures: A more adaptive re-
policies that implement round-robin or randomized balanciggest architecture for CORBA load balancing is shown in Fig-

algorithms. ure 3. This design introduces a front-end server, which is a
Different clients can be directed to different object repli-

cas by either using (1) a middleware activation daemon, such

as a CORBA Implementation Repository [8] or (2) a lookup °

service, such as the CORBA Naming or Trading service. For v 4):@/;(7
example, Orbix [9] provides an extension to the CORBA Nam- Qoeﬁ‘Q ’epg Qf’%@s
ing Service that returns references to object replicas in either RS © \/O;OQ,O"KJ\A
a random or round-robin order. L DN

Load balancing services based on a per-session client bind-
ing architecture can satisfy requirements for application tran
parency, increased system dependability, minimal overhead
and CORBA interoperability. The primary benefit of per-
session client binding is that it incurs less run-time overhead Figure 3: An Adaptive Per-request Architecture
than the alternative architectures described below.

_ Non-adaptive per-session architectures do not, however, 53ty [10] that receives all client requests. In this case, the
isfy the requirement to handigynamicclient operation re- «ontend server” is the load balancer. The load balancer
quest patterns adaptively. In particular, forwarding is p&fajects an appropriate back-end server replica in accordance
formed only when the client binds to the objecg., when \ith its load balancing policy and forwards the request to that
it invokes its first request. Overall system performance M@Ylica. The front-end server proxy waits for the replica’s re-

suffer, therefore, if multiple clients that impose high loads agg 15 arrive and then returns it to the client. Informational

bound to the same server, even if other servers are less |°aﬂfé§sages—callddad advisoriesare sent from the load bal-

Unfortunately, non-adaptive per-session architectures have;ger to replicas when attempting to balance loads. These ad-
provisions to reassign their clients to available servers. \isqries cause the replicas to either accept requests or redirect

Non-adaptive per-request architectures: A non-adaptive theém back to the load balancer.

per-request architecture shares many characteristics with thEh® primary benefit of an adaptive request forwarding archi-
non-adaptive per-session architecture. The primary differef@gture is its potential for greater scalability and_ fairness. For
is that a client is bound to a repliczach timea request is example, the front-end server proxy can examine the current
invoked in the non-adaptive per-request architecture, ratféd on each replica before selecting the target of each request,
thanjust onceduring the initial request binding. This archi¥hich may allow it to distribute load more equitably. Hence,
tecture has the disadvantage of degrading performance dubig, forwarding architecture is suitable for use with adaptive

increased communication overhead, as shown in Section 39ad balancing policies. . _
Unfortunately, this architecture can also introduce excessive

Non-adaptive on-demand architectures: Non-adaptive |atency and network overhead because each request is pro-

on-demand architectures have the same characteristicgeded by a front-end server. Moreover, two new network mes-
their per-session counterparts described above. Howe¥gfes are introduced:

non-adaptive on-demand architectures allow re-shuffling of

client bindings at an arbitrary point in time. Note that run-timel. The request from the front-end server to the replica; and
information, such as CPU load, is not used to decide when 19 The corresponding reply from the back-end server
rebind clients. Instead, clients could be re-bound at regular (replica) to the front-end server.

time intervals, for example.

SErver proxy.

In addition, to ensure that the system is scalable and depend-he primary drawback with adaptive on-demand architec-
able €.g, no single point of failure), multiple intermediateures is that server replicas must be prepared to receive mes-
servers may be required. This configuration in turn requiresges from a load balancer and redirect clients to that load bal-
complex algorithms that propagate the current load infornamcer. Although the required changes do not affect application
tion to all front-end servers. It also requires a mechanismlagic, application developers must modify a server’s initializa-
assign clients to the correct front-end server. In a sense, théoer and activation components to respond to the load advisory
fore, the load balancing problem must be solved both for backessages mentioned above.
endand front-end servers, which complicates system designit is possible to overcome some drawbacks of adaptive
and implementation. on-demand load balancers, however, by applying standard
CORBA portable interceptors [11]. Likewise, implementa-

Adaptive on-demand architecture: This architecture is the tions based on the patterns [12] in the CORBA Component
primary focus of the remainder of this paper. As shown in Figtodel (CCM) [13] can implement load balancing without re-
ure 4, clients receive an object reference to the load balangeifing changes to application code. In the CCMoatainer

is responsible for configuring the portable object adapter

(POA) [5] that manages a component. Thus, TAO’s adap-
PN A tive on-demand load balancer just requires enhancing standard

CCM containers so they support load balancing, withoutincur-
ring other changes to application code.

