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Abstract

Cloud computing offers a fast, easy and cost-effective way to configure and
allocate computing resources for web applications, such as consoles for smart
grid applications, medical records systems, and security management plat-
forms. Although a diverse collection of cloud resources (e.g., servers) is avail-
able, choosing the most optimized and cost-effective set of cloud resources
for a given web application and set of quality of service (QoS) goals is not a
straightforward task. Optimizing cloud resource allocation is a critical task
for offering web applications using a software as a service model in the cloud,
where minimizing operational cost while ensuring QoS goals are met is critical
to meeting customer demands and maximizing profit. Manual load testing
with different sets of cloud resources, followed by comparison of test results to
QoS goals is tedious and inaccurate due to the limitations of the load testing
tools, challenges characterizing resource utilization, significant manual test
orchestration effort, and challenges identifying resource bottlenecks.

This paper introduces our work using a modeling framework - ROAR
(Resource Optimization, Allocation and Recommendation System) to sim-
plify, optimize, and automate cloud resource allocation decisions to meet
QoS goals for web applications, including complex multi-tier application dis-
tributed in different server groups. ROAR uses a domain-specific language
to describe the configuration of the web application, the APIs to benchmark
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and the expected QoS requirements (e.g., throughput and latency), and the
resource optimization engine uses model-based analysis and code generation
to automatically deploy and load test the application in multiple resource
configurations in order to derive a cost-optimal resource configuration that
meets the QoS goals.

Keywords: Cloud Computing, Resource Allocation, Resource
Optimization, Domain-Specific Language, Load Testing and Benchmarking




Type ECU | Memory (GB) Price

m3.medium | 3 3.75 $0.07 / hour
m3.]large 6.5 7.5 $0.14 / hour
m3.xlarge 13 15 $0.28 / hour
m3.2xlarge | 26 30 $0.56 / hour
c3.4xlarge 55 30 $0.84 / hour
c3.8xlarge 108 60 $1.68 / hour

Table 1: A Subset of AWS EC2 Instance Types and Pricing [5]

1. Introduction

Cloud computing shifts computing from local dedicated resources to dis-
tributed, virtual, elastic, multi-tenant resources. This paradigm provides
end-users with on-demand access to computing, storage, and software ser-
vices [1]. A number of cloud computing providers, such as Amazon Web
Services (AWS) [2] and Google Compute Engine (GCE) [3], offer cloud com-
puting platforms that provide custom applications with high availability and
scalability. Users can allocate, execute, and terminate the instances (i.e.,
cloud servers) as needed, and pay for the cost of time and storage that active
instances use based on a utility cost model [4].

To satisfy the computing resource needs of a wide variety of application
types, cloud providers offer a menu of server types with different configura-
tions of CPU capacity, memory, network capacity, disk I/O performance, and
disk storage size. Table 1 shows a subset of the server configurations pro-
vided by AWS as of September 2014. For example, the m3.medium server
with 3 CPU and 3.75 GB memory costs $0.07/hour, while the more powerful
ma3.2xlarge server costs $0.56 /hour. By comparison, the GCE cloud provider
offers competitive options, as shown in Table 2. Although the server types
are named differently, the resource configurations at each pricing range vary
only slightly. Cloud computing users must use this information to deter-
mine the appropriate subset of these resource configurations that will run
an application cost-effectively, yet still meet its QoS goals, such as response
time.

A common use case of the cloud is to offer existing software products,
particularly web-based applications, through a software as a service (SaaS)
model. In a SaaS model, the SaaS provider runs the web application in
the cloud and customers remotely access the software platform, while the



Type Virtual Cores | Memory (GB) Price

nl-standard-1 1 3.75 $0.07 / hour
nl-standard-2 2 7.5 $0.14 / hour
nl-standard-4 4 15 $0.28 / hour
nl-standard-8 8 30 $0.56 / hour
nl-standard-16 16 60 $1.12 / hour

Table 2: A Subset of GCE Machine Types and Pricing [3]

provider manages and maintains the software. SaaS providers typically pro-
vide service level agreements (SLAs) [6] to their clients, which dictate the
number of users they will support, the availability of the service, the response
time, and other parameters. For example, a provider of a SaaS electronic
medical records system may offer an SLA that ensures a certain number of
employees in a hospital can simultaneously access the system and that it will
provide response times under 1 second.

An important consideration of SaaS providers is minimizing their op-
erational costs while ensuring that the QoS requirements specified in their
SLAs are met. For example, in the medical records system outlined above,
the SaaS provider would like to minimize the cloud resources allocated to it
to reduce operational cost, while ensuring that the chosen cloud resources can
support the number of simultaneous clients and response times agreed to in
the client SLAs. Moreover, as new clients are added and QoS requirements
become more stringent (particularly in terms of the number of supported
clients), the SaaS provider would like to know how adding resources on-
demand (known as “auto-scaling”) will affect the application’s performance.
Blindly allocating resources to the application to meet increasing load is not
cost effective. Auto-scaling should instead be guided by a firm understanding
of how resource allocations impact QoS goals.

Open Problem. While conventional cloud providers support simple
and relatively quick resource allocation for applications, it is not an easy or
straightforward task to decide an optimized and cost-effective resource con-
figuration to run a specific application based on its QoS requirements. For
instance, if a custom web application is expected to support 1,000 simulta-
neous users with a throughput of 1,000requests/minute, it is hard to decide
the type and minimum number of servers and cloud providers needed by
simply looking at the hardware configurations.



Cloud providers and users have traditionally performed complex experi-
mentation and load testing with applications on a wide variety of resource
configurations. The most common practice is to deploy the application and
perform a load stress test on each type of resource configuration, followed
by analysis of the test results and selection of a resource configuration [7].
A number of load testing tools (e.g., jMeter [8, 9], ApacheBench [10], and
HP LoadRunner [11]) are available to trigger a large amount of test requests
automatically and collect the performance data. The situation gets even
harder when an application includes a complex distributed architecture with
multiple tiers, which requires the allocation of different groups of resources
for the multiple tiers, followed by linking and connecting them properly.

Despite the importance of selecting a cost optimized resource allocation
to meet QoS goals, many organizations do not have the time, resources, or
experience to derive and perform a myriad of load testing experiments on a
wide variety of resource types. Instead, developers typically employ a trial
and error approach where they guess at the appropriate resource allocation,
load test the application, and then accept it if the performance is at or above
QoS goals. Optimization is usually only performed months or years into
the application’s life in the cloud, when insight into the affect of resource
allocations on QoS goals is better understood. Even then, the optimization
is often not systematic.

The primary challenges that impede early resource allocation optimiza-
tion stem from limitations with load testing tools and a number of manual
procedures required in the cloud resource optimization process. It is often
hard to specify the customized load tests and correlate load test configura-
tion with the expected QoS goals. Moreover, it is tedious and error-prone
to manually perform load testing with different cloud resources to derive an
optimized resource configuration, particularly when the application has a
complex multi-tier architecture in a heterogeneious cloud platform.

Even when an optimized resource configuration is finally obtained, allo-
cating and deploying all of the resources also requires significant orchestra-
tion and complexity. Prior research has addressed some challenges separately
(e.g., modeling realistic user test behavior to produce customized load test
[12], monitoring target test server performance metrics for capacity planning
[13]). However, a comprehensive, fully automated approach designed specifi-
cally for benchmarking, deriving, and implementing optimized cloud resource
allocations has not been developed, particularly for multi-tier applications.

