
Editorial 6

Guest Editorial 8
Boti Magnmson

c++ 40
Understanding constructor initializers
in C++
Andrm Koenig

Modeling & Design 48
The evolution of bugs and systems
Jamer Rumbaugh

Tools 53
Making inferences about objects
Pard Harmon

Smalltalk 56
Combining modal and nonmodal
components to build a picture viewer
W~LaLon& &John Pugh

Book Review 64
Eiffe/, the Language
Rmiewed by Stm.n C. Bihw

Advertiser Index 66

Career Opportunities 72
& Training Services

Features

November/December 1991

Vol. 4, No, 7

10

19

31

35

Contravariance for the rest of us
byWarren Hati

Gntravtimce is a phenomenonthat occurs as an interactionbetweensubtypingartdhigher-
order fincriona. II affecu allobject-orientedprogramminglanguagesincludingC++ and is usually
circumven~cdby overlodlng. The author providesmamplesin C++ whereoverloadingdoa not
havethe desiredeffect,and discusseswhat a be,ter — more expressiveand ~esafe — language
might look like.

Multilevel secure object-oriented data model —
issues on noncomposite objects, composite
objects, and versioning
by Bhavani Thurukingham

~Ile progress hm beenmade in incorporatingmukilevel securi~ into an object-rientcd data
mndel,,mrr& stillremainsto be done. This articlediscussesthe issuesinvolvedin supporting
noncomptrsiteartdcompsite objectsand versioning,which havenot yet been investigated in such
models,becausethesefraruresare exential for data-intensiveapplicationsin hypermediasystems,
CAD/CAM, and knowledge-baaedsystems.

Delegation in C++
byRa~bJohnson &Jouthun M. Zwe&

Delegationis ofren viewedas a languagefealurethat replam inheritance,when in fact ir cart be
viewedasa relationshipbetweenobjeccsrhat can be implementedin any object-orientedlanguage.

This articleofirs an exampleof this mefuJprogrammingtechniqueusingC++.

Real-world reuse
byMark brenz

Much of the f?crraof object-oriented(O-O) developmenttodayis on rheclaashierarchyand reuse
through inheritance.In reality,most of dte classmin an applicationare drawnfrom variousposi-
tions in the hierarchyand work together through collaboration.Th]s author dlscusscsO-O analpis
and designmedtndologiesand CCICIISchathe believeswillcome inlo wideruseasapplicationdevel-

opers foc~ more on thismllabo~[ion and l~s on the hie~rchy.

The Journal of Ohjecr-OrientedProgramming(lSSN #OS96-E1438)is publi.rhedninerimesa year, monthlyexceptfor k4ar/Apr,Jd/Aug, andNov/Dec. Publishedby SIGSPuhlica-
riotr.r,Inc., 586 Broadway,Suire604, NewYork, NewYork 10012, (212)274-0640. Pleasedirectadvertisinginquiriest. thisadd~. Secondclasspnsragepaidat NewYork, New
York, and additionalmailingoffiw. POSTMASTER: Sendaddreaschangesm JOOP, P.O. Box 3000, Dept. 00P, DenviUe,NJ 07834. Inquirimand newsubscriptionorders
&odd dso be sem 10 rfraraddress.

@ Copyright 1991 SIGSPublications,Inc. All rightsresewed.Wpmduction of rhismaterialby electronictmsmiwion, Xerox, or any other merhodwiUbe rrearedasa willhl viola-
tionof the US Copyright law and is Sarlyprolribired.Materialmaybe reproducedwidrexpressPermision km rhepublisher.

Manuscriptsunderreviewshouldbe ~pcd doublespad (in triplicate).Ultorial correspondenceand ProductNw informationshouldbesent to the Editor, Dr. RichardS.
Wiener, 2185 Bmadrrtoorhad Clrde, Colorado Sprin&,CO 60906, (719)520-1356.

5

EDITOR
Dr. Rich.ardWIcner

UniuerriIyofCOhra&,Cob& Spring

SIGS PUBLICATIONS

EDITORIAL/ADWSORY BOARD
Them Aiwn4 Objti DcsiP

Gndy Booth, RatioMl
GWW hnh, Di@talk

BradJ. b, Information Agc-&&ting
Chuds M, Th Wbitcwatm &up
Adete cald~ ParcPhc syrtcmI

R. Jo* Kreiidler, &ncrdEhm”c
Th9m h, Combnt

~ M-, ISE
Mefi P~Joncs, WaykIndS_

- Prarap, &wLine .So~rr, Inc.
P. Michael Seaahoh, Vemant Object Tech.

Bjarne StrouamIp, AT&TBeflLabs
mm TSwuua, Object TccbnobgyInk-tnatiod

JOOP ADVISORY BOARD
Dtiel Fii, Hewkti-Packardbb.

StuaK Gr-etd, Marirt College
IvaIJawb.san, Objti”w Syrtcms

Boti Magnusmn, Luwd Unim”ty, Swc&n
k Phn, Unimi~ ofCohr&

* Wq LfoMIntwtio.1

COLUMNISTS
Geo~ Boworth, Dip”tah

Nicliieben B.urbalii, Lucid Inc.
Pauf Buttaworth, hi. LOB2

Paul Harmon, Conridkznt
Jon Wyatt Hopbim, Pahdio So@,r

Andrew Wg, AT&TBelhb~
Wdf Wndc, CurferonUniwrriy

John Pugh, G&ton Univw,ig
jama Ruinbaugh,Gc~dE&&

Tonyw—, IDE
C. The- Wu, NaualPwtgr&te School

E* Wiener, ProdtiNtws titer

SIGS PUBLICATIONS, lNC,

Richard P. Friedman
Founder & tip Publisber

ART/PRODUCTION
Elk VatiaII, Managing Utur

S- CulliganCreati.Da-ectOr
Elii.h A.Upp,ti.-tion Editor

b Poher, kktip Desipm

CIRCULATION
Diane Badway, Cin-nluion Burinm ManaIm

Iia& ti~ h~fimmt Manager
JohnSchreiber,Circuhonhistant

MARKETING/!!VERTI SING
James ~, Ad&incDircctor

ADMINISTRATION
David h+ Acmunting

S-e Wd Dinne&, GnfinccMa~
J-& FAeI, Arsi.rtanta tbrPublisbcr
Laura h Tayfor, &intiwAr.iirtant

M@.ita R Monck
GmtralManaF

Publishersof]oumalof Object-Oriented Programming
Object Mafa>e, Hodim on Objcrt-Orirntcd hogram-
ming Tbe C++ @ti, The SmaU R+ti, The Inti-
ti”owl 00P DimctoV, and Tbt XJoumal
M:..:,.,:.,:,,.:.:?...., +’

Editorial

Ttwas niceto meet with so many of our readen and writers at 00PSLA this past week

(October 7–1 1). I found 00PSLA to be an interesting and important conference.

1 The technical papers at the Cctnkrence focused on experiences wi& object orientation.

The industxy now has some real experiences, both successes and fillures. Some of

the mote successful OOP book authors were on hand to discuss their recipes for O-O anal-

ysis, design, and programming. Representatives from the entire 00P industry were pre-

sent. It was evident to me that the move toward making objecr orientation a mainstream
activity is mntinuing. Of course, it is important to temper this observation by the fact

that whenever one is immersed in a sea of advocates of any technology it is easy to be-

lieve that tbe whole world has embraced the technolo~. In reality, this has not yet hap-

pened with object-oriented technology and may take several more years to occur. Many

computer science departments are still teaching their students structured analysis, design,

and programming techniques exclusively. Some schools have just started offering a few

elective courses on object orientation.

It was clear from the vendor area that most of the products exhibited featured C++ or

Smalltalk language development or sobare development tools. These two 00P lan-

guages have “won” the Imguage wars in the commercial sector, at least for the time being.
Application frameworks and CASE tools hr C++ were probably the most popuk prod-

ucts on display.The -jor application areasthat are pushing 00P bol~ into the rrsain-

strearrsare O-O database management and the development of graphical user interks.

We at]OOP wodd like to report on experienw with object orientation and there-

fore plan to produce a special supplement dedicated to tils subject in 1992, I would

Iii to solicit contributions now for this special supplement. PI= fo~ow the notrnalJOOP

guidelines for submission and mail your manuscripts to the editorial offi~. You are wel-

come to call me at the editorial office to discuss ideas for such contributions,
This issue contains four feature-length articles.

“Contravarianw for the R=t of Us” by Warren Harris discusses a structural weakness
of C++ related to overloading. The article suggests areas of needed improvement for

c++.

“Multilevel Secure Object-Oriented Data Model: Issues on Noncomposite Objects,

Gmposite Objects, and Versioning” by Bhavani Thuraisingham examines the issues

related to maintaining multilevel securi~ of data in an object-oriented environment,

“Delegation in C++” by Ralph Johnson and Jonathan Zweig ex~ines delegation as
a language featme that replaces inheritanm. The titicle explores how delegation may

be used in C++.

“Real-World Reuse” by Mark hrenz looks at how application developers work with.-
and view their application classes and how this relates to analysis, design, and the hier-

archy of classes used for an application.

Richard S. Wiener
I

6 JOOP NOVEMBE~DECEMEiER 1991

z.,;.~,:..~.i ;,...,,:.:J ,.,

.!..ii.,...,. ,~,,, ,., .; ~.
.-:::“....,.“..:;.:7,r:,.

,..,..............,, .,,

,,
,..

titi aWorld-ClassP&er
. ,. KSC GuidesYour 00 ANALYSIS

Development Team .. .

to

a

E~ctive

) solutions
ADVANCED TRAINING ~.‘-

FRAMEWORKS

To build a first rate development team Ksc teams with clients to address Heww-PukaTd

that delivers the maximum ben&ts of applimtion areas such w GeneralEfectric

object-oriented technology, you want ●

ordy the most highly qualified aperts ●

to guide you. ●

Knowledge Systems Corporation “

offers a cohesive program of objm “

technology traitig, services, and “

products. Our unparalleled years of “

Wlsion Support Systems

Mam.dacturing Information Systems

Manufacturing Process Modeling

Financial Transaction Management

Financial Trading Systems

Simr_dation Environments

Network Management

Custom GUIS

ML -

..

,, .,.,., .,..

.

BellNorthernR~ch

TexasInstruments

American Airfines

Boeing Computer Services

Northern Telecom
Texaco

NCR

KSCputs you in the ~re~ont of I~W@-e . ●

,, .;*p*:*;*mmae ..” ~~,
,::.”:,**ntt+.M~: ~s *.* *hel@,. advanced sopme developmmt.

“’”,;:;y”#*~”a*@eg””, ””’” ,,,., ,,, ,, .+ in-h~,~X&t’m, md we pro~de time-testedSOIUtiOm
,,,. :!.’-:.: .,, .,,,, .,, ,, ‘,-k”:... . ,,. ..: .W~”*i&’*.b: “ “: ““&M@ Soti for cd- to meet your company’s specific.

,,, .,. ,;,.:P,,,,:M
..:... .:,” .,.,.,,~...., ,,.. ... “w,:’:””” “;~.’’””’’”’~+ i ‘:””;”.”””:,,, “~ 00bwralltalk training and. -.

M*”~,:’ ”,.””’ “’;”;,”; ::”””.”’’~gw!~f-; $e) : :
developmentrequirmts.

,~.:.4,..’,,;.<:.’..=.{. ..;.:-:. . .,.... . ..,,...:..:;.. ., .,,.,. ,. !.:
.!:,;:$::’i:..-~w ““-::’+:““” ‘~ww, . ::,,.:.-7.,

“:::
. ‘, ,’” ‘,’

E hwBedge Systems Cerperatien 114 MacKenan Drive

Cary, NC 27511

Partnersin Advancd So@are Development (919) 481-4000

Circle54 on Reader -rvice Card

Newpersistent data
based on hyper-objects

internal
a

a objects

data

9

aker

Avoid spaghetti data
Code and debug 3-times faster

Design databases in hours

The ordy folly supported
persistent data library

Runs with both C and C++

~no mn-dmeor memoryoverheed
I generateshighqualitycode
I improvesmaintenanceanddebugging
I allowsdatatnmsf
I eauy[o use, one d
I on-line help, exre

I worko with debug andorhertools
1 acceptsexternal
I .storeacomplete d
~largemynltyfree ry: Iirrkd lists, trees,

grnphs,generalhi
mays, hashtable
binnryheaps,tim p, andotherobjects.

‘ mostlyin .souree,
orgmimtions and

%~S startat $295 (TurboC,Microsofs,
krtech), $1195

Universityprice $7

Prices US$, UIUStaxes.handling& shiooinR)

persistent data

8 Circle 16 on Reader Service Card
GuestEditorial

Codereuseconsideredharmful

T he advan~es of objem-orienteet programming (OOP) do not come just by using

inheritance. As the first wave of enthusiasm passes by, I see an awareness of the im-

pomm of applying some method to what classes and inheritance are used for.

This a be seen both in conference papers and in the quickly growing literature on O-O

methods,

The Scandinavian school of OOP can be characterized by in tiew on these matters.

The key word here is “modeling,” in short, that programs and class hierar~les should de-
scribe concepts and be understandable in the application domain. An implication of

this point is that subclassing should be used for modeling specialization of concepts in
the same way as Linnaeus used specialization as a method to describe the classification

of plants. The Scandinavian school thus has a very firm view on what subclassing and in-

heritance should be used for and is in contrast to at least two other points of view.

The “type” view concentrates on the signatures of operations and classa, i.e., on pa-

rameter types and operation namm. Two class= are compatible (have the same type) if they

implement operations having fie same name and parameters. In the -eme, these typesand

the relations between them codd be Actdated automatically. As an ~ple, consider two

classes: class Rec~gle with operations Move and Draw and class Grwboy wids operations

Move, Draw, and Shoot. Gnsidering only signatures would lead to the conclusion that

Cowboy is a subtype of Rectangle. From a modeling point of view, this is simply nonsense.

The &ct seems related to the “suucture equivalent” approach used in very ewly Pd im-

plementations where integers repr=enting numbers of apples and pears would be happily

added together in spite of the fact that they were deekrred as dfferent types by the pro-

Per- This Problem ~ curd bY inrr~ucing *e notion of “n~e eq~~ence-”
A third point of view is to concentrate on code reuse an construct the class hierarchy

to minimize the code volume. I cannot refrain from comparing this with earlier ap

proaehes in the history of our scienw. In the microscopic scale, goto:s were once (a long

time ago) used to “reuse” fractions of code with well-known problems of “spaghetti

code” as the result. The note “Goto considered harmfi.d” by Dijkstra marks the turning

point in the use of structured algorithmic constructs. Interestingly enough, this sometimes

leads to some repetition of similar code, which is generally accepted.
The same pattern can be seen in the use of procedures, originally only viewed as a means

for saving mcling Iabour — any program ~gment that would shorten the program (and

possibly reduee the binary code sti) wodd qu~l~ for being turned into a procedure. Sin-

gling out one contribution, I select the book SticturedPro~ammirrg by Dahl/Dijk-

stra/Hoare to represen[he shift in attitude toward using procedures to model algorith-
mic abstractions. It was now acceptable to write procedures that were called only once.

Focusing on using inheritance for code reuse leads to the problems as described above

for statements and procedures. “Spaghetti” inheritance with artificial relations between

classes mb them hard to understand and thus to use. Some inherited me&ods may not

be used and such conventions have to be understood and obeyed. In the view of rhe

Scandinavian school, the use of inheritance for code reuse is bad in the same sense as ex-

cessive use of goto:s and code-saving procedures. Here I also must point out that in-
heritance is not the only way to (re)use code. Aggregation and creation of separate ob-

jects to do the job often serve as good alternatives.

Although rarely spelled out in clear, the increasing interest in analysis and design has

resutted in a higher awareness of the importance of how class hierarchies are designed.

It is not surprising that the Scandinavian school purs emphasis on modeling. The first gen-

eral-purpose object-oriented progmrnming language, Simula 67, was developed in Nor-

way by Klsten Nygaard and O1e-Johan Dahl. The development of Simula was trig-

gered by the construction of simulation models where modeling of real world concepts

and behavior is ertplicit. Inheritance was thus developed to represent specialization of con-
cepts concepts — no wonder it is for that purpose it works best.

Boris Magnusson

Lund University
JOOP NOVEMBER/DECEMBER 1991

Contravariance for the rest of us

by WawenHumis
%@.od~tm Lab.mroy,Hmkrt-PackardLabnratiticr, 1501 Pa~MilU, P& AI&, CA 94303
R
ECENT RESEARCH HAS DEMONSTRATED that sub-

typing and inheritance are distinct relationships

[Cook90]. Primtiily, the difference arises b~ause

of something died contravariarrce and its effects

on object-oriented programming. Contravariance

is a phenomenon that occurs as an interaction between sub typing

and higher-order knctions and has important implications for

object-oriented programming, It affects all object-oriented pro-

gramming languages, including C++, and is tsauallycircumvented
by overbading However, overloading does not alwayshave the de-

sired effect, which we will illustrate with actual C++ ~ples.
Finally, we will discuss what a better—more expressive and type

saf~larrguage might look like.

-T IS CONTUV-I~CE?

We all have an intuitive notion of what it means for one type to

be a subtype of another. We would mpect that a value of a sub-

type can be used anywhere a value of a supertype is expected.

Vahres of a subtype, though, can potentially do more, i.e., suppom

a richer set of operations, than values of the supertype. The dif-

ference between the subtype and supertype reflects the increased

ticrionali~ of the values. In some sense, a sub~e is mre .rpecific

than im supertypes. What does it mean to be more specific?

Let us approach this question intuitively, From an imple-

mentation standpoint, a data structure is more specific if it has all

the fields of its parent but adds additional fiel&. From an inter-

& standpoint, we wodd expect a data type to be more specific

if it has dl Ae operations of its parent but adds additional oper-

ations. However, in object-oriented programming it is ofien nec-

essary not only to add new operations but also to restrict opera-

tions that are inherited. The question then arises: tukut he~ it

mean fir one operation to be more speci$c than another?

For simplicity’s sake, we can &lnk of the operations on objects

simply as knctions (we will ignore +e dispatching aspect of send-

ing a msage temporarily). We carr now ask what it means for one

function to be more specific than another. The type of a function

—

10
is expressed in terms of the types of its arguments (if any) and

the type of its rault. We Q summarize the subtype relation-

ship between functions as:

The type of a function is a subtype of the type of another

function if (all else being the same) the result type is more

specific, or any of the tigument types are more general.]

Result types are said to be covariant— they vary in the same

way as the function types. Resdt types must be more specific for
the knction type to be more specific. kgument types are said

to be contravariant — they vary in the opposite way as the func-

tion type. Argument types must be more general for the func-

tion type to be more specific.

This seems counterintuitive, One would expect arr operation

defined over employees to be more specific than one defined
over all people. The following example will illustrate why this is

not true.