3 Performance Results

: Client

For load balancing to improve the overall performance of
Figure 4: An Adaptive On-Demand Architecture CORBA-based systems significantly, the load balancing ser-
vice must incur minimal overhead. A key contribution of
initially. Using CORBA's standard.ocaTION_FORWARD TAO'’s load balancing service is that it increases overall system
mechanism, the load balancer can redirect the initial client teroughput by distributing requests across multiple back-end
quest to the appropriate target server replica. CORBA cliesgvers (replicas) without increasing round-trip latency and jit-
will continue to use the new object reference obtained as partsignificantly.
of the LOCATION_FORWARD message to communicate with This section describes the design and results of several ex-
this replica directly until they are redirected again or finigheriments we performed to measure the benefits of TAO's load
their conversation. balancing strategy empirically, as well as to demonstrate the
Unlike the non-adaptive architectures described earlignitations with the alternative load balancing strategies out-
adaptive load balancers that forward requests on-demandl@@sl in Section 2. The first set of experiments in Section 3.2
monitor replica load continuously. Using this load informatioghow the amount of overhead incurred by the request forward-
and the policies specified by an application, a load balandtg architectures described in this paper. The second set of
can determine how equitably the load is distributed. Whewperiments in Section 3.3 demonstrate how TAO'’s load bal-
load becomes unbalanced, the load balancer can communig@ager can maintain balanced loads dynamicatdigefficiently,
with one or more replicas and request them to use the stand@ngreas alternative load balancing strategies cannot.
CORBA LOCATION_FORWARD mechanism to redirect subse-
quent clients back to the load balancer. The load balancerwilh Hardware/Software Benchmarking Plat-
then redirect the client to a less loaded replica. Upon receipt form
of aLOCATION_FORWARD message, a standard CORBA client
ORB re-contacts the load balancer, which then redirects Benchmarks performed for this paper were run using three 733
client transparently to a less heavily loaded replica. MHz dual CPU Intel Pentium Ill workstations, and one 400
Using this architecture, the overall distributed object corivHz quad CPU Intel Pentium Il Xeon workstation, all running
puting system can (1) recover from unequitable client/replibebian GNU/Linux “potato” ¢LIBC 2.1), with Linux kernel
bindings while (2) amortizing the additional network and praersion 2.2.16. GNU/Linux is an open-source operating sys-
cessing overhead over multiple requests. This strategy ten that supports kernel-level multi-tasking, multi-threading,
guires minimal changes to the application initialization co@d®d symmetric multiprocessing. All workstations are con-
and no changes to the object implementations (servants) theatted through a 100 Mbps ethernet switch. This testbed is
selves. depicted in Figure 5. All benchmarks were run in the POSIX

support for TAO’s adaptive on-demand load balancer to the
classicLatency test. ThelLatency test client code re-
mained unchanged, thereby preserving client transparency.
This variant quantified the performance and scalability impact
of TAO's adaptive on-demand load balancer.

Dual CPU
Replica Host

3.2 Benchmarking the Overhead of Load Bal-
ancing Mechanisms

ik

Dual CPU These benchmarks measure the degree of end-to-end overhead

Load Salat\ncer incurred by adding load balancing to CORBA applications.
0s

i 100 MBps
Quad CPU Network Switch
Client Host

Overhead measurement technique: The overhead experi-
ments presented in this paper compute the throughput, latency,
and jitter incurred to communicate between a single-threaded
client and a single-threaded serviee (one replica) using the
Dual CPU following four request forwarding architectures:

Replica Host 1. No load balancing: To establish a performance base-
Figure 5: Load Balancing Experiment Testbed line without load balancing, theatency performance test
was first run between a single-threaded client and a single-
threaded server (one replica) residing on separate worksta-

real-time thread scheduling class [14]. This scheduling clagss. These results reflect the baseline performance of a TAO
enhances the integrity of our results by ensuring the threggént/server application.

created during the experiment were not preempted arbitraril . . . I .
during their execution. . A non-adaptive per-session client binding architec-

The core CORBA benchmarking software is based on tw e: We then configured TAO'’s load balancer to use the