Solution Approach = QoS-Oriented Modeling Framework for



Resource Optimization, Allocation and Recommendation System
(ROAR). To address these challenges, this paper presents a model-based
system called “ROAR” that raises the level of abstraction when performing
load testing and automates cloud resource optimization and allocation to
transparently convert users’s application-specific QoS goals to a set of op-
timized resources running in the cloud. A textual domain-specific language
(DSL) called the Generic Resource Optimization for Web applications Lan-
guage (GROWL) is defined to specify the high-level and customizable load
testing plan and QoS requirements without low-level configuration details,
such as the number of threads to use, the concurrent clients, and the duration
of keeping opened connections.

The model built from the GROWL DSL can generate a test specification
that is compatible with our extended version of the jMeter load testing tool
8, 9]. Likewise, ROAR automates the process of deploying the application
to the given cloud platform, executing the load test, collecting and aligning
performance metrics, analyzing the test performance model, and controlling
the next test iteration. ROAR can derive the appropriate cloud resource con-
figurations to test, as well as automatically orchestrate the tests against each
resource allocation before using the results to recommend a cost-optimized
resource allocation to meet the QoS goals. When the optimal configuration
is decided, ROAR can also generate the resource templates to automate the
final deployment process.

The work presented in this paper extends the initial prototype of ROAR
[14], with the following new contributions and extensions:

e Multi-tier distributed web applications that require deployment in dif-
ferent groups of cloud servers can be supported by ROAR. Multi-
tier configuration can be specified in the GROWL DSL. Likewise, the
ROAR controller can automatically allocate the right resources to de-
ploy and link different tiers.

e The average latency of the deployment target has been added as an-
other key QoS goal, in addition to the target throughput supported
in our earlier work. The ROAR resource optimization engine aligns
the average latency metrics together with the throughput and resource
utilization metrics, and filters out resource configurations that support
the target throughput but fail to meet an average latency goal.

e Rather than focusing on a single cloud platform (such as AWS), the
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ROAR deployment manager has been extended to support deploying
multi-tier applications to multiple cloud providers, which broadens its
scope. In particular, we have included GCE as another platform sup-
ported by ROAR, which offers a wider range of optimization choices.

e The motivating example has been changed from a simple single-tier web
application to a canonical three-tier web application with a database.
Additional experiments and evaluation have also been included to show-
case and quantify the performance, cost, and benchmarking effort for
the resource configurations generated by ROAR.

The remainder of this paper is organized as follows: Section 2 summarizes
a concrete motivating example in the context of a multi-tier web application,
followed by describing the key challenges of cloud resource allocation and
optimization in Section 3; Section 4 analyzes our solution by explaining each
key component in the ROAR framework; Section 5 discusses the validation
of this framework by presenting the generated resources for the motivating
example; Section 6 compares our work on ROAR with the related research;
and Section 7 presents concluding remarks.



2. Motivating Example

The example in this paper is based on a multi-tier web service called
GhostBox built to support fine-grained control over mobile applications on
the Android platform. GhostBox is designed to enable system administrators
to configure specific security policies for employee smartphones and manage
the policies remotely. These security policies specify the following properties:

e The types of the smartphone usage restrictions, such as running appli-
cations, accessing contacts, changing system settings and environments
and

e The conditions to trigger the restrictions, which could be based on
time, geographical locations, and context-aware signals (e.g., school
WIFI, Bluetooth LE signals [15]).

By using GhostBox, administrators can use an administrative web portal to
create and update security policies, while the smartphones used by employees
periodically poll the server for updated security policies and implement the
corresponding restrictions. For instance, administrators can create policies
to disable gaming apps when a corporate WIFI signal is detected or enable
sending/receiving text messages only from business contacts in the employers
customer relationship management system.

The backend of GhostBox is built as a standard 3-tier web application.
As shown in Figure 1, the presentation tier at the top-level interacts directly
with the devices and admin users. It is implemented as a Tomcat web service,
and exposes HT'TP APIs that can be called by the GhostBox app running
in the devices that poll for device usage policies.

GhostBox also integrates a web portal as a web service to provide a simple
UI for admin users to configure the policies as well as manage all the users
and group settings. The middle-tier is the logical tier which handles all the
data access requests sent from the presentation tier. It runs a Jetty web
service [16] and executes SQL statements to query and update the policies
and other settings. A MySQL database runs in the bottom data tier to
persist all the data related to policies, device usage statistics, etc.

From the perspective of the devices, the key functions provided by the
GhostBox back-end are listed in Table 3. Likewise, Table 4 shows the QoS
goals for each of the APIs. QoS is critical in this application since devices
continuously poll the server and the service is sold based on a per-device
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Figure 1: Overview of the GhostBox Multi-tier Architecture

Function HTTP Method | URL

Get device policies GET /v1/policies/{deviceld }

Get policy config page GET /v1/policies/{deviceld} /view
Update policies POST /v1/policies/{deviceld}

Get settings config page GET /v1/account /{accountld} /view
Update settings POST /v1/account/{accountld}

Table 3: Key HTTP APIs Provided by GhostBox Backend



Function Expected Frequency | Throughput | Latency
Get device policies 1 /5 secs 24000 / min | 100ms
Get policy config page 1 / 8 hours 4.1 / min 100ms
Update policies 1 / 8 hours 4.1 / min 100ms
Get settings config page 1 / 48 hours 0.7 / min 100ms
Update settings 1 / 48 hours 0.7 / min 100ms

Table 4: The QoS Requirements of the Key HTTP APIs

monthly cost. The SLAs for the service specify the maximum time from
when a policy is enabled by an administrator until it reaches all devices with
a network connection.

Getting the device policies is the most frequently called API by all the
individual devices. Each device polls for new policies every 5 seconds so that
it can make sure updated policies are retrieved and take affect immediately.
Managing the policies and accounts is done in the web portal. Admin users
can login to the portal and build policy configurations. Making a change
involves getting the web page resources loaded first, followed by sending an
HTTP POST request to send a new policy to the server. We assume that an
admin updates the policies 3 times per day, while the account settings are
updated in a less frequent rate - once every 2 days.

Assume that GhostBox needs to be provisioned to support 2,000 users.
Based on the frequency of calls to each API from the client, it is possible
to predict the minimum throughput needed to support the clients, as shown
in Table 4. In addition to controlling throughput, another key QoS require-
ment related with the success of the application is to keep latency below a
threshold. The maximum allowable latency for each function is given in the
last column of Table 4.

A key requirement, therefore, is determining how to appropriately provi-
sion resources to meet the QoS requirements of the application. Determining
how to provision cloud resources for GhostBox is non-trivial since it is based
on a 3-tier distributed application architecture that is hard to model and
characterize with existing analysis-based approaches.
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3. Challenges

Determining the most cost-effective set of resources to meet a web appli-
cations QoS requirements without over-provisioning resources is a common
problem in launching services in production or transitioning services to a
SaaS model. The conventional practice is to benchmark web application
performance using load testing on each set of possible target cloud resources.
Developers use the results from these tests to estimate the required resources
needed by the application to meet its QoS goals. This section summarizes
the key challenges faced when deriving cost-optimized cloud resource config-
urations for web applications.