~PLE

The whole issue of contravtiiance comes into play when we ma-

nipulate functions from within programs. Functions that ma-

nipulate other functions are called higher order. Higher-order

functions typically are passed to other functions as arguments
and apply the hnctional argument to some values.2

When a language involves subtyping, we bemme concerned

about higher-order functions being passed fictions thar are sub-

types of the type required. We wodd like to check that a hcrion’s

type is indeed a subtype of the requited type and thereby ve~ that

the program will not w runtime errors fi-om being passed and sub

sequently invoking an inappropriate function.
This is a simple (contrived) example involving some subtypes

I~K isfio ~rueof fin,-uon~~1 ~e[urn“o ~u= (void),inwhich- we~im-

plyignorere.rcrictionson the rcaulrs,and in functionsthat return multipleval-
ues, in which caaeeach of rhe rmultamust be eicberthe same or more specific.

2 Hi~er-or&r hnctiom may alw obtaina functionm applyby other means—
eitherasa pim of lid &w or by retrievingonefrom an internaldatasrnrmure.
JOOP NOVEMBE~DECEMBER 1991

and a higher-order finction. Let us define a “person” to have a

“name,” an “employee” to have a “salary” and inherit from per-

son (thereby also having a name), and a “manager” to have some-

one s/he “managa” (to keep it simple, we will make this a single

employee rather than a set) and also inherit from employee

(thereby also having a name and salary). We will use C++ classes

to spe~ some structural inherimce (i.e., all the fields from a su-

perclass will also be available in a sub-class):

c~ Person
(

public:
char’ name;

1;

classEmployee:publicPerson

[
public:

int sa~ry;

);

class Manager: publicEmployee
[

public
Employee’manages;

1;
Now, suppose there exism a collection of functions over these

data types. To keep it simple, we will define a set of print bc-
tions to print out various fields of the objects. Of course, we

codd just as well use member functions (methods) but regular

fictions will be sufficient to illustrate how contravariance works:

voidprint_name(Person*p)
(

tout <<p->name;
1;

voidprint_salary(Employee*e)
[

tout <<e->salary;
1;

voidprint_manages(Manager*m)
[

tout <<m->marrages--e;
1;

Now let us define a higher-order function (a function that

+ another finction as a parameter and applies it). The higher-

order finction do-witi-banner ccsuld take an operation applica-

ble to Employees (such as one of the print fictions) and an in-

stance that was at least of type Employee.It wor.ddfirst print some

banner, then apply the finction

voiddo_with_bmer(void(*ation)(Employee*), Employee”employee)
[

print_barmero;
(’afion)(employee);

);
Suppose there is a single dminguished Employeeinstance Aled
employee_of_the_mOnth:

Employee’employee_of_tie_monM

A working example of this simple finction is:

do_with_barmer(print_salary,empl~e_of_tie_month);

Now, one would suspect that the following piece of code

should signal a compile time error:

do_with_barmer(print_manages,employee_of_the_month);

because we have no way of knowing whether the employee of

the month will be a manager or not until runtime (with a specific

Employeeinstance).

Conversely, the following code shodd work just fine

do_with_barmer(ptit_name,employee_of_tie_monti);

because we know that employee_of_the_month will always at least

be an Employee and, therefore, will always have a name (inher-

ited from the person class).3

From this ~ple we can see that functions that are accept-
able as arguments to the higher-order function do_with_banner

must themselv= de arguments of type Employee,or a more gen-

erul type. The arguments to print_name are more general than
the arguments to ptin_sa@, therefore, the type of the print_narne

function is more speczfic than the type of the prin_sakry func-

tion. The pnnt_mme finction can be used anywhere print_sakty
can be used. In other words, ro be used by do_with_banner, the

function must at Lathe defined on Employees (i.e., take Employ-
ees or a more specific we as arsargument). This is contravatianm,

Ultimately, contravariance has ramifications for object-

oriented programming. We will examine this in the n- section.

HOW IS CONTWV~ CE RELEVANT TO

OBJECT-ORIENTED PROGRAMMING?

Object-oriented programming’s message-passing paradigm

inkmnt~ involves higher-order hnctions. Even though the user

may not write higher-order hnctions directly, messages act as

higher-order functions that invoke individual methods accord-
ing to the particdar object involved$ When objects are passed

as arguments or returned as values, their methods are actually

being passed around, too, just as with higher-order finctions.
Let us look at the message dispatch process in detail. When art

3 C++,udorncrratcly,doesnoraflowtii codeto pmsthrough he compilereven
though it reallyshodd work. Th]s is becauseit doesnot permit func~ionsub-
typing at all. Funcrions must be of exactly the right type to be passed as
argrsmenn.

4 Whether or not th~ method lookup is done at mntime (aswith C++ virtual
methods) or at cnmpile time (as with its regularmethnd.r),Ae higher-nrder
nature stillmistr. Gmtravariancc stiUplaysa crucialmle in chetype checking
of methods.
11

Contravariance for the rest of us
object is sent a message with some arguments, a method that will

handle the message is looked up. This method is associated wifi

the particdar object and is usually fetched from a table that is

accessible from the object. The method is *en applied to the m-

gurnents and any rauk returned from the method is also returned

from the message dispatcher to the caller. Therefore, sending a

message fi calling a higher-order function.

Since arguments to a m~age ultimately become arguments to
the method and since the method is invoked from within the

(higher-order) message dispatcher, metboda~menti are subje~

to contravariance.

Now, when we type check a method of a subclass that overrides
a method of a superclass with the same name we should observe

the mntravtiiance rule. This way we cars gu~anree that the new

method will apply to everything that the overridden method ap-

plied to and, therefore, the subclass can be used anywhere the

superclass can be used. Basidy

A method of a sub~s is more specific than the method it

overrides from a superclass if (all else being the me) its re-

sult type is more specific, or any of the argument typm are
more general.

When all the methods of a subc4assate equally specific or more

specific than the methods of a superclass, the interhe of the sub-

class (the method names and their types) is said to contain the

interface of the superclass [Canni89a]. When one int~ace con-

taim ano~m, imtawe~ of that in~ace can be rued whereLIwinrtima

of the othm in~~e are required This notion of containment is ~-
act~ the same as the notion of subtyping.

This seems simple so far. However, in practice it is not always

the case that we want the interface of a subclass to contain the in-

terfam of a superclass. What is important is to be able to inherit

some methods from the parent & and ~ict other methocb that

must be overridden to make the new class work. One case of this

restriction is when arguments to methods must be more specific

(be a subtype of the type of the corresponding argument in the par-
ent class) for the new implementation to work properly. Since

method arguments are contravatiant, making them more specific

actually uuses sub~s int~ce not to contain tbe inte~m of the

parent class, In other words, inheritance h not wb~ping at least

in some cases.

Perhaps the most common occurrence of this phenomenon,

where inheriting do= not produce subtyping, is when a method

must take an ugument that is the same type as self (i.e., the type

of this in C++).5 The following example will illustrate:

~PLE
The following example illustrates what we might like to achieve

with some code that implements windows and presenters (win-

dows that display an associated object). For convenience, we will
write this code in C++ although C++ actually behaves a bit dif-

5 In C++, ~c ~ not allowed to SaY“rhe rype oFthis, however~ IMYhaveb~n

inherited.”The languagsEIfFeldo~ supporrthis norionvia “likeCurrent.”
12
ferently. hter, we will describe this difference and what the pro-

grammer must do to get around it.

CkS Window

[
public

virtual void insert(window’);

1; ‘“-
class Presenter: pubhcWindow

{
pubtic:

virtual void insect(presenter’);
virtual void kyouto;

); ‘.”

The intention of this example is that fiesenter’s irtsert method

override the method inherited from Windowwhile at the same

time introducing an additional restriction: fiesenters can only

have children added to them that are themselves ~esenters. One

might want to do tils beause insert will invoke another method

(like byout) on each of the inserted children.

A problem arises with this interpretation of the above code

in that the interface to Presenter no longer contains the interface

to Window.This is because all Windowsallow other Windowsto be

inserred as children, whereas Presentersordy allow other Resenters.

A Presenter snot be passed to any arbitrary piece of code that ex-

pects to receive a Windowbecause it may try to add a child window
to it that is a Windowsrather than a Presenter:

Window*add_a_child(window*w)

[
Window*child = newWindowo;
w->insefi(cllild);

return w

1;

In some sense, the definition of presenterhas taken away the in-

sert operation inherited from Window. IC is not really a subtype

mymore because of fils missing operation. It instead includes a
more specific operation (also called insert) that only applies to

other Presenters.

In actu~lty, C++ does not de away the inherited operation.

Instead, it over.lod the name “insert” and allows both definitions

to tist simultmeously. Even though we read both methods as

insert, the compiler treats them as two separate methods. It is in

tils way that C++ guarantees that subclasses satisfy the interface

of the parent.

There is a problem with overloading, however. Even though

the code will not get a runtime error because a Windowwas inserted
as a child of a presenter,what will happen is that the wrong method

will be invoked (the inherited insert method). From within
add_a_child the Windowwill indeed be inserred, but the layout

method will not be called. Such a maneuver can seriously violate
the intended semantics of the program.
JOOP NOVEMBEtiDECEMBER 1991

k you trying to play CarnegieHall
Myou’redevelopinga simple application,

... . . .
Mi&&$1@~~&%&ggkk2,,d,.,,,=z.,.... . ,. ,...

:SLy%:+.lki;.>/---- you’flfind that C++is an adequateobject-
oriented language, But if you’re

~.%:, ,.,,, . , working on a complicated appli-
“ cation,you’llneed a development
~ environment that can actually

Allegro CL” with C~S
AflegroCommon LISP with CLOS

.. T,,=*
~ “~;,~%eqa$,g~ (the timmon LISPObjectSystem)automates,,.,,<.=, ,,, ~,.,

many of the tasks you’dhaveto do manually
with C+i Allegro& with CLOShas its roo&
in the originaf00P languages,It has matured
over the years into a powerfuf development
environment for complm applications,

Allegru CL
Withcm C*

Multiple]nheritanw Yss Yw
PolWorphism m YFs
Encapsulation YES YES
interactive m NO
Incremend timpitation Ym NO
Au@.MemoryManqement m NO
Mets-14 Faciliy YES NO
MethodCombination m NO
DynamicRedefinition Es NO
StandardClassLibrary YFs NO

. . with a street corner instrument?
We’vealso made a recent breakthrough in
deliveryof LISPapplications, ~legro Presto

f-k,tM[l@~#@l@M#@m-M;; is a new automatic knction loading system
which reduces the runtime size of each

.,...>.:. >..”
: LISPapplication. Functionsrequired

True OOP virtuosity can ordy be obtained
with the help of the best LISP instruments—
and the support of a companydevotedto the
success ofyour application.

FRANZ INC.

1995 UniversityAvenue,Berkeley,CA94704
TEL:415-548-3600 Fti 415-548-8253

t 1991FranzInc.AllnnmCLISareuislemdlratimati01FrantIk.
Un,,isaIrndemarkolAT&T306isaIrademarhofInldCnrD.

Cimle8 on Reader Servica Card

Contravariance for the rest of us

I

Sometimes it is the case that we really do want to override

a method and restrict its usage. In these cases, the new class

is not really a subtype of the parent.

In such cases, the compiler should not allow subclasses to be

used wherever the superclass is specified. In the above ~ple, the

correcm=s of the program does in fict depend on Windowsnot be-
ing inserted as children of Presenters,

WHAT DO C++ PROGUMERS REALLY DO?

There are five ways in which C++ programmers typically cir-

cumvent the problem of subclasses not being subtypes and over-

loading not performing what is actually desired:

1. Often in C++, we w unfortunately inclined to loosen type re-

strictions. In this case, we change the argument to fiesenter’s

insert method so that the Resenter class becomes:

ckss Presenter: publicWindow
{

pubhc
virtualvoidtisert(Window*);
virtualvoid layouto;

1; “-”

The programmer must assume that at runtime irtsertwill in-

deed be called with a presenter rather than a Window.Then,

if Resenter operations are to be performed on the w pa-

rameter, ‘(casts” must be used to short-circuit the type

checker. AS a result, the type checker performs the role of
veri~lng that the programmer indeed declared what op-

erations s/hewas interested in (via casts to classes that sup-

port those operations) rather than veri$ing that the entire
program hangs together as a consistent whole. This really

nullifies much of the benefit of type checking.~

2. A cleaner solution in this case would be to define a third class

horn which Windowand Presenter both inherit. This class, Sirtt-

pleWindow,codd provide everything Windowprovided except

the insert method. Wirtdowand Presenter would then be dis-

joint classes, each with their own version of insert, and the

compiler would be able to detect that one is an unacmptable

dam type to a routine that expected the other.

This solution is infeasible when we mnsider that classes like

Windoware often contained in libraries and that it is not

possible to repartition its set of methods so that we mtdd in-

herit some and override others. A completely usable and

type-correct library would have to consist of a large number
of classes each containing a single method. These classes

would then be combined together with multiple inheri-

6 In ~c[, smed lagc C++applica~ions havebeenforcedinto *19 styleof mdlng

whereallmiables in the systemare basi~lly of the most generaltype (e.g., the
NIH Class Library of Smalltalk-likeclasses).The safetyof such applications
leavesmuch to be desired.
14
tance to form the desired classes. This is highly impractid,

and defeats the prima~ benefit of object-oriented pro-

gramming — ease of programming through inheritance.

3. Rather than trying to split the Windowclass into two portions

so that we can inherit from the part we need, we could in-

stead use private inheritance:

classPresenter:privateWindow

[
public:
virtual void insert(Presenter*);
virtual void layouto;

1:””-

Private inheritance dlows the implementation of Windowto

be used inside the implementation of Presenter, but does no

allow the Windowmethods to be available to clients of presen-

ter. Effectively, this makes Presenter inherit from Windowbut

not be a subtype of it. This is exactly what we want in this

me—with one exception. Although clients of presenter are

completely protected from inadvertently invoking Window’s

insert methods, the Presenter implementation itself is not. If in-

side one of presenter’s methods the insert method is invoked,

the problem arises a~ain. This is because Window’s insert

method is still privately available. Progrws can thereby we

check but produce the wrong behavior at runtime.

4. Another solution that is ofien used is the encoding of run-

time “type” information into objects. Routines like presen-
ter’s insert would first check some sort of tag field within the

object before proceeding to assume the object actually is a pre-

senter, even though the compile-time type information de-

clared the object to be only a Window.Such solutions not only

are time-consuming to implement and decrease the perfor-

marsce of the running system but they also introduce the ques-

tion of how to recover from type errors at runtime.

5. Perhaps the solution used most often is to further overload
methods to keep unwarranted methods from applying, In the
presenter example, we would define yet another insert method:

class Presenter: publicWindow

[
public:

al void insert(Window);
virtual void insert(presenter’);
virtual void Iayouto;

1; ‘“”

The first insert method, insert(window’), wotdd simply prevent

the Windowclass’sti(wrrdow’)fi-csm being used. This method

would either ignore the attempt to insert or signal some form

of runtime error. The second insert method, insert(fiesenter’),

wos.ddactually implement the desired semantics.
JOOP NOVEMBEdDECEMBER 1991

CALL FOR PAPERS

TechniA papers are king solicited for two Focus On special

pubfiations born the]oudof O~sca-Onmted~amming

to be published in 1992.

Papers will be expert-reviewed and judged on their technical

merit, =uracy, and potential interest to our readership.

Papers shodd be sent in triplicate and should be under

4,500 words. Include a separate cover sheet including the

paper’s title, author, filliation, address, phone, and 100-

word abstract.

PAPERS DUE ACCEPTANCE PUBLISHED
NOTIFICATION

3120/92 4/2192 5192

POSSIBLE TOPICS: Integration issues

Case studies

O-O vs. relational DBMSS

SQL issues

. .

PAPERS DUE ACCEPTANCE PUBLISHED
NOTIFICATION

6/17/92 8/1/92 9192

POSSIBLE TOPICS: Small vs. hrge projects

Cost/benefit analysis

Reuse statistics

Project management experiences

Training issues

Lessons learned by implementation

. ,

SUBMIT PAPERS TO: Dr. Richard Wiener, Editor
JOOP

2185 Broadmoor Road Circle
This solution seems unsatisfying in that these dummy meth-

ods must be around at runtime simply because the compiler

could not =tch at compile time the cases where they wodd be

invoked. A correct applimtion should never call them. This so-

lution also has problems in that the choice of whether to use

the insert(Window*) method or the insert(Presenter*) is deter-

mined at compile time. This Choia is based on the declared

type of arguments at the call sites of insert rather than the ac-

tual type of the arguments at runtime. Since C++ preserves

no type information at runtime, the programmer is forced

into one of the previously mentioned solutions.

WHAT ELSE CAN BE DONE?

Some of the problems with C++’s overloading mechanism stems
from the fact that only the object can be used to discriminate

methods at runtime (i.e., virtual methods). The types of all other

argumenm m bctored away at compile time when the overloaded

names are resolved. Single argument dispatch allows a simple

table to be used for the method lookup process.

The language CLOS [Bobro88] allows any number of argu-

ments to be used in the runtime method lookup process and

terms these mu~metbo~. Multimethods also eliminate the prob-

lem with contravariance (i.e., that subclasses may not be sub-

types) because, like C++, they overload message names. Multi-

methods defer the entire lmkup prms undl runtime, not just the

lookup associated with the “first” argument, and therefore permit

many correct method invomtions that C++ would reject.

Although mulrimethods are more general, they carry along with

them all the same problems with overloading found in C++. Basi-

cally, ifa more genetal method is not found that corresponds to the
types of the actual parameters (obeying contravariance), a method

from a superclass that is not a superrype may be used instead. As we

have already seen, in most cases this method will not be able to

preserve the intended semarttim of an application and, in general,

is always the incorrect method to call. However, rather than im-

mediately generating a “no applimble method error, subsequent

erromwill arisethat are much removed from the d problem (e.g.,

sending a Windowa k~ut message rather than disallowing the call

to insert a Windowinto a Presenter in the first place).

With each CLOS method invocation, there must always be

some method in the system with every formal parameter at least

as general as each actual parameter in the invocation. without a

type checker, it is possible to have some actual parameters be

more specific while others are too general and consequendy no

method will be found at runtime. Programmers are Iefi to visu-

alize the crossproduct of all possible parameter types, both to en-

sure that some method will exist and to determine exactly which

method will apply in a given situation. The simple conceptual

model of inheriting methods from a class lattice can no longer

be used.
Colorado Springs, CO 80907

phone/fax: 719-520-1356

15

Contravariance for the rest of us
WHY HAS CONT~VARIANCE NOT BEEN A

PROBLEM BEFORE?

For one thing, contravariance only arises when subtyping is in-

volved. Since languages like C do not have subtypes (i.e., the ar-

rangement of types into a generalization/specialization hierar-

chy), contrawiane does not come up as a problem.Languages like

Smalldk [Goldb83] and CLOS do indeed exhibit contravariant

behavior but types are not checked statistically. At runtime, it is

possible to get a type error because the wrong type of knction was

passed as an mgument. This may not seem to happen in most

working programs, but it is not possible to guarantee that it will

not happen in general without, essentially, type checking. Some-

times * bugs are not encountered for months or years, simply

because the right combination of data has not been encountered
that would cause a certain portion of code or method body to

be executed. When the faulty code is finally executed, a type error

that cotdd have been caught statistically finally omurs, Also, as a
program becomes larger ir becomes increasingly dficult to ensure

that portions of it (possibly written by different programmers)

will work together reliably.

=T CAN BE DONE TO MAKE PROGUMING

TYPE SAFE?