“Latency ” performance test distributed with the TAO Openr_1on-adapt|ve per-session load balancing strategy when balanc-

source software releaderigure 1 illustrates the basic desigrllng loads on dLatency test server. We did this by simply

of this performance test. All benchmarks use one of the fgf_jding the registration code to thatency _test server imple-
lowing variations of thd atency _test: mentation, which causes the replica to register itself with the

load balancer so that it can be load balanced. No changes to
1. Classic Latency test: In this benchmark, we use high+the coreLatency test implementation were made. Since the

resolution OS timers to measure the throughput, latency, a8flica sends no feedback to the load balancer, this benchmark
jitter of requests made on an instance of a CORBA object thataplishes a baseline for the best performance achievable by

verifies a given integer is prime. Prime number factorizatigNoad balancer that utilizes a per-session client binding gran-
provides a suitable workload for our load balancing tests sing@rity.

each operation runs for a relatively long time. In addition, it A dapti t client bindi hit
is a stateless service that shields the results from transitionaﬁ'_ non-adaptive per-request client binding architec-

effects that would otherwise occur when transferring state k{) e Zl.eXt’ we aq,dteiiha spgqa;lz?d non—e;detptrﬁ per-request
tween load balanced stateful replicas. orwarding server” to the origindlatency test. This server

just forwards client requests to an unmodified backend server.
2. Latency test with non-adaptive per-request load balanc- The forwarding server resided on a different machine than ei-
ing strategy: This variantofLatency test was designed tother the client or backend server, which themselves each ran
demonstrate the performance and scalabilitppfimalload on separate workstations. Since the forwarding server is es-
balancing using per-request forwarding as the underlying &mntially a lightweight load balancer, this benchmark provides
quest forwarding architecture. This variant added a speciglhaseline for the best performance achievable by a load bal-

ized “forwarding server” to the test, whose sole purpose Wascer using a per-request client binding granularity.

to forward requests to a target server at the fastest possiblﬁz An adati d d client bindi hi .
rate. No changes were made to the client. . An adaptive on-demand client binding architecture:

Finally, TAO’s adaptive on-demand client binding granular-
3. Latency test with TAO's adaptive on-demand load bal- jty was included in the experiment, which reacts to the cur-
ancing strategy: This variant of theLatency test added rent Joad on the.atency test server. TAO's load balancer,
35ee$TAQROOT/performance-tests/Latency/ inthe TAO re- the client, and the server each ran on separate workstations,
lease for the source code of this benchmark. i.e., three workstations were involved in this benchmark. No

changes were made to the client portion oflthéency test, _
. Throughput Comparison
nor were any substantial changes made to the core servant| _
plementation. £ 4500 -
2 4000
Overhead benchmark results: The results illustrated in | 2 T —
Figure 6 quantify the latency imposed by adding loa » 2500 || |
g 2000 -
3 1500 — —
Latency Comparison EL 1g88:
> 0 ; ; ; |
700 3 .
= Classic Latency Test Latency Test Latency Test
600 T— @ Latency - Jitter = Latency w/Per-Session w/Per-Request w/TAO On-
Performance Load Balancer Load Balancer Demand Load
500 +— W Average Latency Test Balancer
§ 400 +— [Latency + Jitter
g 300 1 Figure 7: Load Balancing Throughput Overhead
©
- 200
1007 Figure 7 illustrates that throughput decreases dramatically
0

Classic Latency ‘ Latency Test w/Per- Latency Test w/Per- ‘Lalency Test wlTAO‘ in the per- requeSt Strateg.y due to the faCt that It (1) TorWard§ re-
Performance Test Session Load Request Load On-Demand Load queStS on behalf Of the Cl|ent and (2) forWardS replleS rece|Ved
Batancer Batancer Batancer from the replica to the client, thereby doubling the commu-
nication required to complete a request. This architecture is
Figure 6: Load Balancing Latency Overhead clearly not suitable for throughput-sensitive applications.