Challenge 1: Translating high-level QoS goals into low-level load
generator configuration abstractions. To produce the huge amount of
test traffic needed for QoS metrics, most tools use a multi-threaded archi-
tecture for load testing. The load test modeling abstractions from these
tools are focused on the low-level threading details of the tooling rather than
higher-level QoS performance specifications. For instance, jMeter, one of the
most popular load testing tools, requires the specification of Thread Groups
including the number of threads, the ramp-up period, and loop count.

Wrk [17] takes command-line parameters to control the number of con-
nections to keep open, the number of threads, and the duration of the test.
All these OS-level details on threads create an additional level of complex-
ity for end-users, since they must translate the desired QoS goals to test,
such as a throughput target, into the right threading configurations that can
generate the appropriate load profiles to determine the feasibility of these tar-
gets. Moreover, increasing the number of threads does not always increase
the throughput linearly [18], which makes the translation of high-level QoS
goals into low-level load testing tool configuration abstractions even harder.
Developers traditionally have manually analyzed their needs to derive the
appropriate threading and ramp up configurations, which is non-trivial in
many cases.

Challenge 2: Resource bottleneck analysis is challenging be-
cause current tools do not collect or correlate this information with
QoS metrics from tests. It is essential to understand resource utilization
of allocated cloud resources in order to identify bottlenecks and make appro-
priate resource allocation decisions. Moreover, temporal correlation of these
resource utilizations with QoS performance metrics throughout the tests is
essential under the following conditions:
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e When required QoS goals are not met, identifying the resource bottle-
necks in order to adjust resource allocations (e.g., add more memory
or switch to a more powerful CPU) is difficult

e Even if the required QoS goals are satisfied, deriving resource utilization
in order to estimate and ensure resource slack to handle load fluctuation
(e.g., ensure 20% spare CPU cycles) is hard

e When QoS goals are satisfied, ensuring that there is not substantial
excess capacity (e.g., CPU utilization is at 70% or less) is challenging

e For multi-tier web applications, the bottleneck may only be present in
certain tier(s) and it is therefore important to understand the accurate
resource utilization status in each individual tier and its relationship
with the overall QoS or a request.

The goal is to find the exact resource configuration for each application tier
where the QoS goals are met, there is sufficient resource slack for absorbing
load fluctuations, there is not too much excess capacity, and there is no
more efficient resource configuration that better fits the QoS and cost goals.
Manual monitoring, collection, and temporal correlation of QoS metrics with
resource utilization data is tedious and often inaccurate.

Challenge 3: Increased benchmarking complexity presented in
large-scale complex web applications. The resource configuration de-
sign space for an application has a huge number of permutations. A key
task in optimizing resource allocations is selecting the appropriate points in
the design space to sample and test in order to make resource allocation
decisions. Moreover, developers must decide when enough data has been
collected to stop sampling the configuration space and make a resource allo-
cation recommendation.

To find an optimized set of cloud resources for running the application
with the desired QoS, the same load test must be run multiple times against
the different samples of cloud resources. By comparing the different test data
and performance metrics, the final decision on the required cloud resources
can be made. For a single tier web application, which can be deployed on a
single host, it is straightforward to benchmark and compare the performance
using different resources (e.g., different server types).

When an application involves distributing its components and tiers in
different environments or hosts, however, the benchmarking complexity and
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effort can increase exponentially. For instance, to completely benchmark and
compare the performance for the 3-tier web application in the motiving ex-
ample, there will be a total of ,,C3 possible resource allocation configurations,
where n is a the total number of available server types. If we want to analyze
all of the 23 EC2 instance types provided by AWS, 1,771 load tests have to
be performed.

Challenge 4: Lack of end-to-end test orchestration of resource
allocation, load generation, resource utilization metric collection,
and QoS metric tracking. Current load testing tools only focus on the
generation of loads and the tracking of a few QoS metrics. However, other
key aspects of a test, such as the automated allocation of different resource
configurations sampled from the resource configuration space or the collection
of resource utilization data from the allocated resources, are not managed by
the tools. Allocating cloud resources for complex web applications such as
multi-tier web architecture requires a number of system-level configurations
(e.g., security groups, load balancers, DNS names, databases) that current
tools force developers to manually manage.

Although most cloud providers offer tools to automate the allocation and
deployment of cloud resources, these tools require manual manipulation of
many low-level details to configure. For example, Cloud Formation, [19]
provided by Amazon AWS, is an effective tool to automatically deploy an
entire server stack with the cloud resources specified. However, it is a JSON-
based specification that includes the configuration of over 50 resource types
and hundreds of parameters, and is completely disconnected from current
load testing tools. Moreover, once the resource allocations are made and
tests launched, the resource utilizations on each cloud server need to be
carefully remotely tracked, collected, and temporally correlated with QoS
metrics tracked in the load testing tool.

Challenge 5: Extra configuration effort is required to evaluate
and utilize different cloud providers. With the public cloud computing
market getting increasingly popular, a number of key cloud providers offer
very compelling resources and services to compete with each other. While the
competition provides customers a broader range of choices on cloud resources
that helps further optimize the resource configurations and pricing, extra
effort is needed to carry out the benchmark and analysis across different cloud
platforms, due to the different infrastructures, service features, management
systems, software SDKs, etc.

For instance, accessing an AWS EC2 instance usually requires standard
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SSH communication with security keys, while GCE uses its own tooling and
commands to login to a remote server based on OAuth2 [20]. Although both
AWS and GCE provide a deployment template mechanism for resource allo-
cation in JSON (the AWS Cloud Formation and Google Cloud Deployment
Manager [21]) the format and supported type of resources vary dramatically.
Handling the diversity of the cloud platforms can therefore ben an obstacle
to utilize all the compelling cloud resources and make the most optimized
decision.

In summary, a gap in research exists between the current load testing tech-
niques and the resource allocation problems of cloud resource optimization.
In particular, load testing aims to verify if the given resources are sufficient
to meet the requirements. Conversely, the resource allocation tries to figure
out exactly what are the most optimized (i.e., most cost-effective) resources
to meet the requirements. In the context of multi-tier web applications and
different cloud providers, this gap becomes even more substantial.
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4. Solution: Resource Optimization, Allocation and Recommenda-
tion System (ROAR)

To address the five challenges presented in Section 3 associated with load
testing to direct and automate resource allocation and optimization, we de-
veloped the Resource Optimization, Allocation and Recommendation System
(ROAR). ROAR combines modeling, model analysis, test automation, code
generation, and optimization techniques to simplify and optimize the deriva-
tion of cloud resource sets that will meet a web application’s QoS goals.
This section explains each key component in the ROAR framework, which is
summarized in Figure 2.

GROWL DSL Optimized
App Config | Tests QoS Goals Resources

()

@ Test Plan Spec ®

Threads Test Logic Stepping

Config Controllers Plan
- Resource
(3)1 "o Configurations
A 3 A
" Config 1 Test Engine @
> - )
. -).-). et Extended jMeter o

Config 2 JPid < ) /
.”."’. Test State |®) | Model & QoS Y.| Resource a

-------------- ) Model Analysis Satisfied? Optimization

'_)'_). (6) N

Figure 2: Overview of the Resource Optimization, Allocation and Recommendation Sys-
tem (ROAR)

At the heart of ROAR is a high-level textual DSL called the Generic Re-
source Optimization for Web applications Language (GROWL). ROAR uses
GROWL to capture key resource configuration space and QoS goal informa-
tion that is not currently captured in existing load generation tools (Address-
ing Challenge 1). The GROWL specification is translated into specific test
plan inputs to the ROAR controller. ROAR then provides a fully automated
end-to-end benchmarking and optimization orchestration, which handles re-
source allocation, application deployment, load test execution, performance
metrics collection, performance model analysis, and test termination (Ad-
dressing Challenge 4 ).
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ROAR can monitor detailed utilization metrics of cloud resources and
align these metrics with the QoS performance metrics (Addressing Challenge
2). The aligned utilization/QoS metrics are then injected into a temporal
performance test state model. This model can be used to perform model
analysis and determine the next testing steps (Addressing Challenge 3).