Research underway at Hewlett-Packard is striving to make ob-

ject-oriented programming type sde without being too r=trictive

as are C++ and Simula. In other words, we want to guarantee

that a pice of code will not break at runrime because it was handed

a piece of data of the wrong type. To do this, we are careful to

make a distinction between ckses (which specifi implementa-

tions) and ~pes (which speci$ interfaces). By observing the rtdes
of contravariance (and a few other), we can statistically deter-

mine when a class is an acmptable implementation for a piece of

code that expects a certain type.
Checking that certain pieces of code are type safe is only hatf

the problem, though. We also desire that the language be ex-
pressive enough to concisely encode the problem we we trying to

solve. TKIS includes allowing generic code to be stored in Iibraria

and reused. TKIS is accomplished in two ways. The first is by al-

lowing implementation (class) inheritance to be independent

from interface inheritance (subtyping). The second is through

proper~ ofparamein”cpofymoqbirm. Parametric polymorphism

is the ability to pararneterim a piece of code over the types that it

a potentially handle. In some sense, it establishes constraints be-

tween the types in a piece of code. Parametric polymorphism cart

further be broken down into simple (unquarrtife~ parametric
polymorphism, bounded qtiantijcation, and f-bounded

quantification. We will examine each of these features in turn.

Let us reconsider the Wtidow and presenter types to show how

we can separate the subtype and subclass notions:

interfaceWindow
{

methods:
insert(Se~ returnsVoid
.,.

I

I

16
};
hterface Presenter

[
inherits:Wtidow
roethods:

layo.to returnsVoid
1;

These intetface definitions define the operations available on

the types Windowand Resenter respectively. Windowdefines an irt-

sert operation (method) that takes another Windowas a parameter

and returns nothing. Self indicates that the same type as this in-

terfam is required. If the Windowinterface is inherited, the type Seti

will change to reflect the inheritance. In the case of presenter, in-

sert will be available but will require another presenter as an
argument,

At first, the dissention between this and C++ may seem nom-

inal but it allows the type checker to ensure that both the call to

insert one Windowinto another and to insert one Resenter to arr-

other will succeed, whereas attempting to mix the two types will

be caught at compile time. This is because of the contravatiant use

of Self in a method signature.

Moreover, the type checker will catch an inadvertent mixing

of the two types even if a Resenter class (a specific implementation

of the Ptesenter interface) inherits most of the code from a Window

class. The type checker can also determine that the programmer

will have to supply a new insert method for Resenters because of

the contravariant use of se~.

Here is what some working examples of insert might look like

WI: Window= malre_Stiple_Window(..,);
W2: Wirrdow= tie_Bordered_Wmdow(...);

wl.insert(w2);

pl : Presenter= mAe_Column_Resenter(...);
p2 : Resenter = m*e_Graph_Resenter(graphl, . ..).

pl.insert(p2);

As previously mentioned, parametric polymorphism can be

used to parametrize a piece of code over the types that ir can

potentially handle. Using parametric polymorphism, we can

rewrite the do_witt_banner function as:

funtion do_with_banner[T: TYPE](h: T -~ Void, arg : T) returns Void

{
ptit_barmero;
fo(srg);

);

This polymorphic function establishes a constraint that the

type of the parameter to the frt argument must be the same as

the type of arg. The square brackets specify the type parameter T,

which is evahtated at compile time. We could use this function as

follows:
JOOP NOVEMBE~DECEMBER 1991

~yo
Ana

TeamUptit~TurboCASE40
The award-winning, easy-to-use TurboCASEwas selected

by Computer Language magazine for a 1990 Productivity

Award. “With these awards, Computer Language is publicly

acknowledging those tools that had significant impact on

improving the way software products are developed.”

Regina Rid/e~ Computer Language

TurboCASEsupports Object Oriented Analysis by adding

behavior modeling to the entity relationship diagram.

TurboCASEsupports Object Oriented Design with four new

diagram types: Class Hierarchy, Class Collaboration, Class

Definition, and Class Design diagrams. As always, the

dictionary information is never out of sync with the diagram

information, and rules checking keeps your models

consistent.

TurboCASE lets you choose the methodology most

appropriate to your project and development team, with full

For the Macintosh
Find out more!
Call for information, or to ordec
Demo diskette $15

StructSoft, Inc.
5416 156th Avenue SE
Bellevue. WA 98006

Contravariance for the rest of us
do_witk_banner[Ernployee](print_name,employee_of_tie_nronh);

or, if we knew that in a certain section of code

employee_of_the_month was bound to a Mamge~7

do_witl_banner[Marcager](print_manages,employee_of_the_month);

However, when writing reusable routines it is often neces-

sary not onJy to spec@ that two arguments must be the same type

but also to speci~ that that type must support ut Lmta certain
interface. This is because we know that the argument will be

used in a certain way such as being sent a specific message. The

object had better be able to support that message. This can be

done by what we call bounded quanti$cation. Bounded

quantification is jmt a way of saying that an object must be at least
a certain type. For mample:

funtion add_a_cbild~in: CONT~SIWmdow]](w: Win) returns Wm

[
tild: Window= make_Windowo;
w.insert(child);
return w;

1;

Here, CONTAINS~indow]specifies that the type variable Win

must be at least as specific as the type Window.We may now d
add_a_clrild to add a child window to any Windowor subtype of

Windowthat contains the Windowinterfacti

WI: Window=mske_Windowo;
add_a_child~idow] (wl);

W2: BordereLWindow = rnake_Bordered.Windowo;
add_a_ck.iMIBordered_Wmdow](w2);

where the Eordered_Wirtdowinterface contains the Windowinter-

face. We codd not, however, write:

PI: Presenter = tie_Presentero;
add_a_chiM[Resenter] (pi);

because, as we have seen in the previous section, Presenterdoes not
contain the Windowinte~ce because its insm method requires an

~gument that is too specific,
Intermtingly, because of polymorphism this new definition

of add_a_child knows that the resdt of calling add_a_clrild will

be the same type as its argument. The C++ definition will only

know that the result is a Window*.

Sometim=, however, it is desirable to write functions that op-
erate over not ordy aJJ interfaces that mntain a given interface, but
also over all interfaces that are recursive in the same way, i.e.,

that inherit one another. In other words, these functions can op-

7 It k ~osriblerharrheexplicitrypcapplication(e.g., m Employeeor -9=) at *e

cdl sitecan be eliminated.~Is is bemusein mosI casesit can be inferredfrom
he ~ments givenchatwe knowrhe funcrion’ssignature.
18
crate on a class and its subclasses, rather than over a type and its

subtypes. For this, we use what we call f-boudd quantt$cation

[Canni89b]. F-bounded quantification specifies that any imple-

mentation that was derived from a parentis an acceptable type hr

a function:

funfion foo~in : INHERITS~indo]](wl : Win,W2: Win)returnsVoid
[

wI. insert(wZ);
);

This fiction, foo, type checks because WI and ti will always

have compatible implementations. INHEIUTS~indow] guarantees

that both variables will either be Windowsor Presenters but not

one of each:

foo~indow](some_window,mother_window);
foo[presenter](some~resenter,anotkerflresenter);

CONCLUSIONS

This article has shown how contravarianm fiects object-oriented

programming. We have seen that contravariance otdy comes into

play when subtypes md higher-order functions me involved but

that these ate the exact conditions under which all object-ori-

ented programming languages must operate. We have seen how

overloading cars be used to aJleviate the problems associated with

contravariance, but that it carries its own problems. Finally, it

has been suggested what a better programming language might

look like, one in which parametric polymorphism and the sepa-

ration of implementations and interfaces plays a crucial role.

These ideas can be used to make object-oriented programming

both safer and more repressive. ■

REFERENCES

[hbm88] Bobrow, D., L. DeMit.hid, R. Gabriel,S. Keme, G. KiAei, and D.
Moon. Gmmon Lisp object sys- spmification,SIGPLAN NOtiCCJ,Spe-
cialIsuc, Seprember1988.

[Canni89a] Canning, P., W. Cook, W. Hill, and W. Olrhoff. Interfaces for
strongly-~ object-orientedpmgratnmin~ 00PSLA ’89Pmcrr&ngr,1989,
pp. 457467.

[CanniS9b] Canning, P., W. ~ok, W. Hill, J. Mitchell, and W. Okhoff. F-
bomded quantificationfor object-rientcd programming, proceedingso~the
Con~nce onFunctidfio~amming hn~ges and CompumAmhitictum,

1989, pp. 273-280.

[Cook90] Gok, W., W. Hill, and P. canning. Inhcricanceis not subtyping,
POPL 90 Proceedings, 1990, pp. 125-135.

[Goldb83] Goldberg,A and D. Robson. Sdta/k-80: the Language andIti Im-

pkmenution, Addison-Wesley,ReadingMA, 1983.
JOOP NOVEMBENDECEMBER 1991

Multilevel secure object-oriented data
model — issues on noncomposite

objects, composite objects,
and versioning

by Bhavani Tbarakingbana
%MITE Co@&n B.rbngkm u B~d MA OIMO
I. INTRODUCTION

Object-oriented systems are gaining increasing popdwity due to

their inherent abili~ to represent conceptual entities as objects,

which is similar to the way humans view the world. This power

of represen~tion has led to the development of new generation ap-

plications such as computer-aided design/computer-aided mod-

eling (CA.D/CAM), multimed~ information pr=ing, artificial

intelligent, and process mntrol systems. However, the increas-

ing popdwity of object-oriented database management systems

shodd not obscure the need to maintain securiry of operation.

That is, it is important that such systems operate securely to over-

mme any mdcious mrruption of data as well as to prohibit unau-
rhoriz,eda- to and use of classified dam For many applications,

it is rdso important to provide mdtilcvel security. Consequently,

multilevel database management systems we needed to ensure

that users clewed to different securi~ levels access and share a

database with data at different security levels in such a way that

they obtain only the data classified at or below their level.
In a recent article in this journal ~uta90a], we discussed the

multilevel securi~ issues of an object-oriented database system

and described a simple multilevel objm-oriented data model. Like

this model, most secure object-oriented data models developed

since then (see, for example, [Keefe89, Thura89, Mille90]) have

considered ordy the simple attributes of an object. For ~ple, the

title, author, publisher, and date of publication are simple at-

nibut= of a book. Such attributes can also be easily represented by

a relational model. In contrast, the book cover, preface, intro-

duction, vtiious chapters, and references form the components

of a book and cannot be treated as simple attributes of an object.
The book, consisting of th= components, has to be collectively

treated instead as a compositi o~e~ This was addressed by Kim et

al. ~87, Kim88] in a nonmultilcvel secure environment. bm-

posite objects involve the IS-PART-OF relationshipbetween ob-

jects. This relationship is based on the notion that an object h

part o~another objm. Note that it is not possible to treat composite

objects using a relational model without placing a tremendous
burden on the application program to maintain the mcture of the

complex strucwes, thus conferring upon the object model an-

other advantage over the relational model.

Hypermedia systems, CAD/CA.M systems, and knowledge-

based systems we inherently more complex by their very nature

and, therefore, =n be handled effectively only if their compo-

nents are treated using composite objects. For example, in

hypermedia systems each document is a collection of text, graph-

ics, images, and voice and needs to be treated as a composite ob-

ject. IrI a CAD/CAM system, *e design of a vehicle consists of de-

signs of its components such as chassis, body, trufi engine, and

doors. Knowledge-based systems are being applied to a wide va-

riety of applications in medicine, law, engineering, mantiactur-

ing, process control, Iibraty information systems, and education.

These applications need to process complex structures. There-

fore, support for composite objects in knowledge-based applica-

tions is essential.

In many object-oriented applications, such as Hypermedia

systems and CAD/CAM, it is necessary to maintain documents

and designs that evolve over time. In addition, alternate designs

of an entity should also b represented because of the need for

choice. If securi~ has to be provided for these applications, then

some form of version management shodd be supported by se-

cure database systems. Another advantage to providing version

management in secure applications is the uniform treatment of

polyinstantiation and versioning. Note that for many secure ap-

plications it maybe necessary to support polyinstanriation where

users at different security levels have different views of the same

entity. Polyinstantiation can be regarded as a type of versioning
that cuts across securi~ levels. Therebre, design of the version

management mmponent of an object-oriented data model m

also be extended to include polyinswtiarion.

In this article, we will continue with our investigatbn on md-

tilevel securi~ in object-oriented database systems and explore

the issues on noncomposite objects, composite objects, and ver-

sioning. The organization of this paper is as follows: In Section 2
19

Multilevel secure O-O data model
we discuss the issues involved in supporting noncomposite objects

in a mdtilevel environment, Issues on composite objects tie de-

scribed in Section 3. Version management is discussed in Sec-

tion 4. The paper is mncluded in Section 5.

We assume that the reader is filliar with con~pts in object-

oriented database systems. For a discussion on object-oriented

data model concepts such as noncomposite objects, mmposite

objects, complex objects, IS-A Klemchy, and IS-PART-OF hi-

erarchy, we refer to the ORION dam model dacribed in ~aner87,

Kim871. We also assume that the reader is kilim with concepts

in mdtiievel secure database management systems (ML.S/DBMS).

In an MLS/DBMS, users cl~ed at different security levels access

and share a database consisting of dam at dflerent security levels.

The security levels may be assigned to the data depending on

content, context, aggr~tion and time. It is generally assumed that

rhe set of security levels forma partially ordered lattice with Un-

classified c Confidential c Secret c Top Secret. An effective security

policy for an MLS/DBMS should ensure that users only acquire

the information at or below their level. An overview of multi-

level dambase management systems was given in [Thura90a]. A

useful starting point for concepts in multilevel database man-
agement systems is the Air Force Summer Study Report [AirF083].

2. NONCOMPOSITE OBJECTS IN MULTILEVEL

DAT~ASES

Various approaches can be taken to handle noncomposite ob

jects, which are objects with no composite instance variables. In

this section, we discuss the vtiious issues involved in handling

the noncomposite instance variables of the model at the mncep-

tual level. In Section 2.1, we discuss the basic assumptions of the

model and in Section 2.2 we describe how noncomposite variablm

may be handled.

2.1 BASIC ASSUMPTIONS OF THE MODEL

The entities of classification in an object-oriented data model are

the objects, That is, [he instances, instance variables, methods,

and classes are assigned security levels. The properties Cl to C4

discussed below me the basic security propernes that ate enford:

Cl. If o is an object (either an object-instance, class, instance
variable, or method) then there is a security level L such that

Level(o) = L.

C2. AU basic objects (example, integer, string, boolean, real, etc.)

are classified at system low.

C3. The security levels of the instances of a class dominate the se-

curity level of the class.

This property is meaningful be~use it makes no sense to clas-

sify a document at the Secret level while the document class that

describes the structure of a document is at the Top Secret level.

On the other hand, a Secret document class could have Secret
and Top Secret document instances:
20
C4. The security level of a subclass must dominate the security

level of its superclass.

This propeq is memingful as it does not make sense to clas-

sify all documents as Secret and an English document to be Un-

classified.

We assume that the following security policy is enforced—
subjects (e. g., processes) and objects (e. g., classes, instances,

instance variables, methods, composite links, etc.) are assigned

security levels:

1. A subject has read access to an object if the subject’s security

level dominat= that of the object.

2, A subject has write access to an object if the subject’s secu-

rity is equal to that of the object.

3. A subject can execute a method if the subject’s security level
dominates the security level of the method and that of the ob-

ject with which the method is associated,

4. A method executes at the level of the subject who initiated

the execution.

5. During the execution of a method ml, if another method m2
has to be executed then m2 can execute only if the execution

level of ml dominates the level of m2 and the object with

which m2 is associated.

6. Reading and writing objects during method execution are
governed by the properties 1. and 2.

2.2 NONCOMPOSITE INST~CE V~LES

In thii section, we describe some of the alternate security properties

that may be enforced on the noncomposite instance variables

(composite instance variables are discussed in Section 5). A sim-
ilar argument can also be applied to handling methods. How-

ever, in this micle we focus on structural aspecu of an object-

oriented data model, only, and not on the operational aspects.

Ther~re, we do not discuss methods in thii article. Also, note that

any reference to instance variables in this section implies non-
composite instanu variables.

Two ways to assign security levels to insrance variables are as

follows:

C5. The security level of an instance variable of a class is equal to

the securi~ level of the class.

C5*. The security level of an instance variable of a class domimtes
the security level of the class.

If C5 is enforced, then it is assumed that the objects are single

level. This is the assumption made in ~ura89a, Mille90] among

others. If C5* is enforced, then it is assumed that an object is md-

tilevel. This is the assumption made in [Keefe89], among others.

Note that we mnsider an object to be mdrilevel if its properties are

classified at different security levels, we discuss each approach in

the following two subsections. It shodd be noted that our main fm

cus is on the representation of the real world entities ac the con-
JOOP NOVEMBER/DECEMBER 1991

YOUJIIget everything that
you get from any other
OOP language...

And that’s not all:
SIMULA handles processes with preemptive scheduling, a garbage collector
automatically reclaims unused memory space and maybe best of all – your
applications are portable due to the standardization of SIMULA.

SIMULA, the original 00P languge, has proven its strength in industrial, commercial,
and scientific applications for more than 20 years. This guarantees the quality, stability,
and usability of the language. SIMULA introduced all the important OOP concepts:
classes and objects, inheritance, and dynamic binding.

The LUNDSIMULAsystem
Lund Software House AB in Sweden has developed a SIMULA system that is a set of
high-quality software tools for development of Simula programs.

● Conforms to latest S~ULA standard
● Efficient compiler
● C, Fortran, Pascal, and Assembler call interface
● Symbolic Source level Debugger

LUNDSIMULAis available on: ~
● suN-4/sPARc
● SUN-3 A

L
● VAX VMS/Unix/Ultrix
● Macintosh under MPW
● Apollo DN3 000
● ATARI-ST

Circk2H an UmmderSewka C.4rd

Multilevel secure O-O data model
mptual level, Therefore, we do not address the issum involved in

the physical representation of the real world entities.

2.2,1 Singkbel obje&

If security property C5 is enforced, then the objects are assigned

a single level. That is, instan- variables have the same security level

as that of the class with which they are associated. Therefore, if a
document class is Unclassified, then its instance vtiiables, say,

title, author, publiier, and publication &te are also Unclassified.

Suppose a document also has a sponsor who hnded its produc-

tion and the fict that there is such a sponsor must be kept Se-

cret. This means that the document has an additional instance vari-
able that should be Secret. However, the securi~ property C5

will not permit such an instance variable to be associated with a

document. There are two solutions hr this scenario. One is to cr~

ate a different document class at the Secret level that has title,

author, publiiher, publication date, and sponsor as its instance vari-

ables (Fig. 1(a); note that the Secret s~ructures are darkened).

Note that for every document instance of the Un&ified class

there will be a document insmnce of the Secret document class.
Both instances will have the same values for the attributes title,

author, publisher, and publication date. The instances of the

Secret document class will have the additional attribute of sponsor.