In contrast, the throughput in TAO’s load balancing ap-
balancing—specifically request forwarding—to thatency proach only decreased slightly with respect to the case where
performance test. All overhead benchmarks were run wiib load balancing was performed. The slight decrease in
200,000 iterations. As shown in this figure, a non-adaptitoughput can be attributed to the same factors that caused
per-session approach imposes essentially no latency overhigadlight in increase in latency described abaes, (1) addi-
to the classid-atency test. In contrast, the non-adaptivéional resources used by the load monitor and (2) the commu-

per-request approach more than doubles the average latatigition between the load balancer and the load monitor.
TAQO's adaptive on-demand approach adds little latency. The

slight increase in latency incurred by TAO’s approach j .)
Caﬂsed by Y Y PP 53 Load Balancing Strategy Effectiveness

e The additional processing resources the load moni%nggggwngg se;[of benphmark; qu_aljtlfybhclnw effgcl:tlvg each
needs to perform load monitoring; and . gs ra@egy IS gt maintaining oalanced load across
a given set of replicas. First, the effectiveness of the non-
e The resources used when sending periodic load reportg#ptive per-session load balancing strategy is shown. Next,
the load balancer.e., “push-based” load monitoring. the effectiveness of the adaptive on-demand strategy employed
by TAO is illustrated. In all cases, we used ttetency test

These results clearly S.hOW that Itis pqssmle to MINIMIZE 1860 the overhead benchmarks in Section 3.2 for the experi-
tency overhead, yet still provide adaptive load balancing. nts

shown in Figure 6, the jitter did not change appreciably be-"
tween each of the test cases, which illustrates that load liEffectiveness measurement technique: The goal of this
ancing hardly affects the time required for client requestslienchmark was to overload certain replicas in a group and then
complete. measure how different load balancing strategies handled the
Figure 7 shows how the average throughput differs betwearbalanced loads. We hypothesized that loads across repli-
each load balancing strategy. Again, only one client and args should remain imbalanced when using non-adaptive per-
server were used for this experiment. Not surprisingly, teession load balancing strategies. Conversely, when using
throughput remained basically unchanged for the non-adap#daptive load balancing strategies, such as TAO’s adaptive
per-session approach since only one out of 200,000 requéstd balancing strategy, loads across replicas should be bal-
was forwarded. The remaining requests were all sent to alirced shortly after imbalances are detected.
rectly to the servel,e., all requests were running at their max- To create this situation, folratency test server replicas—
imum speed. each with a dedicated CPU-were registered with TAO's

load balancer during each effectiveness experiment. Eitfie line representing the load on replica 4. In addition, note
Latency test clients were then launched. Half the clienthat the same number of iterations were issued by each client.
issued requests at a higher rate than the other half. For &xce some clients issued requests at a faster rate (10 Hz),
ample, the first client issued requests at a rate of ten requésisever, those clients completed their execution before the
per-second, the second client issued requests at a rate ofdismts with the lower request rates (5 Hz). This difference
requests per-second, the third at ten requests per-secondjretequest rate accounts for the sudden drop in load half way
The actual load was not important for this set of experiment&fore the slowerife., low load) clients completed their exe-
Instead, it was theelativeload on each replica that was imporeution.

tgnt.,i.e., a well balanced set of replicas should have reIatively-I-Ao,S adaptive load balancing strategy effectiveness:
similar loads, regardless of the actual values of the load. 1 test demonstrated the benefits of an adaptive load balanc-
Effectiveness benchmark results: The results of the effec-ing strategy. Therefore, we increased the load imposed by each
tiveness tests are described below. client and increased the number of iterations from 200,000 to

. . . . 750,000. Four clients running at 100 Hz and another four run-
o Non-adaptive per-session load balancing effectiveness: .

For this experiment, TAO's load balancer was configured 69 at 50 Hz were started and ended simultaneously.

use itsround-robinload balancing strategy. This strategy do%s Client request rates were increased to exaggerate load im-

) : alance and to make the load balancing more obvious as it
not perform any analysis on reported loads, but simply for-

- . . . rogresses. It was necessary to increase the number of iter-
wards client requests to a given replica. The client then cgn-g y

tinues to issue requests to the same replica over the Iifetimgtl?ns in this experiment because of the higher client request

that replica. The load balancer thus appliesriba-adaptive rates. If the number of iterat_ions were capped at thg 200’00.0
per-sessiorstrategy,i.e., it is only involved during the initial used in the overhead experiments in Section 3.2 th|§ experi-
client request. ment could have ended before loads across the replicas were

Figure 8 illustrates the loads incurred on each of trt])glanced.