ROAR supports conducting the same testing orchestration across differ-
ent cloud platforms (e.g., AWS and GCE) based on the specification given
in GROWL. When a final optimized resource configuration is determined,
ROAR uses code generation to generate platform-specific deployment tem-
plates so that the allocation of the resource configurations for the chosen
cloud provider can be automated (Addressing Challenge 5).

4.1. High-Level DSL Aligned with the QoS Domain

Based on our experience using a variety of load testing tools, we de-
termined the following elements of their typical abstractions that were not
properly aligned with the domain of cloud resource allocation derivation:

e The low-level test thread group configurations (e.g., the number of
threads, thread ramp-up time, duration of open connections)

e The complex test logic controllers based on procedural programming
concepts

e The inability to specify test application deployment and resource con-
figurations, as well as the target QoS goals.

To address these abstraction issues, we developed the GROWL DSL to en-
able developers to specify web application resource configurations associated
with QoS goals. GROWL will be used as the input to ROAR to automati-
cally generate platform-specific load testing plans without requiring users to
understand the underlying low-level jMeter-specific details, such as thread
group or logic controllers.

apps {

platform : aws;

app {
id : web-tier;
containerId : roar-test/web-tier;
port : 8080;
isTestEndpoint : true;
env : {

"LOGICAL_ENDPOINT" : "{roar-test/logical-tier}"

}

}

app 1
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id : logical-tier;

containerId : roar-test/logical-tier;
port : 8900;
env : {
"DB_ENDPOINT" : "{roar-test/db-tierl}"
}
}
app {
id : db-tier;
containerId : roar-test/db-tier;
port : 3306;
isTestEndpoint : false;
}
}
tests {
healthCheckUrl : "/v1/ping";
ordered : false;
sampler {
method : GET;
path : "/vi/policies/testid";
percentage : 99.9;
sampler {
method : GET;
path : "/vi/policies/testid/view";
percentage : 0.01;
sampler {
method : POST;
path : "/vi/policies/testid";
percentage : 0.01;
requestBody : "{\"deviceId\":\"testid\", \"policies\":\"...\"1}";
}
sampler {
method : GET;
path : "/vi/account/testaccount/view";
percentage : 0.01;
sampler {
method : POST;
path : "/vi/account/testaccount";
percentage : 0.01;
requestBody : "{\"accountId\":testaccount, \"settings\":\"..."]}";
}
}

performance {
throughput : 24050;
timeunit : MINUTE;
latency : 50;

Listing 1: Test Configuration Example in GROWL

Listing 1 shows the GROWL specification of the test plan for our moti-

vating example, which contains the three major sections discussed below.

The apps section.. This section describes the basic information about each
of the application components (e.g., tiers) contained in the application stack
to test. The attribute platform specifies the cloud platform to use, which
could be either aws (i.e., Amazon Web Services) or gce (i.e., Google Com-
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puting Engine). A list of app structures describe the configurations for each
application component via the following attributes:

id is the identification of the application component, which is required
and needs to be unique.

containerld is a concept from Docker [22] that specifies the ID of the
target deployable and runnable web application container stored in
Docker repository [23]. To automate the application deployment to
different target servers for testing, we used a containerization approach,
based on the Docker container mechanism, to ease the process. Docker
and the automated deployment process are discussed further in Section
4.2.

port is the port number that will be used by the web application.

1sTestEndpoint indicates whether the application component will ex-
pose the public endpoints for the testing. Setting this attribute to true
means that this application will be the top-tier to face users traffic
directly;

env specifies the environment variables for the operating system to be
used in the allocated resources. ROAR uses this environment variable
to connect different application components or tiers by letting others
know how multiple applications should depend on each other. In Listing
1 an application reference (the string surrounded by the parenthesis)
is used to present the actual value for the endpoint, which will be
translated into the physical IP address or public DNS name in the load
testing stage. The preferred multi-tier configuration and environment
variable setup will be explained in Section 4.2.

The tests section.. This section configures the details on what HTTP APIs or
web resources to test and how to test them. The tests section contains a list
of test samplers. Each sampler represents a specific type of HT'TP request
that we want to include in the QoS specification. The typical HTTP request
configurations, such as HTTP Method (e.g., GET, POST, DELETE), HTTP

URI,

HTTP Headers/Parameters, HTTP Request Body can be provided

for each sampler. The percentage attribute in each sampler controls the
frequency of each sampler in the overall test plan.
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For example, the percentage 99.9 means that 99.9% of all the requests in
the load test will go to this API path. This attribute is the key to simplify
the usage of traditional jMeter logic controllers. By default, all samplers
will be executed in random order with the given percentage. However, if the
ordered attribute in tests is set to true, each sampler will be executed in the
order as specified in the tests section. The other attribute healthCheckUrl
is not used during the load test. Instead, the ROAR test engine relies on
the URL specified in this field to check if the application to test is running
correctly.

The performance section.. This section specifies the expected QoS goals we
want to support in terms of both throughput and latency. The example in
Listing 1 shows a throughput requirement for 24050requests/minute with a
maximum latency to be 100ms. GROWL has been implemented using xText
[24]. An XML-based jMeter compatible specification will be generated from
a GROWL model instance as the input to the ROAR controller through
xTend [25].

4.2. Testing Resource Allocation and Application Deployment

The only thing developers using ROAR need to do manually is create
the GROWL model for the test plan - the rest of the testing and resource
derivation process is automated for them. As shown in Figure 2, the basic
workflow of the automated end-to-end test process is to first run the web
application in the most resource constrained configuration, followed by the
iterative benchmarking, analysis, and optimization processes. However, de-
ploying the multi-tier distributed web applications across the various cloud
resources is not an easy task, due to the following challenges:

e Different applications require setting up different software libraries, en-
vironment configurations and even operating systems, which makes it
hard to build a generic automated deployment engine.

e When trying to support deploying the same application stack to differ-
ent cloud providers, the deployment mechanism needs to be adaptive to
the heterogeneous cloud platforms (e.g., SDKs, authentication mecha-
nism, configuration parameters, etc.).

e When the distributed application components depend on each other,
the extra complexity is added to handle their links and correct com-
munication.
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To solve these problems, we built a container-based deployment manager
as part of ROAR that can support generic application stack deployment in
various cloud platforms. The process-based container tool Docker [26], can
package an application and its dependencies in a virtual process-based con-
tainer that can run on any Linux server. Users only need to package their
application in a Docker container with the preconfigured execution environ-
ment and push the application to the centralized Docker container repository.

The ROAR deployment manager will pull the application container based
on the containerld specified in GROWL and run it automatically (Step (1)
in Figure 2). With the flexibility and portability of Docker containers, we
can deploy a web application in any type of the target cloud server at any-
time. The server does not need any special environment configuration except
installing Docker itself, which has in fact already been included in most of
the cloud VM images by the major cloud providers [27][28].