The second solution is to create a Secret subclass of the Un-

classified document class (Fig. l(b)). The Secret subclass inherits

d the instance variables of document. It has sponsor as an addi-
tional ins~ce variable. Note that for every document instance of
the Unclassified superclass there will be a document instance of

the Secret subclass: Both instances will have the same values for

the attributes tide, author, publisher, and publication date. The
instance of the subclass wi~ have the additional attribute sponsor,

The instance variables of an object can be regarded as links

emanating horn the object. The v~ues pointed ~o by the links

we also objects. Although the instance vwiables of a class have

the same secmity level as that of the class, it does not necessarily

mean that an instanm variable of art instan~ of a class must have

the same securi~ level as that of the class. This is because prop-

erty C3 assumes that the security level of an instance dominates

the securi~ level of the class. Therefore, if the class is Unclassified

and its instanm is Secret, then the instance variabl= -Ciated with

this instance must *O be Secret. Note also that it does not make

sense to classify an instance variable of this instance at a Top

Secret level because a Secret user knows that there is such an in-

stanm variable. Note also that the level of the object pointed to by

‘“’o’-

Figure 1. Claswnstance variable classifications.
22
(a). Simple instance variable,

(b) Complex instimce variable

Figure 2. Relationship between instance variables and their values.

the instanm variable link (i.e., the value of the instance variable)

must be dominated by the level of the Iik Therehre, we have the

following security properties on ins~nce variables of objects:

C61. The level of the instance miable of an object must be the

same as that of the object.

C6Z. The level of the value of an instance vmiable must be dom-

inated by the level of the instance variable.

C63. If the instance variable c of an object is a compl~ instance

variable, the security level of c is L and if o], 02, . . . on are the
objects that form the value of the instance variable c, then the

security levels of 01, 02,on. are dominated by L

Figure 2(a) illustrates two instancm of an Unclassified docu-
ment class. Note that the Secret document’s title and author in-

stance variable values are Secret. The remaining values are Un-

classified. Figure 2(b) shows how complm instance variables may

be modeled.

Next let us examine how polyinstantiation codd be handled

(note that by polyinstantiation we mean users at different levels

having different views of the same entity-for a discussion on

polyinstantiation in relational systems we refer to [Stach90]).
Consider the Unclassified document shown in Figure 3(a). This

document is Unclassified. It has instance variables title, author,

publisher, and publication date. The publisher instance variable
link points to NIL because it assumes that an Unclassified user does

not know the publisher’s name. bt us assume that a Secret user

knows of the publier. Also, the Secret subjects know that the real

author of the document is James and not John, There are two

ways to handle polyinstantiation. In the first approach, a new Se-

cret document insmce is created with attributes as shown in Fig-

ure 3(b). Note that in addition to the attributes specified, an
attribure such as document-ID will also be necess~ to relate the

two objects. In the second approach, the polyinstantiated values
me attached to the Unclassified document instance as shown in
Figure 3(c).

One of the advantages of enforcing the securi~ property C5

is that single-level objects can be mapped into single-level seg-
JOOP NOVEMBE~DECEMBER 1991

(c)

Figure 3. Polyinstantiated objects.

ments or fLIesin a straightforward manner. AS a resdt, traditiomd

security policies (such as the Bell and LaPadda security policy

[Bel175]) can be used to control access to the single-level objects.

This way, systems with higher levels of assurance can be developed

(for a discussion on assurance we refer to ~rust85]). A disad-

vantage with this approach is that the conceptual representation

may not model the real world accurately. This is because in the real

world multilevel objects do aist. That is, there cos.dd be indi-

viduals whose properties are classified at different securi~ levels.

A user’s view of the databwe should usually model the real world

closely.

2.2.2 Mnlke[objects

If we enforu the security prope~ C5* instead of C5, then the ob

jects codd be multilevel. -That isl the inswce variables of the ob-

ject codd have difirent security levels. Note that in this approach

the security level of the tic variables of a class could domimte

the security level of the class. Therefore, the document shown in

Figure 3 could be represented by the structure in Figure 4.
The instances of UDOC could be multilevel objects. Form-

~ple, for =ch Unclassified document instanm the instance ~i-
ables title, author, publisher, and publication date are Unclassified.
The instance variable sponsor is Secret, Also, the security level

of the value of an instance variable must dominate the security level

of the instance variable. That is, the following security properties
are enformd:

C6*1. The level of the instance variable of an object dominates

the level of the object.

C6*2. The level of the value of an instance variable must be

dominated by the level of the instance variable.

C63. If the instance variable c of an object is a complex instanm

B3*,.
Figure 4. Multilevel instance variables.
Figure 5. Unclassified and Secret document instant=.

variable, the security level of c is ~ and if 01, 02, . . . on me

the objects that form the value of the inswce variable c,

then the security levels of 01,02, . . . on, are dominad by L

Figure 5 illustrates Unclassified and Secret documents that

belong to the Unclassified document class of Figure 4. Note that

by an Unclassified document we mean that the structure that

represents the document is Unclassified. It codd, however, have

Secret mmponents. Polyinstantiation could be handled either by

creating a new object at a different security level or by polyin-

stantiating the value of an instance variable (see the discussion

associated with Fig. 3).

An advantage of enforcing the securi~ property C5* is that it

models the real world clmely. A disadvantage is that muldevel ob-

jects may have to be decomposed into single-level objects that

could then be stored in single-level segments or files to provide

higher levels of assurance. With such a decomposition, the per-

formance advantages of storing r~ted obj- in clusters muld be

lost. The issues involved in providing performmce as well as as-

suranm need to be investigated further.

3. COMPOSITE OBJECTS IN MULTILEVEL

DAT~ASES

In this section, we discuss the various issues involved in sup-

porting composite objects in a multilevel environment. In Sec-

tion 3.1, the securi~ properties of composite objects are dis-
cussed. Representations of composite objects we discussed in

Section 3.2. In Section 3.3, some theoretical properties of com-

posite objects are discussed. Composite Ii& connecting a com-

posite object to its components are dmcribed in Section 3.3. In
particular, the grouping of composite links and its formal se-

mantics are described.

3.1 SECURITY PROPERTIES OF COMPOSITE INSTANCE
V~BLES

A composite object has a composite instance variable. Like non-

composite instance variables, composite insmce variables are

also assigned securi~ levels. Also, there are two ways to resign

security levels to composite instance variables. They are:

C7. The security level of the mmposite instance wiable is the se-
curity level of the class with which it is associated.
23

Multilevel secure O-O data model
F !
Figure 6. Composite instance variable — approach 1

— ltik

Figure 7. Composite instance variable — approach 2.

C7*. The security level of a composite instance variable dominates
the security level of the class with which it is associated. I

Figure 6 illustrates an example of security property C7 being

enforced. Here, the composite instance variable (which describes
the components of an ob~a) of a class is assumed to be Secret. The

noncomposite instance variables are Unclassified. The solution is

to create an Unclassified class with the noncomposite instance

variables and either cr=te a new Secret classwith the noncomposite

as well as the composite instance variables (Fig. 6(a)) or create a

new Secret subclass of the Unclassified class with the composite

instance vtiiable (Fig. 6(b)). Note that for every instance of the

Unclassified class there is an instance of the Secret class. The

Secret instance has the same values for the nonmmposite instance
variables of the Unclmsified instance. In addition, the Secret in-

stance will”have a value for the composite instance variable.

Figure 7 illustrates the same mample in which the securi~

property C7* is enford. That is, ordy one Unclassified class is cre-

ated. Its composite instance variable is classified at the Secret

level. The noncomposite instance variables are Unclassified. Note

that for each Uncl~sified instance of tils class the noncomposite

instance variables me Unclassified. The composite instance vari-

able is Secret. For a Secret instance of this class, all instance vari-

ables (noncomposite and composite) are Secret.

3.2 REPRESENTATION OF COMPOSITE OBJECTS

3.2.1 Alternatives
In tils section, we discuss the alternative represenwtions of mm-

posite objects. These representations are not ~ected by the security
properry enforced on the mmposite instance variables (i.e., ei-

ther C7 or C7*). However, the following security properry, which

describes the relationship between the composite insmce variable
and the composite Iitdrs, is enforced:

C8. The security level of a composite instance variable of an ob-

ject is dominated by the security level of the composite link

INote mmpare C7 and C7* with the re.ipectivepropertiesC5 and C5*.
24
Figure 8(a). Multilevel composite object.

)
Figure 8(b). Multi level composite object+ lternak notation.

(or references) from the composite instance variable to one of

the components of the composite object.

For example, the composite document instance shown in Fig-

ure 8(a) is Unclassified. It also hm an Unclassified mmposite in-
stance variable. The composite li~ connecting it to the com-

ponent documenn must be either Unclassified or higher. Note&t

had the composite insmrrce variable been Secret (which could be

a possibility if C7* is enforced) then the composite link must

be Secretor higher. This is a reasonable assumption as in the real

world there are cases where Unclassified documents have Secret

components. Secret users can read both the Unclassified and Se-

cret mmponenm whalethe Uncl=ified users can read ordy the Un-

classified components of the document,

A simple approach to handling composite objects would be
to assign the same security level to all of the components of such

objects. This is not useful because in the real world an object

(such as a document) may consist of ccrmponents (such as sec-
tions) at various security levels. If all of the components of a mm-

posite object are assigned the sam~ security level, then different

documents identi$ing the same document entity have to be

created at the various security levels. This scenario is illustrated in

Figures 8, 9, and 10. In Figure 8(a), a multilevel document is

represented as it is in the real world. Figure 8(b) shows an alter-
native notation (not an alternative representation) for the same

representation. That is, in Figure 8(b) the composite instance

variable is not shown explicitly. Only the composite links are

shown in this figure. It is implicitly assumed that the security
property C8 is s~tisfied, This ~ternauve notation is used for con-

venience, and from now on we assume this notation. In Figure 9,

the Unclassified version of the document is represented, In Fig-

Figure 9. Unclassified version of the multilevel composite object.

)
Figure 10. Secret version of the multilevel composite object.
JOOP NOVEMBE~DECEMBER 1991

At last! A “CASE” tool providing full automated support for OOA...

Here’s how OOATOOTMfrom Object International can help you drastically
reduce the time and effort you spend analyzing system requirements -
while improving the quality and reliability of every application you build.

Want to automte your Object-Oriented Analysis
and get projects completed a lot faster and more
eusily? Then get 00ATors/ – [he automated sup
port package for professionals using Object-Ori-
ented Analysis to detirre end communicate system
requirements.

00AToo1 is the orrfy software package that
fully automates the industry standard notation
for 00A, 00AToo1 is available now. And
together with its companion tools now in de-
velopment-OODTooP and OOCorfeCenTM-
will bring full OOWorMenchm support across
00A, 00D, and 00P.

Only 00ATooI provides 10IuIautomated support
for the notations and methodology defined in Peter
Coad’s and Ed Yourdon’s best-selling Prentice
Hall book, OBJECT-ORIENTED ANALYSIS –
described by IEEE So~are as “a standard for
years to come.”

If you want to do Object-Oriented Analysis on
your microcomputer using the most current 00A
no~ationfrom the newly revised second edition of
this book, you rre.ed00ATrJo/.

“–+–––––––––––-

Wlth 00AToo1, you spend your time much
more productively,

00AToo/ is a full-featured drawing and cheeklng
package that enables you to do Objat-Oriented
Analysis on your IBM (with Windows or 0S/2),
Macintosh, and Sun Unix (in development). By
automtirsg the 00A diagraming and documen-
tation process, 00ATooI can enhance your per-
sonal productivity and creativity – dramatically.

00ATo02 helps you gain control of complex
systems.

OOAToo/ has a number of features designed to
help you cope effectively with the complexity of
larger applications.

A scaling feature, for example, lets you determine
the amount of information to be shown in each
subjmt box. You can collapse the box to show the
subjmt name only. Or expand it to reveal the
names of the classes and the layem inside.

OOAToo/ also pmvidesfilrer.~ that allow you to
customize the presentation of your model for each
reviewer. Filters also give you the ability to
manage multiple projmts as subprojects of one
master “super-project.”

Plus, 00AToof incorporates the latest 5-layer
(Subject, Class-&-Object, Structure, Attribute,
Service) 00A notation. A Iayeringfearure gives
you total control over which layers you’re working
in, so you can quickly switch between different
levels of abstraction when analyzing system re-
quirements.

Use of 00AZ’001 ensures more consistent, ac-
curate analysis results.

when you use the mrrde/ critique command,
00ATooI will automatically check your work and

-—— ——— ——— ——— ——— .

point out where your diagram is inconsistent,
incorrect, incomplete, or overly complex – allow-
ing you to make revisions on the spot.

The 00ATooI contains user-definable project
templates to help you develop a uniform style for
writing sys~m specifications– which in turnmakes
your models more understandable. And prevents
you fmm leaving out required specifications (or
cluttering your model with extraneous material).
Templates = also a handy tool for quickly and
easily capturing support text for attributes and
services, explanations of your analysis, random
thoughts, and other “fi-fom” text– information
which, at your discretion, can either be included
in... or excluded from... your final model.

What’s more, 00AToof can generate complete
documentation (text and diagrams) automatically.
Documentation can be printed on most standard
printem or output as an ASCII file to word process-
ing programs.

Try 00AToo1 for 30 days risk-free.

Two versions of 00ATooI amavailable. The full-
scale Commercial Version is$1995 artdcan handle
models of any size or complexity. We also have a
Small Project Version that is identical to the Com-
mercial Version except the size of each 00A
model is limited to 15 classes.

If you wsnttotryOOAToolbefore spcrsding$1995,
then use the coupon below to order the Small
Project Version. The cost is only $95. What’s
more, if you upgrade to the Commercial Version
within 30 days, we’11credit the $95 towards its
purchase price – so the Small Project Version will
cost you nothing.

Or, if you’re now handling complex projects, go
ab~dandordertbe Commercial Versionfor$ 1995.
You risk nothing, since both versions come with
our 30 day, money-back guarentee.

——— ——— ——— ——— ——— —

YES, I want automated support for 00A. Please send me: My platfom is:

_ copy(ies) of OOATOOPMCommercial Version at $1995 per copy ~ Macintosh
~ IBMwlndows 3

_ copy(ies) of OOATOOPMSmall Project Version at $95 per copy ~ IBM/OS/2

c1

c1

a

My check or money order for $ is enclosed

Please charge my — Visa _MasterCard

Card no. Exp. date

Signature

For the Commercial Version, please bill me. Our purchase order #is

Q SunUnix (in development planned prices)
planned prices are $3995 and $195)

Mail or fax coupon to:
Object International, Inc.
8140 N. MoPac Expressway 4-200
Austin, TX 78759-8864 USA
Phone (512) 795-0202 or (800) 926-9306
Fax (512) 795-0332

Name Title

Company Phone

Address

City State Zip

CircleWon ReaderServicecard o-9 I

Multilevel secure O-O data mdel
Figure 11. Sharing among polyinrtantiated composite objects.

ute 10, the Secret version of the document is rep-ted (note that

the darkened structures represent the entiti= classified at the Se-

cret level).

An alternate approach to representing the composite docu-

ment of Figure 8 is shown in Figure 11. In this alternate approach,

the security level of an object domimtes the security level of sll of

its components. That is, the Secret version of the Unclassified

document shwes the Unclassified sections with the Unclasstied
version of the document. The Secret version of the document

consists of some additional Secret sections. Note that the polyin-

stantiated version link between the Unclassified document in-

stanw and the Secret document insmce can be implemented in

various ways. The important point here is that there is some way

for a Secret user to know that the Secret document instance is

actually a polyinstantiated version of the Unclassified document

instance.

Although the complete duplimtion of the document at dif-

ferent security levels is avoided in the representation of Figure

11, a new document instance at the Secret level still has to be

created. A third alternative is to represent the document exactly

as it is represented in the real world (see Fig. 8). That is, an Un-

classified document muld have Secret as well as Unclassified sec-

tions. The Seeret sections are erased from the view of the Un-

classified users. The Secret users can go elsewhere and obtain the

Secret sections only. ~ls way, it is not necessary to create a new

document instance at a different securi~ level.

32.2 O~ect shatisag

Object sharing is an important requkement for hypermedia and

CAD/CAM applications. For example, it may be necessary for

various sections and paragraphs to be shared between different

documents. In a multilevel environment, it is possible for differ-

ent documents to beat Werent security levels but share seetions

and paragraphs. This scenario is illustrated in Figure 12. Object

sh~ing is addressed in more detail in the discussion on compos-

ite links given later.

3.2.3 Po&tintitiosa
As described emlier, it is possible for two users at different secu-

rity levels to have different views of the same entity. For example,

it is possible for an Unclassified section of a document to be just

~

Figure 12. Two documen~ at different -urity levels.
26
)

Figure 13. Granularilv of polyinstantiated object.

a cover story to a more sensitive version. Polyinstantiation can

occur at difient sw~. At one extreme, one ean have the whole

document polyinstantiated. At the other areme, one has a word

or a figure polyinstantiited. Figure 13 shows two ways of polyin-
stantiating sections of a document. In the first approach, the Un-

classified seciion is polyinstantiated at the Secret level (Fig. 13(a)).

In the seeond approach, the cover story is compared with the ac-

tual version. If possible, the actual version is decomposed into

pqaphs. The sensitive paragraphs we classified at the Seeret
ievel~tie remaining -hs-are-UnclassiiecL Ifan Un&fied

paragraph contains false information, then it a be polyinstan-

tiated at the Secret level (Fig. 13(b)).

To reduu the amount of polyinstantiited objects, the objects

could be decomposed into smaller units, as much as possible,

and the smaller units could be polyinstantiated if necessary. It

should be noted that polyinsrantiation is still a rc.seareh issue in
multilevel database systems. The issues involved in handling

polyinstantiation in object-oriented systems are discussed in

Swtion 4 where we regard polyinstantiation as a special form of

versioning.

3.3 COMPOSITE LINKS
A composite link is a link that connects a composite object with

one of its components. A composite link is also aasigned a securiry

level. Figure 14 illustrates possible composite links horn a com-

posite object O to one of its mmponents M. We assume that the

links are bidirectional. That is, for eaeh link P, there is link P’ in

the reverse direction. The following security prope~ is enforeed:

C9. Let P be a composite link whose reverse link is P’. Then

kel(P) = Level(P’).

Some of the cases shown in Figure 14 are not meaningful.
For example, it does not make sense to form an Unclassified link

between a Secret composite object and its Secret component.

Further, supporting all the cases of Figure 14 will make certain

types of links (to be discussed below) difficult to implement.

Therefore, we impose the hllowing security properry on the com-

posite objects:

C1O. Composite link propetty
JOOP NOVEMBE~DECEMBER 1991

dBase File Access
from C, Basic,...

CodeBase 4.5 gives multi-user datebase

management capabilities and dBase, FoxPro

or Clipper file compatibility from C, C++,

Visual Basic or Pascal for Windows. Design

CodeBase Browse/Edit screens using any
resource toolkit.

FULL 90 DAY GUARANTEE
Call for a FREE Brouse/Edit utility

With Source $295.
Call (403) 437-2410 Fax (403j 436-2999

SEQUITER SO-ARE INC.
#209,9644-54Ave., Edmonton, AB. T6E 5V1
If Pis a composite link between a mmposite object O and its

component M, then hvel(P) 2 1.u.b.{Level(0), kel(~}.

We also assume that:

Level(P) = Level(filst(P))

Level(O) = bel(Exist(0))

kel(M) = kel(Exist(M))

where Level(Wt(e)) is the security level of the existence of an en-

tity e.