: : . . dAs Figure 9illustrates, the loads across all four replicas fluc-
Latency server replicas using non-adaptive per-session loa

Loads Under Non-Adaptive Per-Session Loads Under Adaptive On-Demand Strategy
Strate
o 200 ~
180 A YY? !"\
- 257 —Replica 1 g 128 1 | tLth 0~ 1
° 20 —Replica 2 § |
S Repl!ca3 | g 120 ‘f —Replica 1
g s Replica 4 8 100 - \ —Replica 2
2] g 807 Replica 3
8 ; 60 7 ——Replica 4
=1 10 \ S 40 “
o ~ 20
- 51 0 AN
© - — — — - i) — — — - — - — - —
o n O v O v O u»u O n O uw O 1 O
4 o ® I~ © o< MmN oad o Elapsed Time (seconds)
< N~ — Ln N~ — Lo D M
- +d <4 N N MO M M <
Elapsed Time (seconds) Figure 9: Effectiveness of Adaptive On-Demand Load Balanc-
ing
Figure 8: Effectiveness of Non-Adaptive Per-Session Load] .) o
Balancing tuated for a short period of time until an equilibrium load of

150 Hz was reachetiThe initial load fluctuations result from
balancing. The results quantify the degree to which lodil§ load balancer periodically rebinding clients to less loaded
across replicas become unbalanced by using this stratégfflicas. By the time a given rebind completed, the replica
Since there is no feedback loop between the replicas and /@€ had become imbalanced, at which point the client was re-
load balancer, itis not possible to shift load from highly loaddtpund to another replica. These initial fluctuations are typical
replicas to less heavily loaded replicas. of the adaptive load balancing hazards.

Note that two of 'the replicas (3 and 4) had 'the same loadsthe 150 Hz equilibrium load corresponds to one 100 Hz client and one
The line representing the load on replica 3 is obscured #myHz client on each of the four replicas.

The load balancer required several iterations to balance teldleware-based load balancing, but many concepts and pat-
loads across the replicas., to stabilize. Had it not been forterns used in middleware-based load balancing also apply to
the dampening built into TAO'’s adaptive on-demand load baletwork-based and OS-based load balancing, as described be-
ancing strategy, it is likely that replica loads would have oscibw.

lated for the duration of the experiment. Dampening prevents)
work-based load balancing: Network-based load bal-

the load balancer from basing its decisions on instantaneB'L%, il : ke decisi based h
replica loads, and to use average loads instead. ancing implementations often make decisions based on the fre-

It is instructive to compare the results in Figure 9 to t uency with which a given location is accessed. The decision

. : . . wher rvi r n m vari
non-adaptive per-session load balancing architecture resul@if "cre to service a request can be made at various stages

Figure 8. Loads in the non-adaptive approach remained imt?eleng the path to its destination. For example, a router or DNS

anced. Using the adaptive on-demand approach, the overtgad®’ could decide where to sgnd a request.'
is minimizedandloads remain balanced. Network-based load balancing has the disadvantage that

After it was obvious that the loads were balande, equi- load balancing decisions are based solely on the request tar-

librium was reached, the experiment was terminated. This gg_t, which hampers flexibility greatly. However, recent devel-

counts for the uniform drops in load depicted in Figure 9. coffPments in network-based load balancing do take advantage

trast this to the non-uniform drops in load that occured in tﬁ& reque{st content. Thesg hybf'd |mpI9mentat|ons [4] prow.de
finer-grained load analysis, which can improve load balancing

overhead experiments in Section 3.2, where clients wereda- isions. Nevertheless, the choice of metric used in load bal-
lowed to complete all iterations. In both cases, the number or ’ '

iterations is less important than the fact that the iterations Wgrneﬁ\'/r;%] ?:f'2325;;?'8';;%3”'“(9(1 to the frequency with which
executed to (1) illustrate the effects of load balancing and &? 9 '

ensure that the overall results were not subject to transient efl-J nfortunately, frequency alone is not always an adequate

fects, such as periodic execution of operating system tasksl.oad metric since some requests may incur large loads on

The actual time required to reach the equilibrium load (he target hos.g, when Web servers process CGI requests.

