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Abstract

System execution traces can be used to validate enterprise distributed real-
time and embedded (DRE) systems quality-of-service (QoS) properties (such
as response-time, latency, and scalability) based on system structure/composi-
tion. As enterprise DRE systems increase in size (i.e., number of hardware/-
software components) and complexity (i.e., envisioned operational scenarios)
it becomes harder to validate QoS properties because traditional techniques
do not adapt to the dynamic nature of the system. This article therefore de-
scribes a methodology and tool called Understanding Non-functional Intentions
via Testing and Experimentation (UNITE) that uses relational database tech-
niques and dataflow models to validate enterprise DRE system’s QoS properties
independent of the system’s structure/composition. Our empirical results show
that UNITE is a lightweight and scalable method whose evaluation time de-
pends primarily on the amount of data being analyzed, as opposed to the size,
composition, and complexity of the enterprise DRE system itself.

Keywords: Enterprise distributed real-time and embedded (DRE) systems,
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1. Introduction

Emerging trends and challenges. Enterprise DRE systems (e.g., urban
traffic management systems, air traffic control systems, powergrid SCADA sys-
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tems, and shipboard computing systems) are a class of systems that must satisfy
functional (e.g., operational capabilities) and quality-of-service (QoS) require-
ments (e.g., end-to-end response time, throughput, and scalability) [1]. System
ezecution traces, which are a collection of messages that reflect events that occur
throughout the execution lifetime of a system, can be used to validate enter-
prise DRE system’s functional [2, 3] and QoS properties [4, 5, 6]. Enterprise
DRE system developers can use these traces to determine if system functionality
executes correctly by validating that the execution trace either (1) contains a
message (or messages) that reflects execution of the functional concern or (2)
does not contain an error message that reflects failure related to the functional
concern. This process can often be automated to reduce the amount of manual
time and effort needed to validate functional properties using system execution
traces [3].

Validate QoS properties with system execution traces is often harder than
validating functional properties since the data points needed to validate individ-
ual QoS properties can be dispersed throughout a system execution trace. For
example, validating end-to-end response time of an event requires the event’s
timestamp at its source and destination while tracking (or correlating) the event
across the entire system. The event’s initial timestamp usually appears earlier
than its final timestamp in the system execution trace. A common approach to
performing this correlation is to send as much data as possible (e.g., an event
id and initial timestamp) to perform validation at the final destination (e.g.,
subtract the initial timestamp from the final timestamp). Although this ap-
proach does not require correlating data points, it can be expensive in terms
of resources used (e.g., CPU, memory, and network bandwidth) and negatively
impact existing functional and QoS properties.

Other approaches for validating QoS properties using system execution traces
are tightly coupled to (1) system implementation [4, 6], i.e., what technologies
are used to implement the system, and (2) system composition [5, 6], i.e., where
components are located and what components communicate with each other.
Although these approaches are feasible, their constraints often limit the val-
idation of QoS properties in enterprise DRE system —particularly dynamic
systems—since individual snapshots of system composition and structure are
needed each time it dynamically changes (e.g., addition/removal of a compo-
nent and moving a component to a new host) to perform the validation. New
techniques are therefore needed to improve the QoS validation capabilities of dy-
namic enterprise DRE systems so it is not tightly coupled to system composition
and system implementation.

Solution approach — QoS validation with dataflow models. To
validate QoS properties independent of system composition and implementa-
tion, the validation process should be performed using abstractions that remain
(relatively) constant across system composition and implementation. An ab-
straction that meets this criteria is a dataflow model [7], which describe how
data is transmitted through an information system, because a dataflow often
remains constant, even as system compositions and implementations change.
For example, dataflow models have been used in UML to capture information
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Figure 1: Overview of UNITE’s Workflow

flow in software systems independent of its composition and implementation [§].
In the context of enterprise DRE systems, dataflow models describes how data
(1) flows between different components distributed across hosts in the target
environment and (2) is exchanged via interprocess communication (IPC) mech-
anisms, such as distributed objects, publish/subscribe, and messaging. These
models can then be used in conjunction with system execution traces to validate
enterprise DRE system QoS properties.

This article describes a method and tool called Understanding Non-functional
Intentions via Testing and Experimentation (UNITE) that uses dataflow mod-
els to validate enterprise DRE system QoS properties via system execution
traces. UNITE analyzes dataflow models using relational database theory tech-
niques [9], such as table relations and joins, where the correlation of data points
used to validate a QoS property are associated with each other via their relations
in the dataflow model. The resultant data table is then evaluated by applying
an SQL expression based on a user-defined function.

Enterprise DRE system developers and testers can use UNITE to validate
enterprise DRE system QoS properties via the steps shown in Figure 1 and
summarized below:

1. Identity data of interest within the messages using message constructs,
e.g.,; {STRING ident} sent message {INT eventId} at {INT time};

2. Define a dataflow model for extracting metrics of interest used in QoS
validation; and

3. Define a QoS validation equation to analyze dataflow model and evaluate
a QoS property, such as end-to-end response time, latency, and scalability.

Our experience of applying UNITE to a representative enterprise DRE sys-
tem shows it is an effective technique for validating QoS properties independent



of system composition and implementation details. Moreover, our results show
that although evaluation time increases as the size of UNITE dataflow models
increase (which is correlated with system size and complexity), evaluation time
depends primarily on the amount of data being analyzed. UNITE can there-
fore scale up to handle large DRE systems consisting of many components and
hosts that contain complex behavior without unduly degrading evaluation time
of QoS properties using system execution traces.

Article organization. The remainder of this article is organized as follows:
Section 2 summarizes a representative DRE system case study to motivate the
challenges addresed by UNITE; Section 3 describes the structure and function-
ality of UNITE and shows how UNITE addresses the challenges introduced in
the motivating case study; Section 4 analyzes the results of experiments that
evaluate UNITE in the context of our case study; Section 5 compares UNITE
with related work; and Section 6 presents concluding remarks.