Enforcing the composite link property will permit only the

cases illustrated in Figure 14(a) – (e).

In some cases, it maybe necessary for composite objects nor to

share their mmponenrs. In other cases, it may be necessary for the

existence of a component object to be dependent on the exis-

tenm of the composite object. These considerations have led ob-

ject-oriented dawbase researchers to define vtiious types of com-

posite links [Kim87]. We review these definitions and discuss
how they may be fiected due to multilevel security.

Various types of mmposite links have been studied in the lit-
erature [Kim87, Klm88]. A composite link from object O to

component M may be either exclusive or shared. If it is art ex-

clusive link then it is not possible for another composite object

O’ to have any link to M. If it is sh~ then it is possible for other

composire objects to have shared links to M

The links shown in Figures 14(d) and 14(e) cannot be exclu-

sive or shared, Suppose these links are exclusive. An Unclassified

user can see the object M, but he will nor know that Mis a com-

ponent of a composite object. Therefore, he could add an exclu-
sive or shed composite link P’ from another Unclassified object

0’ to M. This second link violates the exclusive link proper~,

~Is scentiio is shown in Figure 15(a). If the link P is shared,

and if the link P is exclusive, the exclmive property link is violated.

This scenario is illustrated in Figure 15(b).

It does not m~ much sense to make exclusive the links shown

in Figures 14(d) or 14(e). This is because the links shown in Fig-

ures 14(d) and 14(e) can only be specified by a Secret user. If
this user really wants the link to be exclusive, then he muld cre-

ate a Secret object replicating M and impose an exclusive link

from O to *IS new object. However, if the links shown in Figures
14(d) and 14(e) are not allowed to be shard then it will make the

model overly restrictive. A possible solution to overcome this

problem is as follows. Suppose an Unclassified user wants to

define an dusive link km Oto M He can do so ordy if Mdoes

Z3ZZ
Figure 14. Composite links between objefi.
Cide 46 on Reader Sarviea Card

not already exist. In thii case, he can create Mand impose an ex-

clusive link from O to M. Now, no other users can have any com-

posite links horn any object to M. If M already exists, there is

always a possibility of a higher-level object to have a composite

shared link to M. Therefore, there cannot be an exclusive link
from O to M. If the Unclassified user wants to impose an exclu-

sive link from O to M, then he will have to replicate M and spec-

ifi the link,

A composite link from an object O to im component Mmay

be either dependent or independent. If it is dependent, then M

cannot exist without O provided there is no other object O that

VA)

(h)

A

Figure 15. Invalid links.
27

Multilevel secure O-O data model
Figure 16. Version derivation hierarchy.

has a link to M. If the link from O to its component Mis inde-

pendent, then Mean exist without O. -

Note again that the links shown in Figures 14(d) and 14(e)

cannot be dependent links. For example, consider the link in

Figure 14(e). Suppose this link is dependent. Also assume that no

other object has a link to M. Since the objeet O is Unclassified, an

Unclassified user ean delete this object. Since he does not know
of the tistence of P, the object Mis not deleted. A Secret user can-

not delete M because it is at a lower level. A different problem

occurs if the link Pin Figure 14(d) is made dependent. If, for

some reason, a Secret user wants to delete O, he cannot do so

because of the dependent link from O to M. This is because he

cannot delete the object M either. He will have to wait until M

gets deleted first. Although this situation is not a violation of the

dependent link property, it codd cause objects that are not in

use to consume space. Note that in the link shown in Figure

14(c), the dependent lid prope~ can still be enforced. For ex-
ample, if an Unclassified user deleted O, since he does not know

of the tistence of the link and also since Mis Secret, he will nor

delete A4, However, a consistent checker which runs at the Secret

level can detect this problem and delete M to preserve the de-

pendent link property.

4.VERSIONING INAMUL~LEVEL ENVIRONMENT

We first review the model of versions of objects in object-
oriented data models such as ORION [Baner871, and then extend

the concepts to a multilevel environment. The discussion will be
limited to noncomposite objects only, For a discussion on ver-

sioning for composite objects in a multilevel environment, we

refer to [Thura90b],

A class is defined to be versionable if versions of the instances

of the classes can be created. The versions of an instance provide

a Klerarchy of versions called the version derivation hierarehy.

Information about the version derivation hierarehy of an object

o is maintained in an object called the ~neric instance of o.

If the noncomposite instance vari~ble link of an object o’

points to a version instance of another objeet o, then o’ is statidy

bound too. If the noncomposite instance variable link of an ob-
ject o’ points to the generic instance of another object o, then o’

ISdynarnidly bound to o. The ~tem muld assign a default ver-

sion ins~nce of o to be assigned to this link (see Fig. 16).

Let an object o’ have an instance variable link to another ob-

ject o. Suppose a version v of o’ is obtained. Then the model
28
should specifi as to whether the instice variable link of ushodd

also point to o, or the link is assigned to some other value (e.g.,

NIL, a generic inswce of o, or another version of o).
In a multilevel environment, we identify three types of ver-

sions: historical versions, alternate versions, and polyinstantiated

versions. Historical versions are due to the evolution of objects over

time. Alternate versions store alternate representations of the

same entity. Both the historical versions and alternate versions

can be handled witiln as well as across securi~ levels. Polyin-

stantiated versions are produmd when users at different security

levels have different views of the same entity. They can only be

handled across securi~ levels.

Figure 16 illustrates a version derivation hierarchy of an Un-

classified object. Here, versions are created witiln and across se-

curity levels. The generic instance has information on the ver-

sion derivation hierarchy. Assuming that there are only two

securi~ levels, Unclassified and Secret, the generic insrance stores

Unclassified inhrrnation of the hierarchy at the Unclassified level

and Secret information of the hierarchy at the Secret level.

In this figure, the generic instance of object O has an Un-

classified version insmce V1. V2 is a polyinstantiated version of

VI at the Secret level. V3, V5, and ware historical versions of Vl,

V2, and m, respectively. V4 and V6are alternate versions of V3

and V4, respectively. V8 could be either a Klstorical or a poly-

instantiated version of V4 at the Secret level,

The following ate possible securi~ properties for versions of

noncomposite objects:

Cl 1. Let v be a version instance of the object o. Then Level(v) >

Level(o).

C12. ht gbe the generic instance of an objeet o. Then Level@

= Level(o).

C13. Let o’ have an instance variable link to version v of object

o. Then Level(o’) 2 kel(v),

C14. ht o’ have an instance variable link to generic instance g of

object o. Then Level(o’) 2 Level@.

C15. M d have an instance variable link to m objeet o. Let v’ be

aversion instance of o’. Then the instance vwiable link of

v’ points to one of the following:

1. NIL,

2.0, provided kel(o’) 2 kel(o),

3. generic instance gof o, provided kel(v’) 2 kel(g),
and

4. a version instance vof o, provided Level(v’) > Level(v).

~. CONCLUSION
In this article, we reviewed the developments of seeurity in object-

oriented systems and discussed the alternate ways that noncom-

posite objects cordd be handled in a mdtilevel environment, We

then focussed on the issues that must be handled in order to pro-
JOOP NOVEMBE~DECEMBER 1991

. ...-\
/ --

/
/

/
------~/ --

/
/

/
.. J/-\

f
/

/

‘\ c Boocb ComponentsII\ for &pid C++ Development

Rational Consulting introduces the
C++ BOoch Components”, a domain-
independent class library offering the
latest in C++ technolo~ flexibility,
extensibility, rapid prototyping, and
development.

The C++ Booth Components utilize
templates, as defined in the C++
Annotated Refmnce Manual (ARM),
to provide maximum versatility. A
template preprocessor is included for
AT&T C++ version 2.0 compatibility.

The Booth Components are fully
suppofied by Rational Consulting.
They are delivered in source code,
complete with documentation and
test programs.

Features

■

■

■

■

■

Simple inheritance lattice of
independent structures

Multiple storage forms

Multiple concurrency forms

Exception handling

Compatibility with other class
libraries

Rational Consulting

■

■

■

9

Assists management in unders-
tanding and adopting advanced
software-engineering approaches
to improve organizational effec-
tiveness

Offers consultative problem
solving by combining a manage-
ment perspective with engineering
expertise in applying advanced
software technologies to real-
world software projects

Provides educational programs for
all levels of experience

Provides software tools in addition
to the Booth Components

Monolithic

(f

Reusable

\

\

software Polylithic

componen~ e

Tools

*

Subsystems

O~antition of tbe C++ Boocb Components

Bags

Dequeues

Maps

Queues

Rings

Sets

stacks

Strings

Graphs

Lish

Trees

Filters

Pattern matching

Searching

Sorting

Utilities

For more information, contact Brock
Peterson at:

Rational Consulting
3320 Scott Boulevard
Santa Clara, CA 95054-3197

Telephone: (408) 496-3700
FAX: (408) 496-3636
Email: blp@Rational.COM

I RATIONAL
Object-Oriented
Software
Engineering

cifi430nmdarsafviicard

Multilevel secure O-O data model
vide support for composite objects in a multilevel environment.

In pmicuku, the security propertia of amposite objects, rep-

resentation of composite objects, and composite links were de-

scribed. We then discussed issues on version management for a

mrdtilevel secure object-oriented database system.

Future restich in this aea will include the development of a

multilevel secure object-oriented data model to support non-

composite objects, composite objects, object sharing, and ver-

sioning. The issuK ~ in this paper d aid the development

of such a model. bother important issue that has not been ad-

dressed in tils paper is a model for concurrency control. Locking

as a mncu.rrency mntrol mechanism for object-orienred database
systems was proposed in [Kim88]. However, it is well known

that the locking technique causes a covert channel. For ~ple,

two users at the Secret and Unclassified levels cor.dd request a

read lock and a write 10A respectivdy, to an Unclassified dara ob

ject. If the Secret user already has obtained the read lok then the

write lock will not be given to the Unclassified user. If the Se-

cret user does not have a read lock then the write lock is given to

the Un-lfied user. If the Secret and Unclassified users m~ude,

then they can synchronize a series of requests to the Unclassified

data object in such a way that horn the pattern observed by the

granting/denial of the requests to the Unclassified user, infor-

mation can be covertly passed by the Secret user to the Un-

classified user. It has also been argued that the traditional ap-

proaches to concurrency control could cause a performance

bottleneck. This is because the transactions in object-oriented

applications are ofvery long durations [hrt88]. Therehre, novel
concurren~ mntrol techniqu= need to be developed. A prelim-

inary investigation on concurren~ control in multilevel object-

oriented systems is reported in [Thura90b].
Onm a data model has been developed, the next step will be

to hcus on the sectity policy and implementation issues. fie ob

jeers muld be multilevel at the conceptuals% and muld be de-

cctmposed and stored physidy in single-level segments (or flea)

to obtain higher levels of assurance. However, such an approach

loses the advantages of storing mmposite objem in clusters (which

has been strongly recommended for operation in a nonmdtilevel

environment). Storing a composite object together with its com-
ponents in dusters greatly enhances the performance of database

systems [Kim87]. Therefore, it is important to conduct research

on the issues involved in efiancing the performance of the sys-

tem, but at the same time provide higher levels of assurance.

Finally, the design of a multilevel secure object-oriented

database system should be based on the data model and sewity

policy that w developed. Such a daign should provide the sup

port for query p~ing, schema management, dynamic schema

evolution, update processing, and transaction management and

should hanclle integrity as well as securi~ constraints. Many of

these bctions are still rach topics in object-oriented database

systems. Th4~ much remains to be done before mdtilevel ob-

ject-oriented database management systems can be developed. ■
30
ACKNOWLEDGMENT

The nutbom grat@fly uknowkdge the Rome Air Devebp-

nwnt Center (~DC)fir ponsoring thir work u& contract

Fl~8-89-C-~1. We tbankJoe Gw&m ofRADC@r hti

suppo~ and encouragement throughout tbisproject. We thank

John Fau.rt of RADCfir monitoring the project. We thank

Maureen Cheheyifir her commenn.

REFE~NCES

[AirFo83] AirForceSmdmB~ ~mmittee onMultilevelDamManagement
SecuriW,Mukikuel Data Management SemriY, Natioml Academy Press,
1983.

[Baners71 Bmerjee, J. et al. Dam m+ issuesfor object-oriend applications,
ACM Trumartiom on Ofice Zn@rnration Syrtm 5(l), 1987,

w75] Bell,D. snd L. LaPad& Semrekpm- Un~&~tirm and
M&u Inmpretutiom T4nid Repro-tNO ESD-TR-75-306, Hansmm Air
Fom Base, Beei6rd, MA, 1975.

-91 ~, T,, W. T. Tsai, ad M. B. Thtin-. SODA-a-rc ob-
jem-oriented datab= system, Computm and St-wtiU, 8(5), 1989.

[W871 Kim, W. et d. ~mpositc objectsupportin an object-orientedclarahaee
system,Proceeding of tbt Am Gon~ce on Object-%entrd Pro~amming

Spt-, b~gc~ rmdAppficatio~ Orlsndo, FL, October1987.

[Kim88] W, W. et al. Composite Object Revirit.4 MCC Technical Repmt,
ACA-ST-387-E8, 1988.

[KMw3S] Kcut,H. e, al. On Iong&tion CAD ~m In@-in ScImces,

46,73-107,1988

~ie90] Millen, J. and T. Lint. Security for knowledge-basedsystems,Pro-

ceedings of the Workshop on Olject-Orienti-d Datib~e Serun”q, Karlstuhe,

Wesr Germany,AprH1990.

[SA90J SAour, P. and M. B. Thmtilnb. Designof LDV-a multi-
levelsecuredatabasemanagementsystem,IEEE Trdnrati”on on Kn.wk~

and Data Enp”neen”n~ 2(2), 1990.

[TrustB5]Tti Comput. Systa Evakeati.n Cri~ Deparrenenrof Defenw
Document 5200.28-STD, 1985.

~ti9] Thumisii, M. B. kdatmy securityin object+tienteddatabase

~-ent sy~ems, ~mdin~ of~e ACM confir~cc onoti~-o~’~tfd
Programming Syr-, Zan~ger ~ndApplieatiom (OOPSLA), New Orl=ns,
October 1989.

nhura.90a]Tbtiln-, M, B. See.riryin object-orienteddatabaresystems,
]oud of Object-&rnted%@mming 2(G), l&25, 1990.

~-90b] Thtiinb, M. B. I= onDevebpinga M&kvelSerurr O-O

Dam M.&~ Technical Report , The MITRE brporation, Bedford, ~
1990.
JOOP NOVEMBER/DECEMBER 1991

Delegation in C++

by Ra~b E. Johnson an~Jonatban M. Zweig
Lkpa-t ofCamputcrS-, Utiw”V ofIUimu at U&na-Cbampaip, 1304 W Sprin@ldAw., Ukna IL 61801
D
ELEWTtONISOFTEN VtEWEOas a language feature

that replaces inheritance. However, it can also

be viewed as a relationship between objects that

can be implemented in any object-oriented lan-

guage. It is a useti programming tetilque that

ought to be in the toolbox of every object-oriented programmer.
This article shows an example of how to use delegation in C++.

DELEGATION AS A LANGUAGE FWTURE

A few object-oriented programming languages replace class in-

heritance with delegation between objects [Liebe86, Ungar87].

This is usually part of a language design that eliminates clas=, fo-

cusing instead on concrete objects. Delegation provides the power

of inheritance but alsomakes it possible to inherit state as well as

behavior and to change the behavior of an object dynamically,

which is equivalent to changing the object’s class.
Languages based on delegation implement method lookup

differently than languages based on inheritance. For example,

sending a message to a Smalltalk object causes a search for a

method in the class of the object. If it is not found, the search is

resumed in the class’s superclass, and then the superclass’s su-
perclass, etc. The method-lookup algorithm results in subclasses

inheriting methods from their superclasses.

On the other hand, a delegation-based language like Self [Un-

gar87, Chamb89] has no classes, and methods can be stored in
each object, Each object cars delegate masages to other objects so

if method lookup does not find the definition of a message in
the receiver then it will look in the objects that the receiver del-

egates to, in the objects that they delegate to, etc. Thus, an object
“inherits” the methods of objects to which it delegates messages.

Inheriting state proceeds analogously. When an object ac-

~sa an instance tiable, a similar search through the delegates

w be performed in the event that the object does not have such

an instance variable itself. Another way of accomplishing this

(the one used in Selfl is to use messages to acwss state, allowing

the message-delegation semantics to provide state inheritance.
Delegation has a number of advant~ over inheritance. Some

of these fall into the catego~ of simplifying the programming

model. For example, it eliminatm the complexity of metaclmses

without eliminating the power [Borni86]. It makes it easier to

implement one-of-a-kind objects and makes programming more

concrete. However, the advantage that we are most concerned

with is that delegation makes it easier for objects to change their

behavior. This is because a class makes many assumptions about

the representation in memory of its instances while a delegatee does

not make assumptions about the representation of its delegator.

Sin- it is dangerous to change the class of an object, most object-

oriented languages do not allow it but it is easy to change the

delegatee of an object. Moreover, a language with static type-
checking, such as C++, can ensure that a delegatee will under-

stand all the messages delegated to it.

Delegationprovihs tbepower of
inheritancebut aho makesit

possible to inheritstatem wellas
behaviorand to changethe

behaviorof an objectdynamical~,
whichis equivalmt to changingthe

object~chs.

Although inheritance and delegation are usually described as

altermtives in the design of an object-oriented language, we pre-

fer to think of delegation as a way to implement inheritance when
31

Delegation in C++
an object needs to be able to change its class. Thus, delegation be-

comes a programming technique, not necessarily a language fea-

ture. h impomt part of the design of an object-oriented system

is deciding the relationships between objects ~irfs89]. There

are a number of different ways that objects can collaborate. One

is the whole/part relationship [Blake87]. Another is double dis-

patching [Hebe190]. We propose delegation as another smrcdard

way for objects to collaborate.

Dehgution tipowe~l enoughto
simuhte inhmituncewhih simp~

forwarding a messagedoesnot
simuhte se~proper[y.

DELEGATION VS. FORW~ING

Object-oriented programmers often talk of one object delegating a

message to another, but they usually do not mean delegating in the

sense used here. Iris common hr one object to have to collaborate

with another m carryout one ofi~ responsibiliciez.For ~ple, read-
ing a fle may require reading data from the disk and displaying a

complex picture may require displaying each of iw components. In

both-rh= ~ples, an object My bveto forward a m+ to one

of its components and this is often mistakenly called delegation,

Delegation is more than just forwarding a message to another

object [Liebe86]. Delegation is powerful enough to simulate in-

heritance while simply ~rwarding a message do~ not sim~te self
properly. (The receiver of a message is called self in Smallmlk and

this in C++). When a method in a superclass sends a message to

seti, message lookup stints in the class of the remiver. Similarly,
when a de~gatee sends a message to self it must use the origin-d

delegator as the receiver.
For example, consider a class car with a superclass Vehicle.