Another important capability provided by Docker is the ability to version
containers in Git. Each change to a container can therefore be tracked, which
enhances the repeatability and traceability of deployment and configuration
changes. GROWL models and the generated test performance state models
can also be versioned along with Docker containers to understand how the
performance and resource allocations change as the application evolves.

To connect the distributed application components for all the tiers, know-
ing the endpoint of each component is indispensable. In ROAR, we follow the
common practice in distributed systems to configure the endpoint through
environment variables, with the main benefit being that it is easy to change
the value without affecting the built software artifact, and it is simple to
be integrated with the deployment mechanisms (e.g., deployment scripts).
As shown in Listing 1, a set of environment variables can be configured as
key /value pairs in GROWL. The actual physical endpoint is not known until
the cloud server has been allocated and is running. The application ID can
therefore be used as a reference so that the deployment manager knows their
dependency relationship, and the reference will be replaced with the final
address when the cloud server is running.

The cloud resource allocation and management is done through the SDKs
or APIs provided by the cloud providers. Currently, ROAR supports both
AWS and GCE. When you specify the platform in GROWL, the ROAR
deployment manager switches to use the correspondent implementation to
communicate with the target platform to request the cloud resources. It
first waits for the specific cloud server type to startup. When it is ready,
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the Docker command is triggered to pull the application container, followed
by initializing the environment variables in the container with the actual IP
addresses or DNS names associated with the instances. Different tiers will
automatically discover each other based on the endpoint of the environment
variables. Figure 3 shows the capability of the ROAR deployment manager
in this context.

Docker
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’ 1
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Amazon Web Services (AWS) Google Compute Engine (GCE)

Figure 3: ROAR’s Deployment Manager Pulls Applications from Docker and Deploys
Them to Servers in Different Cloud Platforms

4.83. Load Test Execution

After the entire application stack has been deployed, the ROAR test
engine periodically checks the running status of the application with the
healthCheckUrl before triggering the load test. In ROAR, jMeter is chosen to
be the core test engine due to its support on a wide range of web applications,
as well as its extensibility.

jMeter supports an XML-based specification for the load test plan. A
GROWL interpreter has been developed to generate the jMeter specification
from the GROWL model (Step (2) in Figure 2). One part of the gener-
ated jMeter test specification, based on the tests section in GROWL, is the
test plan, which uses a series of jMeter logic controllers to construct a test
that loads the various web application paths according to the percentages or
ordering specified in GROWL.
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For example, the two UPDATE APIs are not called very often, so the gen-
erated jMeter test plan uses an OnceOnlyController to send only one request
for the entire test period. The GET APIs are put inside of a Throughput-
Controller provided by jMeter to accurately control the execution frequency
of their samplers. Finally, all four controllers are nested inside an Inter-
leaveController that indicates to jMeter to alternate between each of the
controllers in each loop iteration. Clearly, there is a significant amount of
logic and associated abstractions that are specific to jMeter and disconnected
from the domain of specifying desired web application QoS.

The standard jMeter test plan only allows developers to specify the num-
ber of concurrent threads to use and provides no guarantee that the test
will sufficiently load the web application to assess if the QoS goal is met. If
the number of threads configured is not sufficient, jMeter will not be able
to test the full capacity of the target server. However, if the number config-
ured is too large and they ramp up too quickly, the server may run out of
CPU or memory before exposing the actual throughput and server resource
utilization under load. Developers must therefore rely on trial and error
specification of these parameters to test each target throughput.

To overcome this issue, we developed a model analysis to determine the
appropriate test strategy to assess the target throughput goal. To produce
test loads with the desired throughput accurately, we built a customized
jMeter plugin [13] and throughput shaper that analyzes and operates on the
GROWL model. The shaper is capable of dynamically controlling the number
of threads being used to ensure that the test meets the GROWL goals. Based
on the needed throughput, it automatically increases or decreases the number
of threads to reach the throughput accurately, while simultaneously watching
the resource utilization of the target server to ensure that it isn’t overloaded
too quickly.

Our throughput shaper supports gradual throughput increments. A through-
put stepping plan is automatically derived from the specified throughput QoS
goals in GROWL. For instance, if the target throughput goal is 5, 000requests/minute,
the generated test plan divides the test into 10 different stepping periods, so
that the test load increases from 0 to 500requests/minute within the first
5 seconds and then keeps running at 500requests/minute for another 20
seconds before jumping to the next level at 1,000requests/minute.

The test load is gradually increased, rather than maximizing the load from
the start, in order to avoid crashing the server if the load is substantially more
than the capacity of the server. In addition, the incremental ramping periods
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provide more diverse sampling metrics used in the test model analysis in the
next step. The test plan specification is used by the extended jMeter engine
to trigger the load test (Step (3) shown in Figure 2).

4.4. Test Performance Data Collection and Alignment

The key function of jMeter is to collect, aggregate, and summarize the
QoS performance metrics for the applications being tested, such as through-
put, latency, and error rate. What is missing from jMeter, however, is the
capability of monitoring and collecting resource utilization metrics from the
servers used for hosting the application. A key component of ROAR is thus
a mechanism to collect and correlate server resource utilization with QoS
performance metrics.

The ROAR throughput shaper discretizes the test epoch into a series of
discrete time units with known QoS values. The QoS values at each discrete
time unit are correlated with server resource utilization during the same
time unit. To record the actual throughput in each moment, we modified
the native jMeter SimpleReporter listener to be capable of automatically
reporting the throughput every single second (the native SimpleReporter only
reports the current aggregated throughput). Likewise, to record the target
server performance metrics, another customized jMeter plugin [13] is applied,
which runs a web-based performance monitor agent in the target server.
HTTP calls can be made from jMeter to retrieve the performance metrics at
runtime and assign them to the appropriate time unit for correlation with
QoS values.

A range of detailed resource utilization metrics are supported by our
plugins. However, we only record CPU, memory, network 1/O and disk 1/O,
since we have found these are the primary resource utilization metrics for
making resource allocation decisions. The extensions we made to the jMeter
plugin include (1) using a global clock that is consistent with the time used
by the QoS performance records, (2) enabling the collection process in non-
GUI jMeter mode, and (3) distributed resource utilization collection for each
application using the global clock.

Based on the global clock, the collected resource utilization and QoS
metrics are aligned and stored in a test state model (Step (4) in Figure 2).
The test state model is the input to the bottleneck analysis and resource
optimization algorithms run later and can also be loaded in the performance
viewer to display the results visually. As shown in Figure 4, based on the
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global clock, the correlation of QoS (throughput and latency) and resource
utilization (CPU/Memory/Network/Disk utilization) can be clearly seen.!

4.5. Model Analysis and Termination Strateqgy

The test state model containing the global clock-aligned QoS values and
resource utilizations allows us to analyze resource bottlenecks and derive the
best cloud resource configurations to meet the modeled QoS goals. One issue
that must be addressed before resource configuration derivation is potential
points of instability in the data, which show an inconsistent correlation be-
tween the QoS and the resource utilization with the values recorded during
the rest of the test epoch. These periods of instability are due to jMeter’s
creation and termination of a larger number of threads in the beginning and
end of each testing step triggered by the throughput shaper.