2. Case Study: the QED Project

The Global Information Grid (GIG) middleware [10] is a enterprise DRE sys-
tem from the class of ultra-large-scale (ULS) systems [11]. The GIG is designed
to ensure that different applications can collaborate effectively and deliver ap-
propriate information to users in a timely, dependable, and secure manner. Due
to the scale and complexity of the GIG, however, conventional implementations
do not provide adequate end-to-end QoS assurance to applications that must
respond rapidly to priority shifts and unfolding situations.

The QoS-Enabled Dissemination (QED) [12] project is a multi-year, multi-
organization collaboration designed to improve GIG middleware so it can meet
QoS requirements of users and component-based distributed systems. QED aims
to provide reliable and real-time communication middleware that is resilient to
the dynamically changing conditions of GIG environments. Figure 2 shows
QED in the context of the GIG. At the heart of the QED middleware is a Java
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Figure 2: Conceptual Model of QED in the Context of the GIG

information broker based on JBoss that enables tailoring and prioritizing of
information based on mission needs and importance, and responds rapidly to



priority shifts and unfolding situations. Moreover, QED leverages QoS-enabled
network technologies (such as Mockets [13] and differentiated service queues [14])
to provide end-to-end QoS assurance to GIG applications.

Since the QED middleware is infrastructure software, applications that use it
cannot be developed until the middleware itself is sufficiently mature. It is there-
fore hard for QED developers to ensure their software architecture and imple-
mentations are actually improving the QoS of applications that will ultimately
run on the GIG middleware. The QED project thus faces the serialized-phasing
problem [15], which is common in large-scale enterprise DRE systems. In the
serialized-phasing problem, the system is developed in layers, where components
in the upper layer(s) are not developed until (often long) after the components
in the lower layer(s) are developed. Design flaws that affect QoS properties
are thus often not discovered until final integration (e.g., at system integration
time), when they are more costly and harder to fix [16, 17].

To overcome the serialized-phasing problem, QED developers are using sys-
tem execution modeling tools [18, 19, 20, 21] to execute performance regression
tests automatically against the QED middleware and evaluate QoS properties
continuously throughout its development. In particular, QED uses the Compo-
nent Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS) [19], which
is a platform-independent system execution modeling tool for enterprise DRE
systems. Enterprise DRE system developers and testers use CUTS by model-
ing the behavior and workload of their enterprise DRE system and generating
a test system for their target architecture. These developers and testers then
execute the test system on their target architecture, and CUTS collects perfor-
mance metrics, which can be used to evaluate QoS properties. This process is
repeated continuously throughout the software lifecycle to increase confidence
in QoS assurance.

Prior work [22] showed how integrating CUTS with continuous integration
environments provided a flexible solution for executing and managing component-
based distributed system tests continuously throughout the development lifecy-
cle. This work also confirmed that system execution traces can be used to
validate enterprise DRE system QoS properties. Applying the results of prior
work to the initial prototype of the QED middleware, however, revealed the
following limitations with CUTS:

e Limitation 1: Inability to extract data for metrics of interest.
Data extraction is the process of locating relevant information in a data
source that can be used for analysis. In the initial version of CUTS,
data extraction was limited to metrics that CUTS knew a priori, e.g., at
compilation time. It was therefore hard to identify, locate, and extract
data for metrics of interest, especially if QoS validation functions needed
data that CUTS did not know a priori, such as metrics extracted from
third-party components and CUTS is not aware of its implementation.

QED testers needed a technique to identify metrics of interest that can
be extracted from large amounts of system data. Moreover, the extrac-
tion technique should operate independent of system composition and



implementation, and be flexible enough to apply effectively to dynamic
enterprise DRE systems. Sections 3.2 and 3.3 describe how UNITE evalu-
ates QoS properties within system execution traces using log formats and
dataflow models to address this limitation with CUTS.

e Limitation 2: Inability to analyze and aggregate extracted data.
Data analysis and aggregation is the process of evaluating extracted data
based on a user-defined equation and combining multiple results (if appli-
cable) to a single result. This process is necessary since QoS validation
traditionally yields a scalar value, such as average latency or worst case
response time. In the initial version of CUTS, data analysis and aggre-
gation was limited to functions that CUTS knew a priori, i.e., built-in
analytical equations. This made it hard to analyze extracted data via
user-defined functions, and implied analysis was tightly coupled to system
implementation and system composition, and the CUTS tool itself.

QED testers need a flexible technique for collecting metrics that can be
used in user-defined functions to evaluate various system-wide QoS prop-
erties, such as relative server utilization or end-to-end response time for
events with different priorities. Moreover, the technique should preserve
data integrity (i.e., ensuring data is associated with the execution trace
that generated it), especially in absence of a globally unique identifier,
such as a system-wide unique id associated with each piece of generated
data, to identify the correct execution trace that generated it. Section 3.4
describes how UNITE evaluates dataflow models via relational database
theory techniques to address this limitation with CUTS.

e Limitation 3: Inability to manage complexity of QoS property
evaluation specification. As enterprise DRE systems increase in size
and complexity, the challenges associated with limitations 1 and 2 de-
scribed above can also increase in complexity. For example, as enterprise
DRE system implementations mature, more components are often added
and the amount of data generated for QoS property evaluation will in-
crease. Likewise, the specification of a QoS property evaluation equations
will also increase because there is more data to manage and filter.

QED testers need a flexible and lightweight technique that will ensure
complexities associated with limitations 1 and 2 are addressed properly as
the QED implementation matures and increases in size and complexity.
Moreover, the technique should enforce constraints of the overall process,
but be intuitive to use so that QED testers can focus more on QoS property
evaluation as opposed to specification of QoS property evaluation. Sec-
tion 3.5 describes how UNITE uses domain-specific modeling languages to
address this limitation with CUTS.