Each vehicle hw fuel and is able to Calcdate how much fuel it

needs to move a particdar distance. In C++, fuelToMovewodd be

a virtual knccion of Vehicle so that each of its subclasses can have

its own function for calculating fuel loss. Vehicle might have a

moveTo(Location) method (function) such as:

Vehicle::moveTo(Locationtiocation) (
distanceToMove= distanceBetween(aIocation, currenhcation);
fue~eeded = this->fuelToMove(distanceToMove);
if (fuel >= fuelNeeded) [

crcrrentl.ocation= location;
fuel = fuel - fueNeedet

1]

Sending the moveTo message to a Car will call the function
defined in Vehicle. When Vehicle sends the fuelToMovemessage to

itself, it calls the fielToMove knction that is defined in class Car.
32
I Thus, a function defined in a superclass will call a function in a

subclass.

Suppose that this were implemented by giving each Catan in-

stance variable wicb a pointer to a Vehicle. Then the Carcould re-

spond to the moveTo message by forwarding it to the Vehicle.
However, the Vehicle would have to send the message fuelToMove

back to the particular Carthat forwarded the moveTomessage. In

fict, the Vehiclewodd have to send all messages overridden by sub-

classes to the original receiver of the message, which in this case

is the Cat. Delegation differs from just fo~ding a message in that

the delegator continues to play the role of the receiver even after

it delegates the message. Thus, messages that the delegatee sends

to i~are remivecl b~the original del~gator, which is l~ely to del-

egate them back to the delegatee. Of course, the delegatee can

delegate messages to another object just as a class can inherit
methods that are inherited from it.

Delegation is implemented by including the original receiver

as an extra argument to each delegatedmessage. An original mes-
sage sets this argument to the reuiver of the message, but del~ted

message sends do not change the argument. This is similar to the

way languages like C++ implement virtual function calls, where

this is an invisible argument to each method actd sending a mes-

sage (i.e., calling a virtual function) binds this to the receiver of the

message. Lan~ages basedupon delegation, such as Self, will im-
plement fils ~ argument automatically and invisibly. However,

it is possible to implement delegation in any language by using a
particular set of programming conventions.

Languages b~ed-on delefition usually emphasize flexibility

and so rely on runtime type checking rather than static tyPe-

checking. However, delegation itself is quite compatible with

static type checking. We will show how to implement dele~tion

in C++,-one of the-least dynamic (and mosr ~fficient) of tie ob-

ject-oriented programming languages. This is important because

it shows that delegation is a design technique that can be used

with any object-oriented language includlng ones rhat are statically

typed.

DELEGATION IN C++

Our ~ple is taken horn an implementation of the Department

Listing 1. The classTCPConnectionDescriptordelegatm many

of it5 operations.

ckss TCPCormeciionDescriptor[
protected:

TCPConduit* mycarrier;// Conduitresponsiblehr h connefion
TCPState* current_state;
...

public
Retum_Code openComefiono;
Retorn_Code closeComectiono;
Retum_Code abortConneciiono;
Return_Code processlncorningMessagemessage * msg);
Return_Code pmcessOutgoingMessage(KPMessage* msg);
...

} II I
JOOP NOVEMBER/DECEMBER 1991

of Defense (DoD) TCP/IP protocol suite for the Choices op-

erating system [Zwei@O]. A TCP network connection can be in

one of several states: closed, listening, established, closing, etc. Its

behavior, in the sense both of how it responds to incoming net-

work packets and how it interacts with its user, depends on the

state it is in. In fact, the behavior of a connection changes so

radically depending on its state that it makes sense to think of its

class as changing when its state changes. Thus, we could think of

a class ClosedConnection, another class EstablishedCormection, etc.

Instead of changing its state, a connection object would change

its class. Since C++ does not let an object change its class, this al-

ternative is ruled out and another must be used. Although it is

hard to change an object’s class, it is easy to change the delega-

tee of an object since the delegatee is determined by a single

pointer. Changing an object’s delegatee has the same effect as

changing its class because the object will now invoke different

hctions in response to the same m=s~es. Moreover, a dele~ted
function invocation can cost the same as an ordinary v~tual

function invocation.

The objects responsible for interpreting and delivering net-

work messages are called conduiti. Conduits can be connected

together in a manner somewhat akin to AT&T UNIX System

V Streams processing modules. A conduit can Al the knction to

insert messages into another conduit to which ir is connected

and can call other functions on it when neussary. For example,

an application will open a network connection by obtaining a

conduit from the system that is connected to the system’s TCP

mnduit. This conduit may then request rhat a TCP connection

be opened on its behalf. The TCP conduit responds to this requ~t

by obtaining a connection descriptor, initi~izing it with i~for-

mation describing the TCP socket with which the application

wishes to connect, and calling the opencormection function on it.

Listing 1 shows an excerpt from the definition of the class

TCPConnefionDescriptor, which defines the object that contains

all state information abour a single network connection. The

TCP conduit will respond to user requests to manipulate the

connection by calling the openconneciion, closeconnection, and

abortConnetion functions of the connection descriptor. A user

sends a network message by calling the appropriate mnnection de-

scriptor’s processOutgoingMessage function. When a TCP con-

duit remives a message from the network (via the 1P conduit), it

Listing2. The delegatee is an extra argument to delegated functions.

I classTCPState { I
...

pubbc:
virtualRetum_Code openConnection(

TCPConnectionDescriptor● cd);
victualRetum_Code closeCormection(

TCPConnectiooDescriptor* cd);
virtualReturn_Code processIncomirtgMessage(

TCPConneciionDesaiptor* cd,
TCPMesaage● mag);

I

Listing3, The definitions of delegated functions are all trivial.
The delegatee must refer to the delegator insteadof l’Hts.

Retum_Code
TCPCormetionDescri@n:processIncomingMewge(TCPMessage*msg)
[

rti current_atate-~rocessIncomingMeasage(this,msg);
1

Rettsm_Code
TCPState::processIncondrtgMessage(

~Message ● msg)
[

msg-~delo;
cd-%crernentErrorCoUnto;
rettun(ERROR):

1

TCPCormecLionDescriptor● cd,

determines which connection the message is intended for and

calls processIncomingMessage on the connection’s connection

descriptor.

Since the behavior of a connection depends on its state, the con-
nection descriptor delegates these operations to a TCP state ob-

ject. The s~te object will need to call finctions on the connection

descriptor to determine things like sequence numbers, buffers,
and so forth. In fact, each TCP state object behaves as though it

h a connection-descriptor — ticept that it sends messages to cd

in every case where it would send messages to self in a delega-

tion-based language. Listing 2 shows an excerpt from the defini-

tion of the class TcpState.

Listing 3 shows the code for the connection descriptor’s pro-

cessIncomingMessage function, which simply delegates to the ap-

propriate state object. It also shows the default behavior for this

hncrion on the part of a TCP smre object. Any subclasses of TCP-

State (such as TCPEstablishedState) that are able to accept incom-

ing messages must reimplement this function. States that do not

accept messages from other hosts, such as TCP~osedState, will in-

herit this default behavior, which rejects the message and returns

an error code.

PERFORMANCE

Delegation in C++ is fast, involving no more than two function

calls. The first is the operation on the delegator and the second is
the operation on the delegatee. The second operation is always a

virrual function call. If the first operation is a virtual function

call, then delegation has twice the cost of a virtual function call.

However, the first operation does not have to be a virtual knction

call. In our emmple, all connection descriptors implement pro-

cessIncomingMessage by delegating it-any subclasses would as

well — so the processIncomingMessage function can be imple-

mented inline. Thus, delegation can cost the same as a virtual

finction call ph.Is the time to dereference one pointer.

Since each TCP state object has no local state (insrance vari-
ables), it is just used to hold a pointer to a virtual function table.
It wodd be nice not to have to pay the penalty hr the indirection
33

Delegation in C++
through the current_state pointer to access this pointer. This

might be acmmplished by making current.state be art insmnce

of a TCP state object (rather than a pointer to one), which would

get ovemirten when the mnnection’s smte chars=. This doez not

work however, sinm in C++ operations on objeets deelared locally

we never virtual — they are statically assigned at compile time

since the exact class ofsueh an object is visible to the compiler. It

is conceivable that the compiler might recognize that each TCP

state object mnsti only of a pointer to a virtual fiction table and
perform this optimization though we know of no C++ compilers

that will.

EASE OF PROGRAMMING

Sins C++ is based on class inheritance, delegation requires more

work on the part of the programmer than it does in a delegation-

based language like Self. The aa work is required in two plm:

in defining the delegator and in defining the delegatee.

In Sel~ adding a method to a delegatee automatidly makes it
available to the delegator but this is not true in C++, Beeause we

are implementing delegation “by hand,” we must write a hction

in the delegator for each operation that it needs to delegate. The

function definitions are all trivial just like the definition in List-

ing 3. However, this is an overhead for the programmer not pre-

sent in delegation-based languages.

The overhead is smaller in the delegatee. The operations in

the delegatee class must all have an extra parameter to refer to

the delegator. Instead of performing operations on self, the del-

egatee must perform operations on the delegator. These nda are

simple, but imply that any class designed to be reused by inher-

itance must be modified before it can be reused by delegation.

Another problem with this way of implementing delegation is
that classes reused by delegation are specialized only for that pur-

pose. In contrast, classm that are reused by inheritance are often

useti components on their own. This problem does not occur in

a language, such as Self dmigned to support delegation.

In general, to inherit state the delegatee must send messages to

itself (i.e., the delegator) rather than accessing instance variables

directly. Compiler optimizations codd remove the performance

penalty in most roes, however, since the messa~ that access in-

swnce miables might not need to be virtual fictions,

CONCLUSION
It is possible that delegation-based languages will replace class

inheritance-based languages as the standtid in object-oriented

programming. However, it is by no means eerrain. Classes are
very useti in structuring large systems and delegation-based sys-

tm need prob~~ing environment support to simulate cb.

Thus, it is not dear whether it is better in the long run to base a
language on delegation and simulate classes or to base a language

on classa and simulate delegation.

R~dess of which programming s~le dominates in the long

run, most tisting object-oriented languages are based on classes.

Programmers using class-based languages should Iewn how to

implement delegation. Delegation may not be needed ofien, but
34
it is easy to implement and shodd be one of the techniques avail-

able to every object-oriented programmer. ■

AC~OWLEDGMENTS

The second author was ~uppotid in thh wo~h by a Ph.D. Fel-

bwsh+fiom AT&T Be[I Laboratories. Both authors thank

Brian Marick and BilI Opdyke, who read and commented

on earlier drafi of tbtipaper.

REFERENCES

[BIakeB7]Blake E. snd S. Gok On incluting part hierartiles in objecr-ori-
ented languages,with an implementationin Smalltalk, Proceedings ofthr

1987 Eurwpan ~- on Objsct-~Pmgramming (ECOOP), LNCS
276, SpringerVerlag,New York,1987.

[Borni86] Borning,A.H. Claasmversusprototypesin object-orientedlanguagti,
F&Joint ~- Con&cnti (AMI~), 1986hrdinp, Dallaa,Novem-
ber 2-6, 1986, pp. 36-40.

[Chamb89] Chambers, C., D. Ungw, and E. Lee. An efficientimplementation
of SELF, Object- On”tnted pragrammin~ Systi, Lzngua~es and~pbulhrrrrs

(OOPSU) ’89 Procccdingr, New Orleana, October 1-6,1989, pp. 4>70.

[Hebe190]Hebel, KJ. and R.E. Johmon. til+metic and doubledispatchingin
Smalltalk,Jouti of O~cct-OrirntedProgramming 2(6), 40-44, 1990.

Kleb861 Lieberman. H. Using pmrypical objectsm implementsharedbeha.-
ior, O~ert-ObedProgramrainF S~ernr, bguaga andAppliratibn.r (OOP-

SLA) ‘86 Proceedingr, Pordand, OR, September29–October 2,] 986, pp.
214-223.

[Ungar87] Ungar, D. andR.B. Smith. Self thepowerofsimplici~. Obj--Ori-

rnted programmin~ Sy~, Languages andApplicatiom (OOPSLA) ’87 Pro-

cccdizgr, Orlando, October 4-8, 1987, pp.227–242.

WA89] W1rk-Brock, R and B. Wllkerson.Object-orienteddesi~ a respcm-
sibilitydriven approach, Object-Oriented Programming: Systrrnr, Lunguager

and Applican”ons (OOPSLA) ’89 Pmceedin~, New Orleans, October 1–6,
19.99, pp. 71–76.

[Zweig90] Zweig, J.M. and RE. Johnson. The mndui~ a communication ab-
straction in C++, Proceedings of the Second USENIX C+ + Confirarcc. San
Francisco, April9-11, 1990, pp. 191-204.
JOOP NOVEMBEtiDECEMBER 1991

Real-world reuse

~ Mark Lorenz
~, Box-, Guy,NC27511
o BJECT-OIUENTED(O-O) developers currently

spend much of their time thinking about and

working with the hierarchical structure of the

classes in the system. Their views of this hierar-

chy may be through a variety of means including

paper- md computer-based presentations.

This article Aes a look at how application developers cur-
rently work with and view their application classes; how tils re-

lates to analysis, design, and the class hierarchy and how appli-

cation development cut be more effective in the fiture.

The examples used in this article are based on Smalltalk/V

PM, but the concepts apply to all O-O development.

A LOOK AT THE HIERARCHY

Class hierarchies we typically wide and shallow (Fig. 1), which is
indicative of the fact that subclassing ordy goes so far. Further

atensions to the system are usually subclasses of classes that are
at relatively close protirnity to the root (the Objectelms, shown at

level O).

The system that Figure 1 is based on has over 500 classes

defined (Smalltalk/V PM comes with over 100 classes initially).

The system has a PertientObje~ framework class under Object

and application fr=ework classes as shown in Figure 2, These

beworks provide basic implementation finctions that can be

inherited. For etrample, a window class subclasses under the ap-

plication framework class(es) wor.dd potentially have menubars

with items such as “File” on them already. Some of the pulldown

actions, such as “Open... ,“ would be functional up to a point. It

is then up to the new subclass to fill in the blanks for the task at

hand. Similarly, the persistent object fmmework would provide

functions to allow objects to tist across developer smsions.

In this p, persistent object c4assesand application windows
are subclasses of these bevvork classes. So, a large number of the

new classes defined in the system start 2+ levels of nesting within

the Klemchy (classes that come with the Smalltalk system are

concentrated at levels 1–3). As the chart shows, the number of
\!\

1
I

-

:L
\
b
b

cl= nested deeper thm this drops of fdrarnatically.In developing
the classm in tils hierarchy, efforts were put forward to use ab-

stractions where possible. There have obviously been some ab-

stractions found and used in the system, but the vast majori~ of

the classes were located off of the “fmmework root.”

~le ~dlt glasseJ Vgriables Methods YleW ~ptiOnS Help
CUAWindow & * Instance addCustomec
=GraphicsWindaw 0 class close
==CustomerAsselsFolder currenlObject * customerNanle
=TentualWnclw tiNerBy ,~ OpenOnwNh

selectedObjects
. tiewTme

r. 1,.
T~llalWindc.w subclass#tistolnerRecordEnbyWindow
instanceVadableNames”
classVadableName$”
pooltricllonaries:‘“

[
,

. ●

Fi~ra 2. Application ka~ k class structure.
35

Real-world reuse
hoking at the Smalltalk system class=, including abstractions

such as Collefion and Magnitude, and the classes developed in tils

system, there appears to be a significant limit to the amount of

abstractions that can be developed. I have talked to other groups

about the depth of their hierarchies with similar conclusions.

~ALYSIS ~D DESIGN OF APPLICATIONS

A variety of O-O analysis and design methodologies and nota-

tions exisr today, including [Booch90, Coad90, Jacob90, WItfs90]

These techniques focus on the objects needed to model the ap-

plication’s problem domain. The notations typically have differ-

ent types of relationships between the application classes, such as:

1. Am-a — a container relationship to facilitate collaboration.

2. fi-u — a hierarchical relationship for subclassing within an
application.

3. protocol message— application-level messaging.

However, there has been very little written to help the devel-

oper decide where to locate classes that are identified. Clms po-

sitioning has been largely ad hoc, with developers subclassing the
root (e,g., Object) or a class perceived as similar to the new class.

APPLICATION

An application mtdd be tined x a pup ofches thti work +

toprovti some ruerfinction, &cessibh tbrou@ apublirprotoco~

This is the unit of work that an application developer works on

at any one time. Treated as a black box object itself the applica-

tion can be documented and packaged as a salable unit. This

codd k forms such as source code or execumble or dynamic link

library (DLL) files.
In Smalltalk/V PM, the user sees classes through the class hi-

erarchy browser (Fig. 3). All classes in the system are listed in hi-

erarchical order in the top Iefi pane. This view focuses attention

on the inheritan- structure of the reusable classes defined in the
system and not the classes in the application itself.

Ii File Edit Smalltafk Uasses Variables Methods

3
mInstance build
0 class failAlwitb:
.:, , input

,,,, match

nput malctind~

natcbfllock mafcbENock
resel

~~ !~j~~t _
,,,

Objccl subclassflPaftern
il>slanceVariableNames
‘inputfailstalematcbBlockfirsl’

classVariableNmleS
‘WildcardChar’

pOOIOicfiOnariex”

. .

Figura 3. Smalltalw PM cla% hlermhy br~.
36
The classes in an application are drawn from various places

throughout the hierarchy (Fig. 4). These classes collaborate 10

accomplish the purpose of the application through messages.

Usually, the classes hold other classes as instance variables that
give them handles to the objects,

h alternative view of classes wodd show only the applica-

tion’s classes (Fig. 5). In the future, application views will begin

to show more information about the structure of applications

and how they solve end user requiremen~. Ivar Jacobson’s method-

ology, e.g., allows the developer to view an end user functional

“thread” (ded a “use-case” by Jacobson) as it relat= to the classes

and behaviors of an application.

ABSTRACTION OF SUBHIERARCHIES

During application development, an attempt shot.dd be made to

create abstractions. For example, in a banking application the

analyst may identi@ a need for SavingsAccountand fie&gAccount

classes. The designer may recognize common behaviors needed for

these classes and create an abstract Account class (Fig. 6).

This creation of hierarchical relationships between classes is

important to the architecture of the application and has benefits

in inherited behavior and ease of maintenance. However, place-

ment of this “mini-hierarchy” within the overall hierarchy is rarely

a fundamental decision for the application itself but instead relates

to implementation decisions that are best put off until later or

handled by the system.

POSITIONING CLASSES IN THE HIERARCHY

So where do the application classes go in the hierarchy? There
are typically a few basic choices made by the designer/program-

mer in deciding the location of classes:

1. Is this a view object (e.g., a window)? If so, the class should

probably be a subclass of the user interface framework classes,

In Smalltalk\V PM, these are usually ApplicationWindow,Di-

alogBox, SubPane, or a development shop’s application frame-

,,-

Class
Hierarchy “ “View

Figure 4.
—
JOOP NOVEMBE@ECEMBER 1991

Bring your large, complex object-oriented applications under control ‘ ~m
with AI,IIIST, the Application Manager for Smalltalk/V. The AMIST

B

Application Browser helps both individuals and development teams to . 0
create, integrate, maintain, document, and manage SmalltalkiV
application projects.

Amm

$150
$395

Pri::r I ist

DOS V
DOS V/286
Macintosh V/Mac $395

0S12 VIPM S475
Site Licenses CALL

m

-a

Ne\v Productivity Tools I .:

I !5:5 l;=,::...E
~..! ,,,,

i EdHT,mpl,m,1.?!!!!!!.!.!!.. ..
~.tii& -....{ k ,“

[mcoo~er,~fi:,,io2142SoftPert Systems Division

al-y ra~cl (617)621 ;670 or (617)621 3671 FM

.$, .t.~-.+..i. I ?