4.6. Handling Performance Instability

To handle the instability, a short 10-second warmup period has been au-
tomatically added in the beginning of each test plan. The 1/10'h of the
target throughput load will be used during the warmup and the collected
metrics during this period of time will be ignored. After the warmup, the
test plan gradually increase the test loads by 1/10%h of the target throughput
and keeps running it for 20 seconds. Based on our experiments, the perfor-
mance and utilization metrics usually fluctuate during the first half of each
individual step, which does not reflect the real QoS that can be sustained by
the application at that load. Thus, the final test performance model only use
the second half of the data to average the values for both QoS performance
and resource utilization metrics.

Therefore, if n is the number of total steps used in the test plan, af-
ter load testing, a series of aligned data set on the actual throughput (7°),
average latency (L), CPU utilization rate (Ue,), memory utilization rate
(Unem), network utilization rate (Up,) and disk utilization rate (Ugsy) will
be available in the following test performance model:

IDisk I/0O is not involved with this application.
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Figure 4: A Sample Test State Model with Aligned Data on Throughput, Average Latency,
CPU, Memory, and Network



T ={t;]1 <i<n}
L={ll1<i<n)
Uepu = {Uepu; |1 <7 <}
Umem = {tmem,|1 < i <n}
Unet = {uneti‘l <1< n}
Ugisk = {Uaisk; |1 <1 < n}

4.7. Resource Allocation Analysis

The resource allocation analysis can be performed with a variety of models
and optimization goals [29, 30, 31]. ROAR uses an optimization engine to
select the minimum number of servers N needed to run each application tier
to reach the expected throughput within the expected latency.

Let T,, be the expected throughput and L., be the expected maximum
latency specified in GROWL. If T, is the actual peak throughput with a
certain resource configuration, then:

N = [Tex/ T} (1)

The key problem here is to find a reasonable 7}, from all the data points in
the test state model without violating the expected latency goal T¢, and the
resource utilization limits. Generally, when the peak throughput is reached,
one or more resource utilizations will also approach 100% utilization (e.g.,
CPU or memory utilization goes to 100%, or network usage goes to 100%),
and at the same time, the average latency of responses increases dramatically.
We use these two conditions to determine 7},. Formally,

T

p = Max t;

0<i<n

where, l; < Le,

Uep; < 100%

Umem, < 100%
Unet, < 100%

Ugisk; < 100%
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Figure 4 shows a typical dataset collected during a test. The throughput
shaper produces an increasing number of requests as indicated by the ex-
pected throughput (yellow line in the top graph of Figure 4), but the actual
throughput fails to meet the QoS goal after the 5th step (blue line in the top
graph of Figure 4). Checking the performance metrics of the target server
for each application tier, it can be found that although memory and network
have not been fully utilized, the CPU utilization in Tier 2 (Data Tier) has
reached its limit - 100%, and therefore the peak throughput using this server
appears at the 6th step.

A complete test state model provides the detailed QoS performance with
the given resource configuration for each tier. In order to compare and figure
out the most optimized resource configuration, the same load testing process
needs to be repeated for each type of resource to get the different values
for N. The optimization engine in ROAR is capable of automating all the
tests sequentially from the most resource constrained server types to more
powerful and more expensive types (Step (6) in Figure 2).

In Amazon EC2, resources can only be allocated in fixed configurations of
memory, CPU, and network capacity, rather than in arbitrary configurations.
There are over 20 different instance types, which are virtual machines with
fixed resource configurations, provided by AWS, so it is hard to manually
sample the performance of all instance types. In addition, when the web
application stack involves multi-tier applications like the motivating example,
benchmarking all the possible combination of the server types with each tier
would be tedious and costly.

After the test state model is generated, the ROAR optimization controller
uses the test output data to choose the next resource configuration and then
switches a tier to a bigger type of server with a more powerful hardware
configuration if resource bottlenecks were found in that tier. To reduce the
benchmarking effort, if the target QoS goals are met, the test can terminate
after the next resource configuration is tested. The reason that the test can
terminate is that any larger resource configurations will only have additional
slack resources that are not needed to meet the desired QoS goals.

Conversely, when the target QoS goals are not met with a certain con-
figuration, the ROAR test engine analyzes which application tier caused the
bottleneck, i.e., the application tier with at least one type of resource utiliza-
tion that reached 100%. ROAR will only change the instance type of that
tier for the next test iteration until the QoS goals are met or other tiers be-
come the bottlenecks. Using this approach, ROAR can effectively permute
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the resource configuration of the application to efficiently find bottlenecks
without exploring all possible resource configurations.

The entire testing process is repeated to derive a model of the QoS and re-
source utilization on the new resource configuration. This process is repeated
until the most cost-effective configuration solution is found. A prototype of
a web-based service has been implemented to take the GROWL as the input
and generate the final cloud resource configurations ready for deployment.

The final resource configuration is decided by comparing and analyzing
the results (Step (7) in Figure 2). The most cost-effective solution is derived
by finding the minimum total cost of using each type of server to reach
the desired throughput. Let I be the set of applications, and J be the
set of available server types. If P;; represents the cost of the server type
j (4 € J) which is chosen to run application i (i € I), the total cost is
C = SumieP;; * N;, and the most cost-effective solution is Minc.

Besides finding the most cost-effective solution, knowing the solution that
supports the fastest response time (i.e., the lowest response latency) is also
essential for general web applications in practice. The fastest response time
configuration is decided by the average latency measured for each type of
server. Although the latency varies based on the testing environment (e.g.,
running the load test inside AWS would have a much lower latency than
running the test outside of AWS), the comparison of the average latencies
for different server types could produce a good indicator of the performance
with which two different servers can handle the same request load. Thus, we
choose the server type with the lowest average latency as the fastest response
time configuration.

4.8. Automated Resource Template Generation

After the cloud resource allocation needed to meet the QoS goals is de-
rived, ROAR can then automatically allocate the resources and deploy the
web application. Manually allocating resources with a fleet of servers in a
cloud environment is not an easy task in general. It’s even harder when
optimized service architecture patterns and best practices are needed.

For example, in AWS, the best practice of deploying multiple servers to
support the same web application is to use an Elastic Load Balancer (ELB)
[32] as the entry point. An ELB is capable of handling any number of requests
from users and balancing the dispatch of the requests to each server behind
it. A number of configuration parameters for security groups, private keys,
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availability zones, server launch configuration data, and DNS names have to
be specified correctly when using an ELB.

To ease the resource allocation process, ROAR uses a generative approach
to produce the configuration artifacts needed for each cloud provider. Cur-
rently, ROAR supports artifact generation for both AWS and GCE, and sup-
port for OpenStack is planned. The AWS artifact generator is built on top of
the AWS Cloud Formation service, which provides an engine for automating
the deployment of multi-server architectures via templates defined in JSON.
Based on the N and server types generated from the resource optimization
engine, we fill the template with the appropriate configuration steps, resource
types, and other parameters needed to launch the application.

After the template is generated, it can be uploaded to the AWS Cloud
Formation console, allowing developers to deploy the web application in the
derived configuration with a single click (Step (8) in Figure 2). A similar
mechanism called the Cloud Deployment Manager (CDM) [21] is provided by
GCE, which also uses JSON template but contains different configurations
since the cloud resource types and management SDK varies dramatically.
GCE also provides a load balancing service to include multiple servers and
provides a single endpoint for each tier. The template generation is capable of
filling the same type of cloud resource configuration in the platform-specific
templates.
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5. Evaluation

This section presents a case study evaluation based on the motivating
example from Section 2. Based on the given web application stack, we run
experiments with two sets of QoS goals in both cloud platforms, as shown
in Table 5. These experiments allow us to observe the different optimiza-

Test No. | Target Throughput Target Latency (ms) | Cloud Platform
(req/min)
1 24050 50 AWS
2 24050 50 GCE
3 50000 30 AWS
4 50000 30 GCE

Table 5: The List of Test QoS Goals and Platforms Used to Evaluate ROAR

tions provided by ROAR, as well as the difference between the various cloud
computing platforms.