The limitations with CUTS described above made it hard for QED develop-
ers to use CUTS and related approaches to validate QoS properties using system
execution traces without tight-coupling to both system implementation and sys-
tem composition. Moreover, this problem extends beyond the QED project and



applies to other enterprise DRE systems that want validate QoS properties using
system execution traces. The remainder of this article shows how UNITE ad-
dresses these limitations and improves CUTS analytical capabilities for assuring
enterprise DRE system QoS properties.

3. UNITE: High-level QoS Evaluation using Dataflow Models

This section presents the structure and function of UNITE, focusing on
it use of dataflow models to facilitate the implementation and composition-
independent validation of enterprise DRE system’s QoS properties.

3.1. Motiviation for Using Dataflow Models

Before describing UNITE’s structure and functionality, it is first necessary
to motivate its use of dataflow models. Section 1 outlined how dataflow models
can be used to validate enterprise DRE system QoS properties independently
from system implementation and composition. It is straightforward to under-
stand how dataflow models can function independently of system implementa-
tion since they are higher level of abstraction than system implementation logic.
Understanding how dataflow models can function independently of system com-
position, however, is more subtle.

Figure 3 shows two different deployments (i.e., runtime compositions) of the
same system. This figure shows 2 different component types (i.e., Sensor and
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Figure 3: Example of Two Different Deployments for the Same System

Config) and 3 different component instances (i.e., Sensor;, Sensors : Sensor;
Config; : Config). In Figure 3(a), both Sensor components are located on
the same host, whereas in Figure 3(b) each Sensor component is located on
a different host, which is representative of a component being redeployed to a
different host at runtime in a dynamic enterprise DRE system.

Although the runtime composition of the system is different between Fig-
ure 3(a) and Figure 3(b), the dataflow model for both deployment (a) and (b) is



the same. As shown in Figure 4, the dataflow model defined by Sensor (S) —
Config (C). Moreover, the dataflow model in Figure 4 applies to this example

O

Figure 4: Dataflow Model For Example Deployments in Figure 3

irrespective of the number of Sensor and Config components (e.g., adding/re-
moving components in at runtime) and their deployment locations (e.g., moving
components to different hosts at runtime) in a dynamic enterprise DRE system.
As long as either component’s behavior remains unchanged, the Sensor compo-
nent continues to send events to the Config component. This property is also
true for more complex dataflow models, such as the one illustrated in Figure 6
in Section 3.5. The remainder of this section discusses how UNITE integrates
this characteristic of dataflow models with system execution traces to validate
enterprise DRE system properties.

3.2. Specification and Extraction of Metrics from Text-based System Execution
Traces

Analyzing system execution traces is a common technique for validating
DRE system behavior [23], particularly functional properties. Execution traces
also contain data that can be used to validate QoS properties. For example,
Listing 1 shows an example system execution traces produced by a DRE system
that must authenticate clients before allowing them access to its resources.

activating LoginComponent

1

2 ...

3 LoginComponent recv request 6 at 1234945638

4 validating username and password for request 6
5 username and password is valid

6 granting access at 1234945652 to request 6

7
8

deactivating the LoginComponent

Listing 1: Example System Execution Trace Produced by an Enterprise DRE System

Each line in the system execution trace shown in Listing 1 represents a
system effect that generated the log entry. Moreover, each line captures the
state of the system when the entry was produced. For example, line 3 states
when a login request was received by the LoginComponent and line 6 captures
when access was granted to the client by the LoginComponent.

Although a system execution trace contains data to analyzing the system
that produced it, the trace is typically generated in a verbose format that can
be understood by humans. This format implies that most data is discardable.
Moreover, each entry is constructed from a well-defined format—called a log
format—that will not change throughout the lifetime of system execution. In-
stead, certain values (or variables) in each log format (e.g., such as time or



event count) will change over the lifetime of the system. We formally define a
log format LF = (V) as:

e A set V of variables (or tags) that capture data of interest in a log message.

Using this definition of a log format LF', Equation 1 determines the set of
variables in a given log format LF

V =wvars(LF) (1)

where vars(LF) is a function that extracts the set of variables V for a given log
format LF.

Implementing log formats in UNITE. To realize log formats and Equa-
tion 1 in UNITE, we use high-level constructs to identify variables v € V' that
contain data for analyzing the system. Users specify their message of interest
and use placeholders—identified by brackets { }—to tag variables (or data) that
can be extracted from an entry. Each placeholder represents variable portion of
the message that may change over the course of the systems lifetime, thereby
addressing Limitation 1 from Section 2.

Table 1 lists the different placeholder types currently supported by UNITE.
UNITE caches the variables and converts the high-level construct into a regular

Table 1: Log Format Variable Types Supported by UNITE
Type Description
INT Integer data type
STRING = String data type (with no spaces)
FLOAT  Floating-point data type

expression. The regular expression is used during the analysis process (see
Section 3.4) to identify messages that have candidate data for variables V in log
format LF.

Listing 2 exemplifies high-level constructs for two log entries from Listing 1.

LFy,: {STRING owner} recv request {INT reqid} at {INT recv}
LF,: granting access at {INT reply} to request {INT reqid}
Listing 2: Example Log Formats for Tag Metrics of Interest

The first log format (LF}) is used to locate entries related to receiving a login
request for a client (line 3 in Listing 1). The second log format (LF3) is used
to locate entries related to granting access to a client’s request (line 6 in List-
ing 1). Although there are 5 tags in Listing 2, only two tags capture metrics
of interest: recv in LF; and reply in LF;. The remaining three tags (i.e.,
owner, LF1.reqid, and LF2.reqid) are used to preserve causality, as described
in Section 3.3.

3.8. Specification of Dataflow Models for Evaluating QoS properties

Section 3.2 discussed how UNITE use log formats to identify entries in a log
that contain data of interest. Each log format contains a set of tags, which are



representative of variables and used to extract data from each format. In the
simplest case, a single log format can be used to analyze QoS properties. For
example, if developers want to know how many events a component received
per second the component could cache the necessary information internally and
generate a single log message when the system is shutdown.