------ ---- . .------ --- ..—---
work. A fiarnework could involve a number of generic fi.uzc-

tion classes (as was shown in Fig. 2).

2. Does tbk object pefiist outsi~ my image (e.g., an instance of a

checking acount)? If so, the class should probably be a sub-

class of the persistent object framework class(es).

3. Does t~e ck~ have characteristics that match an existing class
ve~ cbse~ or is a superset of tbe behavior of an existing cL? If

so, subclassing is probably called hr. AO ~ple of this wodd

be CDAccount,as shown in Figure 6. A CDAccounthas most of

~le Edit gasses V~lsbles Methods ~lew ~ptions Uelp
Account A * Instance cancelautlon
=Checkb>gAccount 0 class okBuMon
=SavingsAccount account , OpenOm
==COAccount cmcelled f:
==Mol>eyMarketkcould
AccouldCreationWlndow

- OialOgSOx–

i ,,, ...,.,
j

mpl

Teller
— 1np2
‘ .6..

.,, . . ,., . ,, ,, ..-, ,
1.

OialogBox subclass #AccountOeleNonVedfyOlstog
instanceVariableNamex
‘accountcancelled”

classVariableNarney
“Itemlds’

poolISictionades:
‘Cl>aractcrConslantsPMConslanls’

[a, 1-1

Figure 5, Application kr,

the same behavior as a SavingsAccount, with the aception of

withdrawal penaltim. So, a CDAccourttcos.ddbe a subcl~ of.Sav-

ingaAccount overriding the “withdraw” behavior.

The first two cases focus on inheriting behavior, and are O-O

design/prograrnming conerns. The desire is to inherit basic hnc-

tional capabilities such as window or persistence services. These

are important mncerns, but they are also implementation con-

BI\\’nrldRCIISV -\-
. ..——. ...-.

nCD
Account

\\\

Figure 6

37

Real-world reuse

$* $
announcing ... w

CodelMAGERTM
ForVPM & VWindows

The premier Srnalltalk/V
appllcotlon manager Isnow available

for Windows and Presentation Manager,

!1
● Put relatedclassesand methods

into a singletaak-orlentad object ~
called en application.

yeleaaily move de between it :
● Browee whatlhe a plical-nnaces

Cu
and the external environment.

● Automat-~lly document de via
modifiable,executable, templates.

addCl ● Keep a h18toryof previousvarsions;
reetorethem witha few keystrokes. d

Md ● View class hierarchyas graphor list.

CO* ● Print an applicationin a formatled
repoti, paginatedand commentad.

c File code Intoapplicationsand
. .

1 merge applicationsIogather.
9

das
T

Ii-ions are unaffectedby
c ange log compreeelon.
and many otherfeatures I

❑
EsplrvDate: _ I_ I_

+ SlxGreph Computln Ltd.
Formely ZUNIQDAT~Cor .

fixda %:::r&:::i&it4:w
Tel: (514) 222-1331 Fex (514) 956-1022

-. —

38
I

Associate afl of the rolluwtng tags

Mth Ihe selectedoblect~
)= ,. ,,,4=-.* =-s1., =. ,*= ..>4

AppficaUOnScope

L-_l

User-DefinedTags

* Pubfic .,. ,,
: Persistel~lOblect

0 Private EndOfMonthBUfing
AccOunl~etilOn

— ,=.
InternalScope

~’” ID

0 Publlc $
1. .

e Prlvafe

.: -”-

mmm

Figure7. Asaoctaling k-d tags10objeti

ccrns. They Me relationships of convenience (and productivity!).
They have little to do with the business’ problem domain.

The last ue focuses on ~pcs of business objects and their ab-

stractions, and is an O-O analysis conmrn. The desire is to cre-

ate reusable class artiltectures that model the characteristics of the

business. So, the fact that a CDAccountetisu and thar it acts like

a SavingsAccountis fundamental to a bank’s business. In fact, the

way it goes about this behavior is what gives the Bank its com-

petitive edge.1

If none of the listed conditions are met, the class can ustily

be a subclass of the root class such as Object in Smalltalk/V PM.

TOOLS FOR POSITIONING CLASSES

Categorizing tags and informational descriptions a be captured

and used by the system to help the developer find possible classes

to subclass. The simplest case is to ask the user the types of ques-

tions lited above. A more involved case is to use informational tags

neeess~ for mtegorization and retrieval of reusable objects to

help position classes at implementation time.
By allowing the developer to speci~ eatcgatition inbrmation

about classes, the system mr.dd suggest the optimal Iaeation within

the hierarchy without requ~lng the wr to bcus on this structure.

Figure 7 shows an mample dialog to allow the user to tag objects

with system- and user-defined keyworda.

New objects that are of type tidow or persistent object are

obvious candidates as a subclass of the appropriate framework.

The more difficult positioning concerns relate to matching char-
acteristics. Aids in this positioning ean be based on:

1. Similarity of public protocols (methods).

For ~ple, if the new CDAccountclass discussed earlier

fulfills roles such as “withdraw” and “deposit” it matches
these characteristics of the Saving~ccount class and wor.dd

be suggested as a possible position in the hierarchy.

2. Keyword tags.

INotefiat fi~ is dso thewaythat frameworkscome inrn misten-ra pro-

mssingabsmctioos such m TreeGraph, Collefion, and MagniWdeare created
andleveragedby fururedevelopem.Thesearejustw importantduringde- and
implementationasthebusinmsabstractionsareduringanalysis.
JOOP NOVEMBE@ECEMBER 1991

Cifi 2 on Reader Servics Card for Hewlett-Pechsrd

HOUTO
BROWSEIHDEDIT

lN~*t
ITTHE$HMETI

You need the only fully-integrated editor/

browser on the market today. ~ BRIEF and

BRIEFor C++, ~ BRIEF is the world-class

programmer’s editor. BRIEFor C++ is the C++

class browser thet works seamlessly with

BRIEF. O While you edit in BRIEF, BRIEFor C++
For example,if the CDAccount class is ragged by keywords

such as “bankin~” “acmunt,” and “savings” it will clody

match the user-defined characteristics of a SavirtgaAccomt.

The system add certairdy provide views of tisting key-

words and searches of objects@ by related keywords

to help the developer.

SUMMARY AND RECOMMENDATIONS

Subclassing and inheritance are important, but perhaps overem-

phasized, aspects of an O-O system. Developers will tend, over

time, to focus more on application and less on impbmentatr”on

concerns.

Systems need to include services to capture and utilize devel-

oper information about classes to recommend class locations

within the hiemchy. ■

ACKNOWLEDGMENTS

The author thank Pete Dimim”os and Bil Hape~fir their

commenti on the artick,

REFERENCES

Boo&O] Booth, G. Objti-Otim*dDesign witb~pfication.r, Benjamin/Cum-
mings, RedwoodCity, m 1990,

[ti90] bad, P. snd E, Your&n. O~c.t-tintcdAx/~ PrenticeHaU,En-
glewood~ifi, NJ, 1990.

Uacob90]Jacobson, 1. O~ect-Oriented Dcuelopment in an Indmtrial Enuiron-

mmL ObjectiveSystemsSF AB, Kisra,Sweden,1990.

wIfi90] W1rfs-Brock, K et al. De~ignin~ O&ect-Otisnted So@are, Prentice
Hall, EnglewoodCli&, NJ, 1990.
For free, fat
in.fomationonthe

productsandservices
udwertisedin this
issue, consult the
advertiser index

on page 66.

I

waits in the background. When you want to

browse, click to bring it forward. When you’re

done, click egain. You’re in BRIEF. It’s that

fast. O You’ll also find BRIEFor C++’s view

filters, comprehensive reporting, and editable

class definition templates big-time timesavers.

Add BRIEF’s legendary editing power and

flexibility and watch your productivity soar.

Navigating through your code hes never been

faster or easier, ~ BRIEF and BRIEFor C++.

Calltoll-free for a BRIEF demo:

1-800-677-0001
For more information, call SolutionFax from a

fax machine or W-board equipped PC:

617-740-0089,

THE PHYSICS OF PR-O~RAMMIN~

c++

Understanding constructor

initializers in C++
by Andrew Koenig
I
,7d“ HAT DOES THAT

funny syntax with

the colon mean?”

Every time I

V V have taught a c++
class, at least one person has ~ked that

question. This is often true even afier I
have explained the answer. For some rea-

son, people seem to have a partictdarly hard

time understanding this specific detail. I

don’t know wh~ it’s not particularly

difficult or counterintuitive. Perhaps it is

because this is one of the places that C++
carefully distinguishes between things that

C does not. I suppose ~ometkinghas to be

the most commonly misunderstood part

of C++, and this just happens to be it.
I am talking, of course, about con-

structor initializers. For example

cks Complex[
pubhc

Cornplex(doublex, doubley):
re(rr),ire(y) ()

//.
private:

doublere, im;

1;

Whenever I show an audience this ex-

ample, someone is sure to ask me about

the purpose of there(x) and ire(y) parts of

the instructor and will want to know why

I didn’t just say

Complex(doublex, doubley) [
re =x;
im=y

1

Of course, if I do use the semnd form,
40
someone is sure to ask me why I don’ t use

the first!
The mswers to these questions are all

tied up in the difference between assign-

ment and initialization, as well as the dif-

ferent kinds of instructors one can have

for a class. To make it all clear, we will have
to go over three things in detail, Please be

patient if you’ve seen some of this before.

CONSTRUCTORS

A constructor is a member of a class that

is executed to create an object of that class.

Strictly speaking, objects of built-in types,

such as int, do not have constructors.

However, the following presentation will

be easier if we pretend they do. Let’s pre-
tend, Aer&ore, that objects of built-in type

have “constructors” that automatidly ini-

tialize such objects to zero if they are of

swtic storage class (or part of an object of

static storage CIWS)and to an undefined

value otherwise. With this generalization,

it is possible to state a rule:

● Every object is created by executing a

constructor!

Here is a simple example:

#include<Stream.h>

int ~

maillo
[

int y;
staticint z

Cout<<x <<”” <<y<<””<< z<<”\ n”;
1
This program creates three variables
named x, y, and z and prints their values.

What does it print?

Each of thae variables is of type int so

the value of each is determined by the “con-

structor” associated with that type. Bemuse

x and z are of static storage class (global

variables are always of static storage class

although that is not stated explicitly), their

“constructors” give them initial values of

O.The initial value of y, on the other hand,
is undefined.

COPY CONSTRUCTORS AND

ASSIGNMENT

If every object is created by executing a

constructor, what about this?

maino
[

intrr=7;
hty=x;

~=y;

1

The variables x and y are each creared

and simultaneously given an explicit ini-

tial value. The declarations of x and y ate

requests to copy existing values into new

objects. Because these are new objects, our

previous rule says that they must be cre-
ated by executing constructors. Evidently,

then, there must be some kind of con-

structor that m create an object that is a

copy of some existing objec~ we call that

a copy constitor. AS before, we can sim-

pli$ the presenwtion by pretending that
even built-in types like int have copy

constructors.

In the example above, then, the object

x is created by executing its “copy con-
JOOP NOVEMEIEtiDECEMEIER 1991

THE ONLY C++

YOU’LL EVER NEED.

C++ VERSIONS 2.1,2.0,
AND 1.2 \
You can use your existing C++ code ~
and take advantage of new features \

~ AVAILABLE ON MATOR

~ UNIX HOSTS
Green Hills C++ is available on Sun-4

7
SPARC, DECstations, and IBM RS/6000. More

ports are in process; callus for the complete list.
because Green Hills C++ is source code compatible

. .

DEVELOP BOTH NATIVE ANDwith AT&T cfront versions 2.1, 2.0 and 1.2, Also compati-

ble with commercial C++ class libraries, Green Hills C++ CROSS/EMBEDDED C++ APPLICATIONS

has been validated using the Perennial C++ test suites. Reduce the cost of complex embedded applications by

THREE COMPILERS IN ONE! C++, ANSI C,
using object oriented technology. Green ‘Hills Cross C++
fully supports 680xOTM, 88000TM, and i860TM targets.

K&R C
Simplify your development environment with one compil-

Reduce your maintenance costs by developing more

er for your C++ and C sources. Preserve your investment
robust, reusable code using Green Hills C++.

in existing C applications by calling C modules from C++

modules. Take advantage of the power of the C++ lan-

guage by using multiple inheritance, operator overloading

and data abstraction. FORC++ ON ALL YOUR
X WINDOWED C++ SOURCE-LEVEL DEBUGGING

Use our Multi C++ debugger featuring multi-language UNIX WORKSTATIONS,
support (C++, C, FORTRAN, Pascal), multi-process

debugging, and expression evaluation. Display intermixed CALL (617) 862-2002
or separate source & assembly windows, variable, class,
and reference windows. Set breakpoints on overloaded or FAX (617) 863-2633
member functions. Automatic name mangling/de-man-

gling and inheritance tracking are also included.

~ mm~ ~

~ ~-k~
~ ~-

Am
1 Cranberry Hill ● Lexington, MA 02173 ~

TOMORROW’S SOLUTIONS TODAY

~rcle 10 on Reader Service Cerd

lV,,rIdw,idc Support: 13elgium k.tin>c [12-376-5142 Frnncc. RCJI Tinlc St>ftw.art. [)1-69Hh-f 95ff

Germany Xcc 0721416474 Ncthcrlal~ds Ct)mptlting & Sys[t.ms C[,llsulta!lk 04[1-434957 I.sr.lcl

Allk[,rCc]mpulingLtd. [13-5447356IlnlyInstmnlatic(12-353-8[141]opz]lMCMJmpn Ltd
033-4 H7-H477 Sc,~n,iinn\, ia Tr,,it, AH 0HY3-flll[l[) Sp,lin C’lf)lSA [1I-.%3 -.W49 S\vitzcrlilld Zulllkt.

Engln~wring AG 01-73[1-7[1S5UK Renl Time Pr~)ducls 021-236-RI1711.UNIX is a trfidcmark [If
AT&T,iW is n tracicm,)rk of Il]tel Ctlrp. All t,thcr tr,ldcmnrks ,Inb ,)cknt>u-fcd~Ld t,) Ihl.ir
r~s~vlib,c txtmplllics.

— c++ —
structor,” which gives it an initial value of
7, and the object y is created by executing

its “copy constructor” to give it an initial

value that is a copy of the value of x.

Now let’s look at the last statement in
the example. That statement says to set the

value of x equal to the present value of y.

Of murse, theyhappcn alrdy to be equal,

but that doesn’t matter. This involves (po-

tentially) changing the value of the object

x, but it does not create any new ob]”ectsl

Because no objects are created, no con-

structors are called. This operation is there-

fore fundamentally different from the pre-

vious two even though the same symbol b

used to represent it. The act of giving a new

value to an object is called asi~mtvzt.

If you are ever unmrtain whether a piem

of C++ code involves assignment or con-

struction, ask yourself “Is anew object be-

ing created here?” If the answer is “yes,”

then a constructor is involved. If it’s “no,”

then constructors are not involved.

Ifyou are ever uncert
C++ codeinvolvesassi

mkyourself ‘7s a new
here?”If the answeris ‘

is involved.If it~ ‘h
are not i

DEFAULT CONSTRUCTORS
AND ASSIGNMENT FOR
CLASSES
Suppose we write a simple class:

StructPetit [
int x, y;

);

This class is so simple that it has no pri-
vate data at dl. That explains the choice

of s~ct rather than ckss to introduce it.

Indeed, as written, it is nothing more than

a C structure. For that reason, it had bet-

ter behave the same way as its C counter-
42
part. For example, it must be possible to 1

say things like this:

met Point [
int x, y;

1;

Pointmro; //A, Y=

rnaino

[
Pointp, q;
p-x =3;
p.y=7;
q=p;

)

To preseme C behavior, C++ causes

some tilngs to happen automaticall~

wA clazswith no explicit constructors gets

an empty mnsttuctor automatically.

● A class without an explicit copy con-

structor gets one automatically.

ainwhetherapiece of
pment or construction,

objectbeingcreated
)es,” thena constructor I
o,” then constructors
nvolved.

● A class without an explicit assignment I
operator gets one automatically.

● These functions, if automatically gen-

erated, are recursively defined in terms

of the corresponding functions for the

members and base clwses.

This seems like quite a mouthful but is

actually quite simple, In the case of our

Point class, e.g., it tells us that we can con-

struct, copy, and assign point objects and

that the meaning of doing so is defined re-

cursively in terms of the corresponding op-

erations for x and y. This is, of course, ex-
actly what happens in C. Thus, in the ex-

~ple abovezero.xand zero,y tie both ini-
tialized to O by the automatically gener-

ated constructor for the Point class, which

is recursively defined in terms of the

“constructors” for the members x and y.

Similarly, the members of p and q are re-

cursively initifllzed by their “constructors”

to undefined values.

One useti consequence of having au-

tomatic constructors of this sort is that it
makes it much easier to build simple data

structures out of classesothers have defined.

For example:

s~et Person[
-g nm~
-g address;
int id;

);

One can easily imagine some kind of

recordkeeping system with a data struc-

ture like this to keep track of people. Such

a data structure might reasonably use a

String &An hm some library to store

names and addresses. Here’s a simple

example:

tio
[

Personp;

g~ecord(inputlile, p); //Read into p

Personq = p;

//...

1

What is the effect of the declaration of

p?What initial value does p have? Be=use
the object p is created here, we must exe-

cute a constructor, but the Person class

doesn’t have one. A constructor is there-
fore created for us by using the String con-

structor twice and the int “constructor”

once. The effect will therefore be to ini-
tialize p.name and p.address to whatever

the defadt value is for the String class and

leave p.id undefined (because the “con-

structor” for int says that’s the right thing

to do).

Similarly, the declaration of q creates

an object so it must execute a constructor.

Because it is creating an object from an-

other of the same class, the constructor to
]OOP NOVEMBE~DECEMBER 1991

— c++ —

. Faster softwaro development
via rapid prototyping, use of standard
objects, and reuse of proven code
components

● Easier maintenance: due to compact
optimized code--and, modular software
takes less time to debug

● Adaptabiiityt by adding rrbjects
without rebuilding the entire program

. True campiier and Saurce-iovoi
debugger

● Conforms to System V R4 ABi
(& APil

. Mheres to ianguago standards

● Cfrant #ompatiHiity

. Stricter ~ ch~king than C

. Muitipie inheritance

● Lint-iike chwking

. Optionai Ro ue Wave, Dyad and
fother ciass i braries

● Vew comntiiive vricinq

● The technology ieaders with
mors experience . . . since 1977

. Providing PASCM.2 and C-
optimizing native compiiers and
PASCAL-2crass=compiiers

. Voting members of the ANSi C*
tommitt~

. Superior tethnicai support and
customer service
use is evidently the copy constructor.

Because the Person class has no explicit

copy constructor, one is generated auto-

matically. That constructor executes the

Wg mpy constructor twice (for the mme
and address members) and the int “copy

constructor” once (for the id member).

The rault is exactly what one might ex-

pti mpying p into q has the effti of mpy-
ing each member of p into the corre-

sponding member of q.