: hen combined with load balancing decisions based solely on
pends greatly on the load balancing strategy. The example .

o . :) arget access frequency, the increased loads from such requests
above was based omainimum dispersiostrategy, which en-

sures that load differences fall within a certain toleraneeg,it can degrade overall system performance. It is possible to an-

. : alyze the content of each request to determine if it is a “high
attempts to ensure that the average difference in load betwgen,., . . S

T s ; 0ad” request, but this requirespriori knowledge of the re-
each replica is minimized. A more sophisticated adaptive loa

balancing strategy could have been employed to improve uests behavior, which may not be feasible in many distributed

time to reach equilibrium. Regardless of the complexity gpmputlng systems.

the adaptive load balancing strategy, these results show thgtbased load balancing: Some distributed operating sys-
adaptive load balancing strategies can maintain balanced la@é$s, such as Chorus [17], can distribute processes transpar-
across a given set of replicas. ently across remote OS endsystem nodes. Tools, such as GNU
Queue [18], run a service that allows a user to run remote pro-
cesses as if they were run on the local machiree, essen-
4 Related Work tially transparently. Load balancing performed at this level
has the advantage that it can be implemented transparently to
This section outlines related research on load balancing @pglications. When loads are too high at their current loca-
describes how it compares and contrasts to our work on TAG@, running applications can be migrated to other nodes rel-
load balancing service. We first compare our middlewarively transparently. As with the network-based architecture,
based load balancing strategies with work at other levelshsiwever, load balancing at this level makes it hard to choose
abstractions. Next, we describe how our work compares wivhich metric to use when deciding where to move processes

other research on CORBA-based load balancing. since application-level metrics and policies are not available at
this level.
4.1 Related Research on Load Balancing Middleware-based load balancing: Middleware-based

load balancing implementations reside between the applica-
As discussed in Section 1, load balancing mechanisms hawa and the OS/network. Middleware shields the application
been implemented at various levels, such as in the netwdr&m tedious and error-prone low-level OS complexities, while
OS, and middleware. Some implementations, such as the Galee providing a powerful interface to make load balancing
dor [15] and Beowulf [16] clustering systems combine aat this level as transparent as possible, if not completely
pects from multiple levels. This paper focuses primarily dransparent. Moreover, middleware can be implemented

with sufficient flexibility to overcome the disadvantages itake direct advantage of request invocation information avail-

network-based and OS-based load balancing architecturesable within the POA when it makes load balancing decisions.
CORBA is a prime example of a technology that providddoreover, middleware resources used by each object can also

the following capabilities needed to implement an effectila® monitored directly via this design, as described in [22]. For

load balancing service: example, Inprise’s VisiBroker implements a similar strategy,

o)] where Visibroker's object adapter [23] creates object refer-

* Application developers can customize how their systesfices that point to Visibroker's Implementation Repository,

is load balanced without being restricted by the limiteds|led the OSAgent, that plays both the role of an activation

and often hard-coded—metrics available in network-basgsbmon and a load balancer.

and OS-based load balancing. ORB-level techniques have the advantage that the amount
¢ Applications can select at run-time the metric(s) used df indirection involved when balancing loads can be reduced
load balancing decisions. because load balancing mechanisms are closely coupled with

o New metrics can also be defined with relative ease ORBe.g, the length of communication paths is shortened.
separating interface from implementatid,, exposing However, ORB-level load balancing has the disadvantage that

a consistent interface for each implementation. For dk/€duires modifications to the ORB itself. Unless or un-
ample, a load monitoring component can be implemem'éloSUCh modifications are adopted by the OMG, they will be

for a specific load metric, yet keep the load balancing s@roprietary, which reduces their portability and interoperabil-
vice load metric neutral. ity. Therefore, TAO’s load balancing service does not rely on

ORB-level extensions or non-standard features.

Moreover, a middleware-based load balancing service camrAQ's load balancing service does not require any modifi-
be used in conjunction with network- and OS-based load bgtions to the ORB core or object adapter. Instead, it takes
ancing facilities, which supports some interesting load balargtvantage of standard mechanisms in CORBA 2.X to imple-
ing combinations. For example, if an application just needsrfent adaptive load balancing. Like the Visibroker implemen-
balance load based on request frequency a middleware-bggg6h and the strategies described in [22], TAO's approach
load balancer can delegate load balancing tasks to the Retransparent to clients. Unlike the ORB-based approaches,
work or OS layers. Conversely, the middleware-based logglvever, our implementation only uses standard CORBA fea-
balancer itself could be load balanced at the network or @fes. Thus, it can be ported to any C++ CORBA ORB that
level, thereby providing additional network/host resources f@iplements the CORBA 2.2 or newer specification.
use by the middleware-based load balancer and other applica-

tions. . . .
Other examples of middleware-based load balancing ervice-level: Load balancing can also be implemented as a
E9|RBA service. For example, the research reported in [24]

clude some Web server implementations. Web servers .
forward HTTP requests [19] to any one of a number hosts tﬁéfends the CORBA Event Serylce to supp.ort bOth load bal-
ng and fault tolerance. Their system builds a hierarchy of

replicate the target web page. Overall throughput can be i°! h itat f f li h
creased using any of the load balancing approaches detailég/f"t channeliat fan out from event souraippliersio the

this paper. The key is that the web server performs the HTﬁ")ﬂant smkcor_13umers Each event consSumer 1S aSS|gn_ed toa
request load balancing. differentleaf in the event channel hierarchy, and both fixed and