Although this approach is feasible, i.e., caching data and generating a single
message, it is not practical in an enterprise DRE system because individual data
points used to analyze the system can be generated by different components.
Moreover, data points can be generated from components deployed on different
hosts. What is needed instead is the capability to generate independent log
messages and specify how to associate the messages with each other to preserve
data integrity. This capability can be accomplished using a dataflow model.

In the context of evaluating QoS properties, we formally define a dataflow
model as DM = (LF,CR, f) as:

e A set LF of log formats that have variables V identifying which data to
extract from log messages.

e A set C'R of causal relations that specify the order of occurrence for each
log format such that CR; ; means LF; — LF}, or LF; occurs before LF}.

e A user-defined evaluation function f based on the variables in LF.

Causal relations are traditionally based on time [24]. In contrast, UNITE uses
log format variables to resolve causality because it alleviates dependencies on (1)
using a globally unique identifier (e.g., a unique id generated at the beginning of
a system execution trace and propagated through the system) and (2) requiring
knowledge of system composition to associate metrics (or data). Users must
thus only ensure that two unique log formats can be associated with each other,
and each log format is in at least one causal relation (or association).!
We formally define a causal relation CR; ; = (C;, Ej) as:

e A set C; C vars(LF;) of variables that define the key to represent the
cause of the relation.

o A set E; C vars(LF};) of variables that define the key to represent the
effect of the relation.

Moreover, |C;| = |E;| and the type of each variable (see Table 1), i.e., type(v),
in C;, E; is governed by Equation 2:
type(Ci, ) = type(Ej,) (2)

where C;, € C; and E;, € Ej.
Implementing dataflow models in UNITE. Users of UNITE define
dataflow models by selecting what log formats should be used to extract data

LUNITE does not permit circular relations since it requires human feedback to determine
where the relation chain between log formats begins and ends.
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from system execution traces. If a dataflow model has more than one log for-
mat, then users must create a causal relation between each log format. When
specifying casual relations, users select variables from the corresponding log for-
mat that represent the cause and effect. Users must also define an evaluation
function based on the variables in selected log formats.

For example, when QED developer want to calculate duration of the login
operation they create a dataflow model using LF} and LF5 from Listing 2. Next,
a causal relation is defined between LF; and LF5 as:

LFy.reqid = LFy.reqid (3)
Finally, the evaluation function is defined as:
LF;.reply — LF).recv (4)

Section 3.4 shows how UNITE processes dataflow models of enterprise DRE
systems using the specified QoS evaluation function f.

3.4. Evaluation of Dataflow Models

Section 3.2 discussed how UNITE uses log formats to identify messages that
contains data of interest and Section 3.3 discussed how it uses log formats and
casual relations to specify dataflow models to evaluate QoS properties. The final
phase of the UNITE process evaluates the dataflow model, i.e., the evaluation
function f. Before explaining the algorithm UNITE uses to process a dataflow
model’s evaluation function, we first summarize the four types of causal relations
that can occur in a component-based DRE systems and can affect the algorithm
used to evaluate a dataflow model, as shown in Figure 5. The first type (a)

(d)

(a)

(b)

(c)

Figure 5: Four Types of Causal Relations in Enterprise DRE Systems

is one-to-one relation, which is the easiest type to resolve between multiple
log formats. The second type (b) is one-to-many relation and is a result of a
multicast event. The third type (c) is many-to-one, which occurs when many
different components send a event type to a single component. The final type
(d) is a combination of previous types (a)—(c), and is the most complex relation
to resolve between multiple log formats.

11



If we assume that each entry in a message log contains its origin, e.g., host-
name, then we can use dynamic programming algorithm [25] and relational
database theory to reconstruct the data table of values for a dataflow model’s
variables in O(n)? where n is the number of log formats defined in the dataflow
model DM. Algorithm 1 shows how UNITE evaluates a dataflow model DM

Algorithm 1 General Algorithm Evaluating a Dataflow Model in UNITE

1. procedure EVALUATE(DM, LM)

2: DM: dataflow model to evaluate

3 LM: set of log messages with data

4: G « directed_graph(DM)
5: LF'" « topological_sort(G)
6
7
8
9

DS — variable_table(DM)
LM’ « sort LM ascending by (origin, time)

: for all LF; € LF' do
10: K « C; from CRZ',]‘

11:

12: for all LM, € LM’ do

13: if matches(LF;, LM;) then

14: V'’ « values of variables in LM;
15:

16: if K # () then

17: R — findrows(DS, K,V")
18: update(R, V")

19: else

20: append(DS, V")

21: end if

22: end if

23: end for

24: end for

25:

26: DS’ — purge incomplete rows from DS
27: return f(DS’) where f is evaluation function for DM

28: end procedure

by first creating a directed graph G where log formats LF are nodes and the
casual relations C'R; ; are edges. UNITE then topologically sorts the directed
graph so it knows the order to process each log format. This step is necessary
because when causal relation types (a)—(d) are in the dataflow model specifica-

2The complexity of this algorithm does not take into account the runtime complexity for
selecting the log message from the system execution trace that match a given log format since
that depends heavily on how the data is stored in the database and the implementation of
the SELECT and REGEXP function.

12



tion, processing the log formats in reverse order of occurrence reduces algorithm
complexity for constructing data set DS. Moreover, it ensures UNITE has rows
in the data set to accommodate the data from log formats that occur prior to
the current log format.

After topologically sorting the log formats, UNITE constructs a data set
DS, which is a table that has a column for each variable in the log formats
of the dataflow model.?> UNITE constructs the dataset by first sorting the log
messages by origin and time to ensure it has the correct message sequence for
each origin. This step is also necessary if users want to see data trends over the
system lifetime before aggregating the results, as described in Section 4.2.

UNITE then matches each log format in LF’ against each log message in
LM’. If there is a match, then UNITE extracts values of each variable from the
log message, and update the data set. If there is a cause variable set C; for the
log format LF;, then UNITE locates all the rows in the data set where the values
of C; equal the values of F;, which are set by processing the previous log format.
If there is no cause variable set, UNITE appends the values from the log message
to the end of the data set. Finally, UNITE purges all the incomplete rows from
the data set and evaluate the data set using the user-defined evaluation function
for the dataflow model.