By default, ROAR considers all the available instance types from each
cloud platform. This experiment focuses on the general-purpose cloud servers
that fits the nature of the motivating example. The goal is to clearly compare
the differences in the same instance type category, as well as avoid the ex-
pense of the high-end server types (e.g., GPU or Cluster instance types, high
memory or high I/O instance types). The instance types used from AWS in-
clude: m&.medium, m3.large, m3.xlarge, m3.2xlarge, c3.4xlarge, c3.8xlarge,
while in GCE we choose: nlI-standard-1, ni-standard-2, ni-standard-4, ni-
standard-8, ni-standard-16, as listed in both Table 1 and Table 2. The chosen
sets of servers in both platforms are very competitive in terms of both pricing
and hardware configurations.

5.1. Resource Optimization Results

The test plan was specified using GROWL for each of the 4 tests to run, as
shown in Listing 1. ROAR then automates the benchmarking and optimiza-
tion process, with the results shown in Table 6 - 9. Each table lists the peak
throughput and average latency data collected for each tier/instance type in
different test iterations. Knowing the peak throughput, we can estimate the
total number of servers required for each tier using the Equation 1 and then
calculate the total cost. Using the minimum cost option for each tier (i.e.,
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Tier Instance Peak Average Total Total
Types Throughput | Latency Server Cost
(req/min) (ms) Required | (dollar/hr)
db m3.medium 24050 11 1 0.07
db m3.large 24050 10 1 0.14
data | m3.medium 6500 13 4 0.28
data m3.large 19000 12 2 0.28
data | m3.xlarge 24050 10 1 0.28
data | m3.2xlarge 24050 10 1 0.56
web | md3.medium 8100 14 3 0.21
web m3.large 20000 13 2 0.28
web m3.xlarge 24050 13 1 0.56
web m3.2xlarge 24050 11 1 0.56
Table 6: Resource benchmarking result for Test 1
Tier Instance Peak Average Total Total
Types Throughput | Latency Server Cost
(req/min) (ms) Required | (dollar/hr)
db nl-standard-1 24050 12 1 0.07
db nl-standard-2 24050 10 1 0.14
data | nl-standard-1 12000 17 3 0.21
data | nl-standard-2 17000 16 2 0.28
data | nl-standard-4 24050 14 1 0.28
data | nl-standard-8 24050 13 1 0.56
web | nl-standard-1 13000 17 2 0.14
web nl-standard-2 18500 16 2 0.28
web nl-standard-4 24050 16 1 0.56
web nl-standard-8 24050 14 1 0.56

Table 7: Resource benchmarking result for Test 2
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Tier Instance Peak Average Total Total
Types Throughput | Latency Server Cost
(req/min) (ms) Required | (dollar/hr)
db m3.medium 24500 33 3 0.21
db m3.large 48000 28 2 0.28
db m3.xlarge 50000 22 1 0.28
data | m3.medium 6500 38 8 0.56
data m3.large 19000 37 3 0.42
data | m3.xlarge 28000 25 2 0.48
data | m3.2xlarge 46500 20 2 1.12
data | c3.4xlarge 50000 19 1 0.84
data | c3.8xlarge 50000 20 1 1.68
web | m3.medium 8100 39 7 0.49
web m3.large 20000 30 3 0.42
web m3.xlarge 31000 30 2 0.48
web m3.2xlarge 50000 29 1 0.56
web c3.4xlarge 50000 25 1 0.84

Table 8: Resource benchmarking result for Test 3

the gray row in each table), the most cost-effective resource allocation can
be derived.

For example, when running 7Test 1 in AWS, the best resource combination
is 1 m3.medium instance for the db-tier, 1 m3.xlarge instance for data-tier
and 3 m3.medium instances for the web-tier. Conversely, when running Test
1 in GCE, the most optimized solution would be 1 ni-standard-1 instance
for the db-tier, 3 ni1-standard-1 instances for data-tier and 2 ni-standard-1
instances for the db-tier. All of these critical pieces of information are derived
automatically using GROWL and ROAR and would be difficult to obtain
through current load testing practices with existing tools and approaches.

Most of the cloud providers precisely scale their server performance ac-
cording to pricing. It is, therefore, likely that a configuration with multiple
servers of smaller instance types can meet the same QoS goals as a configu-
ration with fewer servers of bigger types. For instance, Table 6 shows that
multiple m3.medium or multiple m3.large servers can reach the same perfor-
mance as a single m3.zlarge for data-tier with the same cost. In this case,
we often consider choosing the configuration with lower request latency.
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Tier Instance Peak Average Total Total
Types Throughput | Latency Server Cost
(req/min) (ms) Required | (dollar/hr)

db nl-standard-1 27000 31 2 0.14
db nl-standard-2 43000 28 2 0.28
db nl-standard-4 50000 24 1 0.28
data | nl-standard-1 12000 40 8 0.56
data | nl-standard-2 17000 38 3 0.42
data | nl-standard-4 27000 25 2 0.48
data | nl-standard-8 46000 24 2 1.12
data | nl-standard-16 50000 24 1 0.84
web nl-standard-1 12500 40 7 0.49
web nl-standard-2 18000 38 3 0.42
web nl-standard-4 29500 31 2 0.48
web | nl-standard-8 50000 23 1 0.56
web | nl-standard-16 50000 22 1 0.84

Table 9: Resource benchmarking result for Test 4

Conversely, if a fewer servers are preferred (e.g., to reduce operational
and management complexity), the ROAR optimization engine can be config-
ured to prioritize solutions with fewer server instances. For example, a single
server for the database could be used to avoid a complex database clustering
configuration. The results for Test & and Test 4 show that when the require-
ments on latency are changed to 30ms, some server types are automatically
filtered out when the benchmarked latency is above this threshold.

Regarding the optimized solution, we currently rely on the direct aggre-
gation of the throughput results to estimate the maximum throughput when
multiple instances of the same type are being used. In fact, a further opti-
mization could be done in this space by mixing different types of servers. For
instance, Table 8 shows a more cost-effective solution for the web-tier uses 2
md3.large plus 1 m3.medium. However, mixing different types of servers can
create challenges in practice, because the load balancers equally distribute
traffic by default, which means that smaller server types may receive the
same amount of traffic as bigger ones and therefore the overall performance
may not meet expectations.
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5.2. Performance Validation

Satisfying all the QoS performance requirements is a key goal for any
resource allocation task. It is essential to ensure that the generated cloud
resource configuration by ROAR can actually handle the desired throughput
and latency requirements. Although detailed benchmarking processes have
been conducted for different configurations, the performance of aggregating
all the applications and resources together is still based on estimation. To
validate the final performance and QoS, therefore, performance experiments
were done for all of the 4 test scenarios. Each test scenario was deployed
using the generated resource configuration templates - load balancers with
cloud servers behind them.

A dedicated load test was triggered for each test scenario based on the
given QoS goals. By comparing the actual throughput and average latency
to the ROAR estimated throughput and latency, we derived the average
error rate of the throughput (es,) and latency (e;) for each application in
the experiment, as shown in Table 10. It can be seen that the estimates on
throughput are within 0.4% of their actual values.