The CORBA-based load balancing concepts detailed in tﬁgaptive load balancing is performed .to distripute consumers
paper are generally applicable to other middleware imp yenly. .In c'ontrasf[, TAO S load balancing service can be used
mentations, such as COM+ [20]. In fact, a middlewar or application defined objects, as well as event services.

ing (CLB) [21] is available from Microsoft for COM+ appli- service-level load balancing. For example, IONA's Orbix [25]

cations. can perform load balancing using the CORBA Naming Ser-
vice. Different replicas are returned to different clients when
they resolve an object. This design represents a typical non-

4.2 Related Work on CORBA-based Load Bal- 5qaptive per-session load balancer, which suffers from the dis-

ancing advantages described in Section 2. BEA's WebL ogic [26] uses

CORBA load balancing can be implemented at several Iev%lg er-request load balancing strategy, also described in Sec-

in the OMG reference architecture, such as the following: On 2. In contrast, TAO's load balancing service does not n-
' 9 curthe per-request network overhead of the BEA strategy, yet

ORB-level: Load balancing can be implemented inside thoan still adapt to dynamic changes in the load, unlike Orbix’s
ORB itself. For example, a load balancing implementation ckrad balancing service.

10

5 Concluding Remarks and its other CORBA services is freely available from URL
http://www.cs.wustl.edu/ ~schmidt/TAO.html
As network-centric computing becomes more pervasive afighaper describing the design of TAO’s load balancing service
applications become more distributed, the demand for greatppears in [28].
scalability and dependability is increasing. Distributed system
scalability can degrade significantly, however, when servg?s
become overloaded by the volume of client requests. To _eferences
leviate such bottlenecks, load balancing mechanisms can g . Johnson and ArrowPoint Communications, “A Comparative
used to distribute system load across object replicas residing Analysis of Web Switching Architectures.”
on muItipIe servers http://www.arrowpoint.com/solutions/whiteapers/wsarchv6.html,
: i . 1998.
Load can be balanced at several levels, including the net- &, Coulouri i 4T KindberBistibuted S _
work, OS, and middleware. Network-based and OS-bas&d & oulouns. J. Dollimore, and T. Kindber@istributed Systems:

) . LT Concepts and DesigrHarlow, England: Pearson Education Limited,
load balancing architectures suffer from several limitations: 2001.

o . . - [3] F. Douglis and J. Ousterhout, “Process Migration in the Sprite
e The lack of f|EXIbI|I'[y arises from the 'nab”'ty to sup- Operating System,” ilProceedings of th&t" International Conference

port application-definedanetrics at run-time when mak- on Distributed Computing SystengBerlin, West Germany),
ing load balancing decisions. pp. 18-25, IEEE, Sept. 1987.

o] Object Management Groufphe Common Object Request Broker:
e The lack of adaptability occurs due to the absence i Architecture and Specificatio.4 ed., Oct, 2000,

Ioad-rel'ated' f.eedbaCk from.a given set of repllcas, aS.W?Q] M. Henning and S. VinoskiAdvanced CORBA Programming With
as the inability to control if and when a given replica™ ¢, "aqdison-wesley Longman, 1999.

should accept additional requests. [6] E.Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Patterns:

. . . Elements of Reusable Object-Oriented Softw&eading, MA:
Thus, middleware-based load balancing architectures— aqgison-wesley, 1995.

part_ICUIarly those based ,Or? s.tandar'd CORBA-have be N. Pryce, “Abstract Session,” iRattern Languages of Program Design
devised to overcome the limitations with network-based and (. Foote, N. Harrison, and H. Rohnert, eds.), Reading, MA:
OS-based load balancing mechanisms outlined above. Addison-Wesley, 1999.