Handling duplicate data entries. For long running DRE systems, it is
not uncommon to see variations of the same log message within the complete
set of log messages. Moreover, we defined log formats of a dataflow model to
identify variable portions of a message (see Section 3.2). We therefore expect
to encounter the same log format multiple times.

When constructing the data set in Algorithm 1, different variations of the
same log format will create multiple rows in final data set. QoS properties,
however, are a single scalar value, and not multiple values. To address this
concern, we use the following techniques:

e Aggregation. A function used to convert a data set to a single value.
Examples of aggregation functions include AVERAGE, MIN, MAX, and SUM.

e Grouping. Given an aggregation function, grouping is used to identify
data sets that should be treated independent of each other. For example,
in the case of causal relation (d) in Figure 5, the values in the data set
for each sender (i.e., LF3) could be considered a group and analyzed
independently.

UNITE requires users to specify an aggregation function as part of the evaluation
equation f for a dataflow model because it is known a priori whether a QoS
evaluation will produce a dataset with multiple values. We formally define a
dataflow model with groupings DM’ = (DM,T') as:

3An optimization to reduce the size of the data set would be to only insert columns for
variables that appear in either the casual relations or evaluation function for the dataflow
model.
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Table 2: Example Data Set Produced from Evaluating Dataflow Model
LF1 reqid LF1recv LF2reqid LF2_reply

6 1234945638 6 1234945652
7 1234945690 7 1234945705
8 1234945730 8 1234945750

e A dataflow model DM for evaluating a QoS property; and

e A set I' C vars(DM) of variables from the log formats in the dataflow
model.

Evaluating dataflow models in UNITE. UNITE implements Algorithm 1
using the SQLite relational database (sqlite.org). To construct the variable
table, the data values for the first log format are first inserted directly into the
table since it has no causal relations. For the remaining log formats, the causal
relation(s) is transformed into a SQL UPDATE query, which allows UNITE to
update only rows in the table where the relation equals values of interest in the
current log message. Table 2 shows the variable table constructed by UNITE
for the example dataflow model in Section 3.3. After the variable data table
is constructed, the evaluation function and groupings for the dataflow model
are used to create the final SQL query that evaluates it, thereby addressing
Limitation 2 from Section 2.

SELECT AVERAGE (LF2_reply — LF1_recv) AS result FROM vtablel123;
Listing 3: SQL Query for Calculation Average Login Duration

Listing 3 shows Equation 4 as an SQL query, which is used to evaluate the data
set in Table 2. The final result of this example—and the dataflow model—would
be 16.33 msec.

3.5. Managing the Complexity of Dataflow Models

Sections 3.2 through 3.4 discussed how UNITE uses dataflow models to eval-
uate enterprise DRE system QoS properties. Although dataflow models enable
UNITE to evaluate QoS properties independent of system implementation and
composition, as dataflow models increase in size (i.e., number of log formats
and relations between log formats) it becomes harder for DRE system devel-
opers to manage their complexity. This challenge arises since dataflow models
are similar to finite state machines (i.e., the log formats are the states and the
relations are the transitions between states), which incur state-space explosion
problems [26].

To ensure efficient and effective application of dataflow models to evaluate
enterprise DRE system QoS properties, UNITE leverages a model-driven engi-
neering [27] technique called domain-specific modeling languages (DSMLs) [28,
29]. DSMLs capture both the semantics and constraints of a target domain while
providing intuitive abstractions for modeling and addressing concerns within
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Figure 6: Example Dataflow Model in GME

the target domain. In the context of dataflow models, UNITE’s DSMLs provide
graphical representations that reduce the following complexities:

e Visualizing dataflow. To construct a dataflow model, it is essential to
understand dataflow throughout the system, as shown in Figure 5. An in-
validate understanding of dataflow can result in an invalid specification of
a dataflow model. By using DSMLs, DRE system developers can construct
dataflow models as graphs, which helps visualize dataflow and ensure valid
construction of such models, especially as such models increase in size and
complexity.

e Enforcing valid relations. The relations in a dataflow model enable
evaluation of QoS properties independent of system composition. Invalid
specification of a relation, however, can result in invalid evaluation of a
dataflow model. For example, DRE system developers and testers may
relate a variable between two different log formats that are of a different
type (e.g., one is of type INT and the other is of type STRING), but have the
same variable name (e.g., id). The use of DSMLs helps enforce constraints
and ensure these invalid relations are not possible in constructed models.

DSMLs in UNITE. UNITE implements several DSMLs using an MDE
tool called the Graphical Modeling Environment (GME) [30]. GME allows sys-
tem and software engineers, such as DRE system developers and testers, to
author DSMLs for a target domain, such as dataflow modeling. Users then
construct models using the specified DSML and use model interpreters to gen-
erate concrete artifacts from constructed models, such as a configuration file
that specifies how UNITE evaluates a dataflow graph.

Figure 6 shows an example dataflow model for UNITE in GME. Each rect-
angular object in this figure (i.e., LF1 and LF2) represents a log format in the
dataflow model that contains variables for extracting metrics of interest from
system execution traces (see Section 3.2). The lines between two log formats
represent a relation between variables in either log format. When DRE sys-
tem developers and testers create a relation between two different variables,
the DSML validates the connection (i.e., ensures the variable types are equal).
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Likewise, DRE system developers and testers can execute the GME constraint
checker to validate system constraints, such as validating that the dataflow
model is acyclic (see Section 3.3).

After constructing a dataflow model using UNITE’s DSML, DRE system de-
velopers and testers use model interpreters to auto-generate configuration files
that dictate how to evaluate enterprise DRE system QoS properties. The config-
uration file is a dense XML-based file that would be tedious and error-prone to
create manually. UNITE’s DSML graphic representation and constraint check-
ing reduces management complexity. Its auto-generation capabilities also im-
prove specification correctness, thereby addressing Limitation 3 from Section 2.