Test No. | Throughput (req/min) | ey, (%) | Latency (ms) | e, (%)
1 23950 0.4 24 0.0
2 24580 0.0 26 0.0
3 50100 0.0 29 0.0
4 49900 0.02 27 0.0

Table 10: Average Performance Deviation (%)

The 0.4% error for Test 1 arises largely from the error of the through-
put shaper used in the load test engine. For instance, when the provisioned
throughput is 24050requests/minute, the load generated may not exactly
reach 24050requests/minute but instead top out at 23950requests/minute
due to thread contention, which produces a 0.4% error rate. Regarding the
latency error rates, they are all 0%, meaning that the average latency con-
straints were always properly derived by the ROAR generated resource con-
figurations.

The low error rates were expected because the throughput and resource
allocations were based on actual load testing and benchmarking, with the
only estimation being aggregating the peak throughput to support the target
throughput.
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Test No. | Number of Iterations | Maximum Number of
to Reach QoS Goals Potential Iterations
1 10 444
2 10 300
3 14 444
4 13 300

Table 11: Benchmarking Effort Comparison

5.8. Benchmarking Effort

As described in Section 4.5, ROAR automatically scales up the type of
instance used by an application tier when that tier reaches its utilization limit
for one or more resources and terminates the test when the QoS goals are
met. As given in Section 3, the total number of configuration combinations
needed to test the motivating example would be 444 for Test 1 and Test 3
using 6 AWS instances, 300 for Test 2 and Test 4 using 5 GCE instances.
By comparison, Table 11 shows the number of total benchmarking iterations
required for each test. These results indicate that ROAR effectively reduced
the benchmarking effort by using bottleneck analysis to navigate the resource
allocation configuration space of each tier.

5.4. Cost of Resource Configurations

Knowing the most optimized resource allocation in each cloud provider
for different QoS goals can provide users with critical guidance on cloud
provider selection. Table 12 shows that the cost of using AWS and GCE
are only slightly different based on the QoS goals. This slight difference is

Test No. | Cloud Platform | Total Cost (Dollars/Hour)
1 AWS 0.56
2 GCE 0.42
3 AWS 1.18
4 GCE 1.32

Table 12: Cost Comparison
expected because both cloud providers offer the same categories of servers at

the same price ranges. Although their marketed hardware specification and
parameters are different, their basic computing capabilities are very similar.
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However, we did notice a performance difference existed between the two
cloud providers. Particularly, for the motivating example web application
used in this paper, the ni-standard-1 instance from GCE always performed
much better than the server in the same pricing range m3.medium from
AWS. However, for the higher end servers in AWS, such as m3.zlarge and
md3.2xlarge, they always showed better performance in terms of both through-
put and latency than the equivalent GCE instance types.
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6. Related Work

This section compares our work on ROAR with the following related
research efforts.

Ferry et al. [33] summarized the state-of-the-art on cloud optimization
and pointed out the need for model-driven engineering techniques and meth-
ods to aid provisioning, deployment, monitoring, and adaptation of multi-
cloud systems. Revel8or [34] is a model-driven capacity planning toolsuite
to solve the problems related to complex multi-tier applications with strict
performance requirements. They use UML 2.0 to model and annotate design
diagrams, and derive performance analysis models. However, Revel8or only
supports applications developed in a model-driven approach from platform-
independent model to platform-specific model to the final code, while our
approach targets all web applications, including hand-written and legacy ap-
plications. TOSCA [35] is another DSL proposed by Binz et al. to specify
the topology and orchestration configuration for cloud applications to ease
the cloud management tasks. Unlike our work, however, it does not focus on
resource optimization and allocation.

A number of research projects have focused on model-based load test-
ing. Draheim et al. [12] used a modeling approach to produce realistic load
testing scripts for web applications. Their approach simplifies the creation of
realistic usage models of individual user behavior based on stochastic models.
However, they do not analyze the minimum required cloud resources. Wang
et al. [36] present a Load Testing Automation Framework (LTAF), which
offers usage models to simulate users’s behavior in load testing and workflow
models to generate the realistic testing load. Similar to prior work, LTAF
focused on simplified creation of realistic load testing configurations for web
applications, with detailed performance reports. Since resource optimization
is not their goal, neither of these two frameworks takes the target server
resource consumption into consideration, in contrast to our work on ROAR.

Wei etl al. [30] applied game theory to solve cloud-based resource alloca-
tion problems using abstract resource and application mathematics models.
Based on a specification of the application’s QoS constraints, Binary Integer
Mining and evolutionary algorithms are used to drive the optimization. This
research differs from our work on ROAR in the following ways:

e it focuses on resource allocation for multiple applications being sched-
uled in large cloud environments and
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e it emphasizes abstract analysis rather than empirical testing of produc-
tion applications.

Li et al. [37] present a method for resource optimization in clouds by
using performance models in the deployment and operations of the applica-
tions running in the cloud. An optimization algorithm is implemented to
accommodate different goals, scopes and timescales of optimization actions,
to minimize cost while meeting SLLAs across a large variety of workloads. Re-
cent work by Chalsiri et al. [38] focused on the cloud resource optimization
problem from a different perspective. They examined provisioning algorithms
to better utilize market-based resources that fluctuate in cost based on de-
mand to reduce total cost. To handle the resource optimization for multiple
applications, Frey et al. presented a search-based genetic algorithm to find
the near-optimal solution that optimizes response times, costs, and number
of SLA violations [39]. Their approach is based on the simulation tool called
CDOSim to improve the search process, while our approach focuses on per-
forming actual benchmarking to obtain the accurate data. Instead of using
genetic algorithms, Catan et al. [40] specified application dependencies and
criteria, as well as applied external constraint solvers to reach an optimal
configuration. Although the framework they built can also handle multiple-
tier web application, they focus on finding out the most optimized actions
to transform the deployment configuration from one state to another when
a reconfiguration request comes in, rather than targeting the QoS goals.
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7. Concluding Remarks

This paper presented a QoS-Oriented modeling framework called the
Resource Optimization, Allocation and Recommendation System (ROAR).
ROAR automates the testing and derivation of optimized cloud resource
allocations for web applications. In particular, ROAR automates the end-to-
end test orchestration from application deployment, metrics collection and
alignment, to test model generation and the test iteration with termination.

ROAR uses a textual DSL called GROWL to hide the low-level config-
uration and analysis details of load testing for the complex multi-tier web
applications. QoS goals (including target throughput and latency) can be
expressed via the DSL, which will be used to direct the generated load test
plans. GROWL generates an optimized resource configuration to meet the
web application’s QoS goals, as well as a deployment and configuration tem-
plate for the specific cloud provider.

Our future work focuses on enriching GROWL and exposing more best
practices in load testing and resource optimization as simple DSL language
constructs. Examples include supporting complex test behaviors that are
driven by input parameters (e.g., generate random or variable parameters as
test inputs) or time-based tests (e.g., send request r1 during the period of t1,
and request r2 only during the period of t2).

Moreover, only average latency is currently supported as one of the QoS
goals. Therefore, enabling other goals (such as percentile latency) would also
be useful. While multiple-tier application can be automatically benchmarked
and optimized, we assume that each tier is deployed separately in different
servers. In some cases, co-locating the different application tiers together
in the same host might offers a deeper optimization space. However, more
sophisticated optimization algorithms would be needed to handle this case.
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