This paper illustrates the performance of adaptivis] M. Henning, “Binding, Migration, and Scalability in CORBA,”

pap p p

middleware-based load balancing mechanisms developed Communications of the ACM special issue on COREM 41, Oct.
using the standard CORBA features provided by the TAO
ORB [27]. Though CORBA provides solutions for ma_ny[g] S. Baker,CORBA Distributed Objects using OrbiAddison Wesley

. ; . - Longman, 1997.
distributed system challenges, such as predictability, secu- o _ o S ad. and M. Stal
rity, transactions, and fault tolerance, it still lacks standafd! F-Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

. . Pattern-Oriented Software Architecture - A System of Pattéfviey
solutions to tackle other important challenges faced by ang sons, 199.

d|Str|bUt_Ed .systenj's.archltects and de\{elopers. Chlef am?ﬂ? Adiron, LLC, et al, Portable Interceptor Working Draft — Joint Revised
those missing facilities are load balancing, state caching, and submissionObject Management Group, OMG Document
state replication. orbos/99-10-01 ed., October 1999.

The CORBA-based load balancing service provided [g] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
TAO fills part of this gap by allowing distributed applications Pattern-Oriented Software Architecture: Patterns for Concurrency and

. . . . Distributed Objects, Volume New York, NY: Wiley & Sons, 2000.

to be load balanced adaptively and efficiently. This service _ _
increases overall system throughput by distributing requelfé BEA Systemsetal, CORBA Component Model Joint Revised

. . . : . SubmissionObject Management Group, OMG Document
across multiple back-end server replicas without increasing o05/99-07-01 ed., July 1999.

round-trip latency substantially or assuming predictable, [?5{ Khanna, S.et al, “Realtime Scheduling in SunOS 5.0,” Rroceedings
homogeneous loads. As a result, developers can concentratesf the USENIX Winter Conferengep. 375-390, USENIX Association,
on their core application behavior, rather than wrestling with 1992.
complex infrastructure mechanisms needed to make their @pr J. Basney and M. Livny, “Deploying a High Throughput Computing
plication distributed, scalable, and dependable. Cluster,"High Performance Cluster Computingol. 1, May 1999.
TAO and TAO's load balancing service have been appligi@] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: Harnessing

to a wide range of distributed applications, including many T:rgso";if Ioéggri'gfm in a Pile-of-PCs,"foceedings, IEEE
telecommunication systems, aerospace/military systems, p_ i T)
online trading systems, medical systems, and manufacturf{g M- Rozier, V. Abrossimoy, F. Armand, 1. Boule, M. Gien,

M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and
process control _SyStemS- All 'the source codg, examples, W. Neuhauser, “Overview of the CHORUS Distributed Operating
and documentation for TAO, its load balancing service, Systems,” Tech. Rep. CS-TR-90-25, Chorus Systems, 1990.

11

(28]

(29]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

W. G. Krebs, “Queue Load Balancing / Distributed Batch Processecing
and Local RSH Replacement System.”
http://www.gnuqueue.org/home.html, 1998.

Sun-Netscape Alliance, “Technical Overview of Netscape Application
Server 4.0”
http://www.iplanet.com/products/whitepaper/whitepagertml, 2000.

D. Box, Essential COM Addison-Wesley, Reading, MA, 1997.

T. Ewald, “Use Application Center or COM and MTS for Load
Balancing Your Component Servers.”
http://www.microsoft.com/msj/0100/loadbal/loadbal.asp, 2000.

M. Lindermeier, “Load Management for Distributed Object-Oriented
Environments,” inProceedings of the'? International Symposium on
Distributed Objects and Applications (DOA 2000)ntwerp,

Belgium), OMG, Sept. 2000.

I. Inprise Corporation, “VisiBroker for Java 4.0: Programmer’s Guide:
Using the POA.”
http://www.inprise.com/techpubs/books/vbj/vbj40/programmers-
guide/poa.html,

1999.

K. S. Ho and H. V. Leong, “An Extended CORBA Event Service with
Support for Load Balancing and Fault-Tolerance,Pimceedings of

the International Symposium on Distributed Objects and Applications
(DOA'99), (Antwerp, Belgium), OMG, Sept. 2000.

IONA Technologies, “Orbix 2000.”
www.iona-iportal.com/suite/orbix2000.htm.

BEA Systems Inc., “WebLogic Administration Guide.”
http://edoc.bea.com/wle/.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

O. Othman, C. O'Ryan, and D. C. Schmidt, “The Design of an
Adaptive CORBA Load Balancing ServicdEEE Distributed Systems
Onling, vol. 2, Apr. 2001.

12