4. Evaluating UNITE in the QED Project Case Study

This section analyzes results of experiments we conducted to evaluate how
UNITE’s ability to validate enterprise DRE system QoS properties, and chal-
lenges of applying CUTS to the QED project as described in Section 2.

4.1. Fxperiment Setup

As mentioned in Section 2, the QED project is in its early phases of devel-
opment. Although it is expected to continue for several years, QED developers
do not want to wait until system integration time to validate the performance
of their middleware infrastructure relative to stated QoS requirements. QED
testers therefore used CUTS [19] and UNITE to perform early integration test-
ing. All tests were run in the ISISlab testbed (www.isislab.vanderbilt.edu),
which is powered by Emulab software [31]*. Each host in our experiment was an
IBM Blade Type L20, dual-CPU 2.8 GHz processor with 1 GB RAM configured
with the Fedora Core 6 operating system.

To test the QED middleware, QED developers first constructed several sce-
narios using CUTS’ modeling languages [32]. Each scenario was designed so
that the system was dynamic (i.e., deployed/removed components at runtime)
and all components communicate with each other using a single server in the
GIG (similar to Figure 2 in Section 2). The first scenario’s aim was to test dif-
ferent thresholds of the underlying GIG middleware to pinpoint potential areas
that could be improved by the QED middleware. The second scenario was more
complex and emulated a multi-stage workflow that tests the underlying middle-
ware’s ability to ensure application-level QoS properties, such as reliability and
end-to-end response time when handling applications with different priorities
and privileges.

The QED multi-stage workflow has the six types of components shown in
Figure 7. Each directed line that connects a component represents a communi-
cation event (or stage) that must pass through the GIG (and QED) middleware
before being delivered to the component on the opposite end. Moreover, each

4Emulab allows developers and testers to configure network topologies and operating sys-
tems on-the-fly to produce a realistic operating environment for distributed integration testing.
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Figure 7: CUTS Model of the Multi-Stage Workflow Test Scenario

directed line conceptually represents where QED will be applied to ensure QoS
between communicating components.

The projection from the middle component represents the behavior of that
specific component. Each component in the multi-stage workflow has a behavior
model (based on Timed I/O Automata [32]) that dictates its actions during
a test. Moreover, each behavior model contains actions for logging key data
needed to evaluate QoS properties, similar to Listing 1 in Section 3.2.

Listing 4 shows an example message from the QED multi-stage workflow
scenario.

MainAssembly . SurveillanceClient: Event 0: Published a
SurveillanceMio at 1219789376684

MainAssembly. SurveillanceClient: Event 1: Time to
publish a SurveillanceMio at 1219789376685

Listing 4: Example Log Messages from the Multi-Stage Workflow Scenario

This log message contains information about the event, such as event id and
timestamp. Each component also generates log messages about the events it
receives and its state (such as event count). In addition, each component sends
enough information to create a causal relation between itself and the receiver,
so there is no need for a global unique identifier to correlate data.

QED developers next used UNITE to construct log formats (see Section 3.2)
for identifying log messages during system execution run that contain metrics
of interest. These log formats were also used to define dataflow models that
evaluate QoS properties described in Section 3.3. In particular, QED developers
were interested in validation the following QoS properties using UNITE:

e Multiple publishers. At any point in time, the GIG will have many
components publishing and receiving events simultaneously. QED devel-
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opers therefore need to evaluate the response time of events under such
operating conditions. Moreover, QED needs to ensure QoS when the in-
frastructure servers must manage many events. To improve the QoS of
the GIG middleware, however, QED developers must first understand the
current capabilities of the GIG middleware without QED in place. These
results provide a baseline for evaluating the extent to which the QED
middleware capabilities improve application-level QoS.

e Time spent in server. One way to ensure high QoS for events is to
reduce the time an event spends in a server. Since the GIG middleware
is provided by a third-party vender, QED developers cannot ensure it
will generate log messages that can be used to calculate how it takes
the server to process an event. Instead, QED developers must rely on
messages generated from DRE system application components whenever
they publish/send events.

For events that propagate through the system, QED developers use Equation 5
to calculate how much time the event spends in the server assuming event trans-
mission is instantaneous, i.e., negligible.

(end. — start,) — Z Se. (5)

This equation also shows how QED developers calculate the time spent in the
server by taking the response time of the event e, and subtracting the sum of
the service time of the event in each component S, .

4.2. Experiment Results

This section discusses the results for experiments of the scenarios introduced
in Section 4.1. These results are based primarily on the QoS properties of
concern discussed in Section 4.1.

4.2.1. Analyzing Multiple Publisher Results
Table 3 presents the results for tests that measure average end-to-end re-
sponse time for an event when each publisher publishes at 75 Hz. As expected,

Table 3: Average End-to-End (E2E) Response Time (RT) for Multiple Publishers Sending
Events at 75 Hz
Publisher Name Importance Avg. E2E RT (msec)

ClientA 30 103931.14
ClientB 15 103885.47
ClientC 1 103938.33

the response time for each importance value was similar. When we tested this
scenario using UNITE;, the test results presented in Table 3 were calculated from
two different log formats—either log format generated by a publisher and the
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subscriber—but accounted for adding/removing components at runtime (i.e.,
the dynamic nature of the system). The total number of log messages gener-
ated during the course of the system execution was 993,493.

UNITE also allows QED developers and testers to view the data trend for
the dataflow models QoS evaluation of this scenario to get a more detailed un-
derstanding of performance. Figure 8 shows how the response time of the event
increases over the lifetime of the experiment. Although QED developers and
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Figure 8: Data Trend Graph of Average End-to-End Response Time for Multiple Publishers
Sending Events at 75 Hz

testers hypothesized that this test configuration produced too much workload,
UNITE’s data trend and visualization capabilities clearly quantified the extent
to which the GIG middleware was over utilized. Without UNITE, moreover,
QED developers and testers would not have had a tool that could (1) adapt
to the dynamic nature of their DRE system and (2) provide detailed analysis
thatis hard to obtain using conventional methods.

4.2.2. Analyzing Mazimum Sustainable Publish Rate Results

QED developers used the multi-stage workflow to describe a complex dy-
namic scenario that tested the limits of the GIG middleware without forcing
it to queue events incrementally. Figure 9 graphs the data trend for the test,
which is calculated by specifying Equation 5 as the evaluation for the test, and
was produced by UNITE after analyzing (i.e., identifying and extracting metrics
from) 193,464 log messages. The test also consisted of ten different log formats
and nine different causal relations, which were of types (a) and (b), as discussed
in Section 3.4.

Figure 9 shows the sustainable publish rate of the mutle-stage workflow in
ISISlab. This figure shows how the Java just-in-time (JIT) compiler and other
Java features cause the QED middleware to temporarily increase the individual
message end-to-end response. By the end of the test (which is not shown in
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Figure 9: Data Trend of the System Placed in Near-Optimal Publish Rate

Figure 9), the time an event spends in the server reduces to normal operating
conditions.

The multi-stage workflow results provided two insights to QED develop-
ers. First, their hypothesis of the maximum sustainable publish rate in ISISlab
was confirmed. Second, the dynamic analytical capabilities of UNITE that pro-
duced Figure 9 helped developers pinpoint which features of the GIG middleware
might cause performance bottlenecks; how QED could address such problems;
and what new tests are needed to showcase QED’s improvements to the GIG
middleware. By providing QED testers comprehensive testing and analysis fea-
tures, UNITE helped guide the QED development team’s next phase of testing
and integration of feature sets.

In terms of applying UNITE to the multi-stage workflow, QED developers
did not have to propagate a unique id for each event through each component
to validate end-to-end response time. If UNITE required a global unique iden-
tifier to associate data metrics, as in conventional approaches, QED developers
would then need to ensure that all components propagated the unique identi-
fier to accurately validate QoS properties, which would be hard for dynamic
enterprise DRE systems. Moreover, if QED developers added new components
to the multi-stage workflow, each component would need a global unique iden-
tifier. Accommodating global unique identifiers would complicate the logging
specification, system structure (to propagate the unique id), and require more
resources (such as CPU, network bandwidth, and memory).

4.3. Fvaluating the Scalability of UNITE

As enterprise DRE systems (such as the GIG/QED middleware and their
applications) increase in size and complexity, UNITE’s corresponding dataflow
models also increase in size and complexity. Moreover, the amount of data
that must be processed by a dataflow model to evaluate QoS properties also
increases in size. Algorithm 1 presents UNITE’s algorithm dataflow graph that
QED developers use to evaluate QoS properties of the GIG middleware. The
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run-time complexity of this algorithm depends mainly on the number of log
formats in the dataflow graph. Its runtime complexity is also dependent on the
number of variables that appear in a relation because this affects the run-time
complexity of correlating two separate log formats.

Table 4 presents the results of evaluating the scalability of UNITE with
respect to the number of log formats and relation variables in a dataflow model.
Each result in the figure was generated by executing a test that generated a

Table 4: Execution Time (Secs) for Evaluating Dataflow Models

# of Log Formats (L)
# of Relation Vars (R) 1 3 5 10 20
1 1.542 | 2.754 | 3.529 4.424 8.645
3 2.31 7.872 | 11.363 16.119 27.519
) 2.53 | 10.789 | 19.706 | 44.236 | 109.795
10 4.935 | 15.85 | 27.903 | 169.642 | 163.457
20 7.34 | 26.239 | 50.967 | 122.601 | 317.792

system execution trace where each log format contained 20,000 messages, and
each single message had 1 correlation with another log format. The results
show that as either the number of log formats or relation variables increase, the
overall execution time of the QoS evaluation also increases. In the case of 10 log
formats and 10 relation variables (i.e., test 10L-10R), however, the execution
time does not follow this trend.

To explain why the data point in Table 4 does not follow the trend, we next
examine the size of the dataset used to generate these initial execution times.
Table 5 shows the size of the data set for each test in Table 4. As shown in

Table 5: Dataset Size (MB) for System Execution Trace

# of Log Formats (L)
# of Relation Vars (R) 1 3 5 10 20
1 1.5 2.0 2.5 4.0 6.9
3 4.5 6.2 7.8 12.1 20.8
) 7.5 | 10.3 12.9 20.3 34.7
10 15.1 | 20.8 25.9 81.9 69.461
20 30.7 | 42.08 | 52.287 | 81.734 | 142.210

Table 5, the size of the dataset for the test does affect the overall execution time.
In the test case 10L-10R the generated dataset size for the test was greater, even
though there are either fewer relations than test 10L-20R or test 20L-10R.
Our analysis of these test results indicate that as the number of log formats
and relation variables increase, the overall evaluation time increases. Moreover,
the evaluation time is also directly dependent on the size of the dataset, irre-
spective of the number of log formats and relation variables. QED developers
and testers thus realized that they should focus more on reducing how much
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data is collected to ensure evaluation times remain low and UNITE’s analytical
process remains lightweight.

5. Related Work

This section compares our work on UNITE with related work validate sys-
tem properties with system execution traces, uses of dataflow modeling, and
enterprise DRE system QoS analysis.

System execution traces. System execution traces capture system state
and metrics. With this in mind, Chang et al. [3] have investigated techniques
for automating the functional validation of test using execution traces. Like-
wise, Moe et al. [2] discuss techniques for understanding and detecting func-
tional anomalies in distributed systems by reconstructing and analyzing system
execution traces. Irrespective of how system execution traces are used, their
key advantage to validating functional concerns is platform-, architecture-, and
language-independence. This therefore helps increase the quality of the over-
all solution [33] so that it is applicable across different application domains.
The main difference between UNITE and the existing research above is that
UNITE extends their effort to QoS properties, such as end-to-end response
time, scalability, and throughput. UNITE’s analytical process and algorithm is
also applicable to dynamic DRE systems (i.e., ones that change the structure
and composition throughout the system’s execution lifetime).

Dataflow modeling. Dataflow models, also known as dataflow diagrams,
have been used extensively in software design and specification [7, 34] digi-
tal signal processing [35] and business processing modeling [8]. For example,
Vazquez invested techniques for automatically deriving dataflow models from
formal specifications of software systems. Likewise, Russell et al. investigate the
feasibility of using UML activity diagrams within business logic process models,
which include dataflow modeling. In all cases, dataflow modeling was utilized
because it provides a means for representing system functionality without being
bound to the system’s overall composition. This is because the dataflow models,
in theory, remain constant unless the system’s specification changes.

UNITE enhances existing research on dataflow model usage by applying
them on validating QoS properties via system execution traces. Moreover,
dataflow models are used to (1) preserve data integrity (or causality) when
reconstructing the dataset that contains all the data points of interest in a sys-
tem execution trace and (2) analyze extracted data (or metrics) independent of
system structure, composition, and complexity.

Early enterprise distributed system testing. Coelho et al. [36] and
Yamany et. al [37] describe techniques for testing multi-agent systems using so-
called mock objects. Their goal for unit testing multi-agent systems is similar to
UNITE, though they focus on functional concerns, whereas UNITE focuses on
QoS concerns of DRE systems during the early stages of development. Moreover,
Coelho et al. test a single multi-agent isolation, whereas UNITE tests and
evaluates systemic properties (i.e., many components working together), as well
as components in isolation.
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Qu et. al [38] present a tool named DisUnit that extends JUnit [39] to
enable unit testing of component-based distributed systems. Although DisUnit
supports testing of distributed systems, it assumes that metrics used to evaluate
a QoS property are produced by a single component. As a result, DisUnit
cannot evaluate distributed system QoS properties where metrics are dispersed
throughout a system execution trace, which can span many components and
hosts in the system. In contrast, UNITE assumes that data need to evaluate a
test can occur in any location and at any time during the system’s execution.

Enterprise DRE system QoS analysis. Mania et. al [5] discuss a tech-
nique for developing performance models and analyzing component-based dis-
tributed system using execution traces. The contents of traces are generated
by system events, similar to the log message in UNITE. When analyzing the
systems performance, however, Mania et. al rely on synchronized clocks to re-
construct system behavior. Although this technique suffices in tightly coupled
embedded systems, the reconstructed behavior and analysis may be incorrect
if clocks on different hosts drift, as is often the case in enterprise DRE sys-
tems. UNITE improves their technique by using data within the event trace
that is common in both cause and effect messages, thereby removing the need
for synchronized clocks and ensuring that log messages (or events in a trace)
are associated correctly.

Mos et al. [4] present a similar technique for monitoring Java-based compo-
nents in a distributed system using proxies, which relies on timestamps in the
events and implies a global unique identifier to reconstruct method invocation
traces for system analysis. UNITE improves their technique by using data that
is the same between two log messages (or events) to reconstruct system traces
given the causal relations between two log formats. Moreover, UNITE relaxes
the need for a global identifier.

Parsons et al. [6] present a technique for performing end-to-end event tracing
in component-based distributed systems by injecting a global unique identifier at
the beginning of the event’s trace (e.g., when a new user enters the system). This
unique identifier is then propagated through the system and used to associate
data for analytical purposes. UNITE improves their technique by relaxing the
need for a global unique identifier to associate data for analysis. Moreover,
in large- or ultra-large-scale enterprise DRE systems, it can be hard to ensure
that unique identifiers are propagated throughout components created by third
parties. Since UNITE does not rely on global identifiers it can reconstruct
system behavior for analysis even if components developed by third parties do
not generate any events or log messages.

6. Concluding Remarks

System execution traces can used to validate both enterprise DRE system
functional and QoS properties. Conventional ways of applying system execu-
tion traces to validate QoS properties, however, are overly coupled to system
implementation and composition details. This paper described and evaluated
the Understanding Non-functional Intentions via Testing and Ezrperimentation
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(UNITE) tool, which uses dataflow models to validate QoS properties of enter-
prise DRE systems independently from system implementation and composition
details. UNITE’s techniques for validating QoS properties are lightweight and
scalable, i.e., they depend primarily on the amount of data processed, as op-
posed to the size and complexity of the dataflow model that reflects system size,
composition, and complexity.

The following is a summary of lessons learned based on results and experience
developing and applying UNITE to a representative enterprise DRE system:

e Dataflow modeling increases the level of abstraction for evaluat-
ing QoS properties. Instead of requiring complete knowledge of system
composition and implementation, UNITE’s dataflow models provide an
platform-, architecture-, and technology-independent technique for evalu-
ating the performance of DRE system QoS properties.

e Use of DSMLs simplifies data-flow modeling. DSMLs provide an in-
tuitive visual interface for constructing dataflow models and auto-generating
configuration files needed by UNITE. They also reduce the occurrence of
accidental errors via their constraint checking mechanisms, such as inva-
liding relations, reducing of redundant data, and removing unnecessary
data.

e Creating dataflow models is a time-consuming and error-prone
task. Although UNITE’s DSML was designed to reduce complexities
associated with defining and managing dataflow models, it is tedious and
error-prone to ensure their specification will extract the correct metrics
due to the disconnect between the log messages used to generate execution
traces and log formats that extract metrics these log messages in system
execution traces. Our future work will therefore investigate techniques for
auto-generating dataflow models from system execution traces.

e Parallelization is needed to help decrease evaluation time. Our
empirical results showed that dataset size had more effect on evaluation
time than the number of log formats or relation variables in a dataflow
model. Future work therefore will investigate techniques for parallelizing
evaluation of dataflow models so evaluation time is not dependent on the
size of the dataset (or system execution traces).

CUTS and UNITE are freely available for download in open-source format
at www.cs.iupui.edu/CUTS.
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