OWR.RIDING THE DEFAULTS
Our person class is a bit of a nuisance to

use: every time we create a person object,

we must eventually give a vahte to each of

its members. For ~ple

Persons;
s.narne= “Santatius”;
s.address= “NorthPole”;
s.id= 31415927;

We would like instead to be able to
write

Persons(”Santa~us”, “NorttrPolen,31415927);

The way to do that, of course, is to give

the Person class an explicit constructor,

which is most straightforwardly written

this way

//~rsttry:not quiteright

~et Person(
Stig name;
Stig address;
int id;
Peraon(Stig n, -g a, int i) [

name= n;
address= a;
id=~

);)
This will indeed make possible the sec-

ond declaration of s shown above.

However, this is not quite the right way

to go about this for reasons we are about
to uncover.

The first problem can be seen by look-

ing again at the rules for default con-

structors: a class without any explicit con-

structors gets an empty instructor. We

have taken our Person class, which did not

have an explicit constructor before, and

given it one. That means that the empty
constructor it formerly had is no longer
there, which in turn means that we =n no

longer say

Personp;

at ~l! That wottld be fine were that what
we had in mind, but in this case we do not

wish to give up the old behavior to acquire
the new behavior.

We must therefore explicitly insert the

constructor that is no longer being created

for us:

// seeond try: still not quiteright

struct Person{
Wg name;
Wg address;
int id;
Person(fig n, -g a, int i) [

nsme = n;
address= a;
id= i;

1
Persono []

);

We have inserted a constructor that

does nothing at all. Does that mean that

when we say:

Personp;

we are foregoing initialization of p.name

and p.addtess? That would be a disaster!

After all, we know nothing of the work-

ings of the Sting class. Its author cotdd be

counting on all objects of that class being

initialized appropriately. To be sure that
happens, C++ has artother ride:

● If a constructor doesn’t say explicitly

how to initiali~ the members or base

classes of its class, the default con-

structors for those members or base

classes are used automatically.

That means that the constructor we just
added to the person class:

Persono {]

actually dom three tiln~ it uses the Sfig

constructors to initialize the name and ad-
dress members and the tit “constructor”

to initialize the id member. This is, of

course, exactly the right thing in this case:
it gives us an easy way of saying “please

— c++ —

44
preserve the default behavior even though 1

this class has an explicit constructor.”

But this analysis exposes a problem in ~

the other constructor:

Person(Stig n, Stig a, int i) [
name= n;
address= a;
id = i;

)

.,. when writinga cons
way to say ‘@ve value

time that member

bok again at the last rule. This con-

structor never says an~lng about how to

initialize name, address, or id. The state-

menw in the constructor me assignments,

not initializations, because they do not

construct any objects! By the time the con-

structor begins execution, the name, ad-
dress, and id members of its object must

therefore already exist. Because objects

come into existence only through con-

structors, that means that their construc-

tors have already been executed.

In other words, the e~t of the person

constructor above is to mnsttuct mme and

adtiess, “consrtuct” id, tind tkm to mi~

new vuIuestoname, address,andid asshown
in the constructor body itself. The differ-

ence is precisely the difference between:

Strings = ‘SantaWus”;

and

strings;
s = “SantaClaus”;

The first of these forms is clearly prefer-

able because it givess the desired value im-
mediately instead of giving it the wrong

value first and then correcting it.

CONSTRUCTOR INITIALIZERS
Because of all this, when writing a con-

structor we need some way to say “give
—

value xto memberyat the time that mem-

ber is constructed,” The syntax for that

looks like this:

Person(Stringn, Stringa, int i):
name(n),
address(a),
id(i) {]

The constructor’s list of formal pa-

rameters is followed by a colon and then

tructorwe needsome
x to memboy at the
is cons~cted. ”

a list of initilizer~ separated by commas.

Each initializer is the nme of a member

or a base class followed by a parenthesized
list of expressions to be used to initialize

that member or base class.

One might, therefore, read the examp-

le above as “To construct a Person from

two Stigs died n and a and an int called

i, mnstruct the person’snamemember from

n, its address member from a, and its id

member from i, and then do notilng.”

The “do nothing” part corresponds to the

empry body of the mrrstructor prope~ this
particulti constructor now does all its work

in its initializers.
The entire class definition now looks

like this:

// third try: this is how to do it
~et Person[

Stringname;
Stringaddress;
irrtid;
Person(Stringn, Stig a, int i):

name(n),
address(a),
id(i) [}

Persono {]

1;

To confirm our understanding, we can

add an explicit copy constructor and as-

signment operator to the person class that

does exactly what the defardt ones do:
JOOP NOVEMBE~DECEMBER 1991

As a recognized leader in the practical
application of object-oriented technology,
Instantiation is ready to put its decades of
object experience to work for you...

Technology Adoption Services
Technology Fit Asessment

Expert Technical Consulting

Object-Oriented System Design/Review

Proof-of-Concept Prototypes

Custom Engineering Services & Support

Training & Team Building
Smalltalk Programming Classes:

Objectworks Smalltalk Release 4
Smalltalk VWndows V/PM V/Mac
Building Applications Using Smalltalk

Object-Oriented Design Classes:
“DesigningObject-Oriented Software:

An Introduction”

“Designing Object-Oriented Systems

Using Smalltalk

Mentoring:
Project-focused team and individual

learning experiences.

Development Tools
ConvergenceTeam Engineering Em-ronment~
Powerful multi-user/sharedrepositorydwelopment
em”ronmentfor teamscrem”ngprodum”o~uality

Smalhlk appli~ons.

Convergence Application Organizer PlusTM
Code modularity and version management
tools for individual Smalltalk develo~ers.

Instantiations, Inc.
921 SW Washington

“m

.,,.
Suite 312
Portland, OR 97205 ... ,
(503) 242-0725

..:.

—

The Measure of
a Great Program.

PC-MEIRICW:lhe Measurement ToolForSeriousDevelopers.

OrderNow!

PC-METRIC is the software measurement tool
that measures your code and identifies its most
complex parts so you can spend your time
working in the areas most likely to cause
problems.

PC-METRIC is fast, user-configurable, and
includes a wide array of commonly accepted
measurement standards.

Plus, versions of PC-METRIC are available to
support virtually every popular programming
language.

A Greal Value By Any Measure.

PC-METRIC’s price is only $199, and it comes
with a 30-day money-back guarantee. Multiple
user discounts are available, as well as site
licenses and complete source code,

Call (503) d29-7123.

SET LABORATORIES, INC.
“QualiN Tools For Software Craftsmen”

P.O. BOX 868
Mulino. OR 97042

Phone: (503) 829-7123
FAX: (503) 829-7220

Clrele 56 on Reader Serviea Card

m

f

i

N

4

— c++ —
// fors*h try: egutia[ent to the third
11 butwith everythingwn”ttenout ~licit@

struct Person{
Stringname;
Wg address;
int id
Person(Stig n, Stringa, int i:

name(n),
address(a),
id(i) (]

Persono {]
Person(constPerson&p):

name(p.name),
address(p.address),
id(p.id) []

Person&operato~(const Person&p)[
name= p.=e;
address= p.address;
id = p.id,
return*this;

);]

Note how the Person mpy constructor
akes use of the String copy constructor

or the name and addressmembers and the

nt “mpy instructor” for the id member.

ote also that the Person assignment op-
6

erator does not use constructors at d be-

cause no new objects are being instructed.

CONCLUSION
It shodd now be possible to understand

the difference between our first two ex-
amples. If we write:

Complex(doublex, doubley):
re(x), ire(y) []

we are being formally correct by saying
that a Cornpl~ objmt should be mnsrructed

by mnsuuting its real and imaginaty parts,
after which we’re done. If instead we write:

Complm(doublex, doubley) (
re =x;
iln=y

1

we we first constructing re and im with

their defiult values (which, because they
are of built-in types, are undefined), and

then assigning x and y to them.

Because x and y are of built-in types,

the conceptual difference between these
forms does not translate itself into a prac-

tical difference and indeed many mmpil-

ers are likely to generate identical machine

mde for both. For that reason, many peo-

ple (including me) are apt to be careless

about distinguishing between assignment

and initialbtion in simple cases like this

and that surely doesn’t make it any easier

to understand when encountering such

things fir the first time.

The important thing is to be completely
dear about the difference between assign-

ment and initialization and to realize that

they are expressed differently-especially

in constructors. ■

Andrew Koenigi.r a DtitingutihedMemberof the

Technical StaffatAT&TBeli Labs in Warren,

NJ He ir working on C++ tools in a ~artment

&dicated @ reducing the costof ~o&are &ve[-

opment. He is ako an enthutinti”c murician and

an inrwment-ratedpn”oate pibt. Koenig can be

contacted at Room 4N-R12, AT&T Be[l

Laboratorin, 184 LibeW Comer U, Warren.

NJ 070s9, or through enrai[at amail!ark or

ark@europa.~. corn.
JOOP NOVEMBE@ECEMBER 1991

The only other way to get
C++ updates is to

call the man who created it.
Get the inside story on C++ development from

~.

Bjarne Stroustrup and other experts such
Stan Lippman, Mike Tiemann, Bruce Eckel, Rob Murray, Grad

Jim Waldo, Dmitry Lenkov, and Tom Cargill.

Filled with crisp, easy-to-follow articles and tutorials.

Plus, book reviews, product reviews, sotiare news,
Best of comp.lang.c++, The C++ Puzzle, and

“What They’re Saying about C++.”

A sampling of not-to-be-missed fea-:

● Designing andmanaging C++ libraries

\ ● Debugging C++
● Using C++ ck libraries

‘P
● Using an O-O database management system
● A survey of the C++ user communi~
QDesigning libraries for reuse
● Implementing mdtiple inheritance
● Effectively managing C++ projects

. . ● Moving a project from C to C++

/

. wRrM’EN FOR B~ BEGINNER AND ADVANCED USERS
\y~&~~:t&\y~~

“d ~J/=N
“.<.’@ . /;,+<~~b’s

**
~>$’~$*$%%*q\, ~> Now lN ITS THIRD YEAR WITH 10,000READERS IN 42 m~m

‘\:$;> ~::~:$~,.
. subscription Order Coupon

b...

w.,

● ANSI C++ standardization updates
● Analysis and design techniques
● Using C++ effectively
● C++ traps and piffi
● Using templat~ in Release 3.0
● Using application framework with C++
● Climbing the C++ learning tree
● Storage management techniques
● Tips on increasing reusability
● D~igning container classes

~YeS, plug me into the insiders network of C;+. Enter my subscription a;d rush me the current issue.
If not satisfied, I may cancel at any time and receive a prompt refund of the unused portion.
No questions asked.

1 year (1O issues) ~ Domestic (US) $69
~ Foreign& Canada $94

(Includesairservice)

Method of Payment

Cl Check enclosed (payable to T/se C++ Re d)
rForeign orders must be prepaid in US dollars on a US ank.

~ Bill me
Purchase Order number

CICharge my ~Visa CIMasterCard

Name

Company Title

Div./Dept.

Address

City State Zip

Country Phone

Returnto: The C++ Re@rt

Subscriber Services, Dept. CPR
PO Box 3000
Denville, NJ 07834 or Fax 212.274.0646

Clrole 39 on ReaderSenrlceCard

Card # Exp.

DILA

Modeling & Design

&The evolution of bugs and “;8:
‘>

systems
by James Rumbaugh
,

,

“N WIUTINGTHIS SEFUMof columns,

I hope to show the value of an ob-

ject-oriented analysis and design

methodology and how to apply it to

. the solution of problems. I want to

show that object-oriented technology is

more than just p~g and z.

For the most pm, I intend to give ~-

ples that illustrate various aspects of analy-

sis and design as I have found that a single

concrete example is ofien more illuminat-

ing than a broad but absttact theoretical

pr-ntation. In presenting th=e errrunples,

I will use the object modeling technique

(OMT) methodology and no~tion devel-

oped by my colleaguesand me and described
in the book Obje~-On”ented Mo&Iing and

Design publishedremntlyby PrentimHall
[Rumba91].In the process, owptiosophy

of design should become clear as will both

similarities and di~ren- in outlook be-

tween us and other authors. Keep in mind

that developing sobe (or anything else)

is a complm creative task and there is no

one beat way to do it. Neither our method-

ology nor any of the others is the final word;

they will all evolve as new ideas and new

combinations of old ideas are developed.
My goal is to get you to use some method-

ology of Aysis and design rather tharIjust

sitting down and starting to program.

Object-oriented development provides
a seamless path from analysis through de-

sign and implementation. You don’t have

to change notation at each stage of devel-

opment but this doesn’t mean that aUs-

of development are the same or differ just

in tbe amount of detail, The Went stages

focus on different aspects ofa problem and

emphasim dfierent object-oriented con-
48
cerns. In this column, I will illustrate ob-

ject-oriented analysis using a simple ex-

ample. Other stages of the process will be

dncussed in fiture columns.

CREEPING BUGS

We will wnsider an evolution simdation

based on a Scienti$c American “Mathe-

matical Recreations” column [89]. The

goal is to simdate the evolution of “bugs”
in a simple two-dimensional world. The

world contins bugs and bacteria, which

the bugs eat. The bacteria are “manna from

heaven.” They appear at random and per-

sist at fixed locations until they are eaten.

Bacteria do not spread, age, or reproduce.
Bugs move around the world randomly

under the control of motion genes. Each

bug has a variable position and orienta-

tion within the world. For simplicity, time

is divided into uniform time steps. During

each step, each bug rotates randomly to a

new orientation, then mova one unit for-

ward in its new direction. Romtion is con-

trolled by the motion gene, which codes

for a probability distribution of rotating

by an arbitra~ angle from the previous

orientation. Initially, the distribution is

uniform so a bug performs a tandem walk

For simplicity, we divide the world into

uniform cells with a finite number of an-
gles such as a h-nal grid with six pos-

sible angles. A bug eats any bacteria it finds

within its cell, gaining a &ed amount of

weight for each meal. Each time step the

bug loses a fixed amount of weight to maint-

ain its metabolism. If its weight becomes

mro, the bug s-es. If its weight =Ceeds

a certain “strong” value, then the bug re-

produces by splitting itself into two iden-
tical bugs each with half the otiginal weight.

Each new bug suffers a single mutation in

its motion gene modifying the probabil-

ity distribution.

If you program this simulation and

choose appropriate values for the various

parameters so that all the bugs do not die

out quickly, over time you observe a kind

of evolution. At first the bugs jitter about

randomly, but over time they evolve so

that they move more or l= in straight lines

with an ocaional turn to the left or right

(but not both for any one bug). The m-
planation is that bugs that move randomly

tend to cat up the food supply in one place

and starve while bugs that move in lines

have abetter chan~ to find new food but

they must turn occasionally to avoid ger-

ting stuck against the edges of the world,

This problem is well-suited to an ob-

ject-oriented approach and is fairly simple

to program. There is some ambiguity in

the specification and many possible ex-

tensions can be considered such as car-

nivorous bugs. I will illustrate my solution

to it using the OMT notation, I snot

show aUthe details that would accompany

a fi,dl solution of the problem but I hope

to touch on the major points, at least.

STAGES OF DEVELOPMENT
To solvea problem,you must identi@a
problem,describewhat you need to do

about it, decide how to do it, and then go

and do it. These steps are the development

stages of conceptualtition, ana~sir, ~~i~

and implementation. Other things you

might do include verifying that you actu-

ally solved the problem and carefully de-

scribing yout solution so that someone eLse
JOOP NOVEMBE@ECEMBER 1991

— Modeling & Design —
muld repeat it. These steps mrrespond to

testing and hCU~tVltLStiO?S,

Of necessi~, methodology books (in-

cluding ours) lay out the development pro-

- as a sequenm of steps. This pedagogical

need has been misinterpreted as rhe infa-

mous ‘watefil diagram” showing devel-

opment as a one-way flow of information

through d-defined ~es. In practice, the

distinction among the stages is not always

cl=-cut because Sokare development is a

creative act that requires some judgment

horn the practitioner. More importantly,

the development of any real system involves

a lot of iteration within and among stages,

more of a “tilrlpool” than a waterfall.

Analysis, design, and implementation

muld be called “synthetic” stages of de-

velopment. During these stages, the de-

signer must synthesim a system out of a

jumble of potential requirements and parts

striving for a resdt that is both under-

standable and efficient while solving the

problem. During synthesis, it is useful to

have a well-defined notation to speci@ ex-

acdy what has been created at any step in

the process. The development notation

should flow easily from stage to stage so

that work will not be lost, ignored, or re-

peated as the design process proceeds. We

claim that an object-oriented modeling

notation can be used throughout the de-

velopment pr- without a change in no-

wtion or reentry of information.
Today I will hcus on amdysis,The anal-

ysis model forms the framework on which

the entire design is built and fleshed out.

A.NALYSIS
During analysis we identify what must be

done ~lthout saying bow it will be done.

During analysis, we identi~ the object

classes in the problem domain, their

significant attributes, and the relationtilps
among objects. We capture this informa-

tion in an object diagram. The object dia-

gram describes a snapshot of information

at a point in time.

The first step is to identi~ object classes

and describe them briefly. Table I is a data

diction~ in which we have identified five

object classes from the problem descrip-
tion: Bug, Gene, Bacterium, Cell, and Grid.
 i

Table 1. Data dictionary.

Bug An orgmism that inhabits a

roll, moves under control of a

motion gene, eats bacteria it

kds, and reprodu= by fion

mder suitable renditions, The

bug dies if it doesn’t eat

enough.

Gene A set of discrete values that

codes for the probabtlstic mo-

tion of a bug. Genesarempied
and mutated during bug re-
production,

Cell A discrete location within the

grid world that contains (pos-

sibly multiple) bugs and bac-

teria. The cells are uniformly

spaced within the grid.

Bacterium Food for bugs. Each bacterium

is worth a specified amount of

weight when eaten. Bacteria

are created randomly on the

grid and persist on the same

cell until they are eaten.

Grid A tasellated world inhabited

by bugs and bacteria. Bugs can

move to neighboring cells. The

edgesof the grid block motion.

You should always prepare a data dictio-

nary containing a brief description of w-

ery class, attribute, operation, relationship,

or other element of a model. A simple name

by itself has too many interpretations.

Mclarlm

foadValun:W#ghl

—
Bug ●

waighl:Weight
mmng:W@hl
Ogm:TimO
diracliOn:Angle

o

? pOslliOn:POinlI
Genre II Grid

mlalinnFaciar:ArmY01Integer boundafy:Pnl~gon

Figurel.
OBJECT MODEL
Figure1 shows an object diagram for the

Bugs simulation. An object diagram is a

graphic representation of the cl~es in a

problem together with their relationships,

attributes, and operations. Each class is

shown as a box with the name of the class

in the top part, an optiomd list of attributes

in the second part, and an optional list of

operations in the third part. We have omit-

ted operations from the first diagram.

Each bug has a weight and an age, a di-

tion of movement, and a weight at which
it is “strong” enough to reproduce, These

attributes have been pulled directly from

the problem smtement. Similarly, each bac-

terium has a food value. A gene contains

an array of rotation factors, each an inte-
ger. We want rotation factors to be dis-

crete values subject to quantum mutations;

therefore, we have represented them as in-

tegers but we have not yet said how a fac-

tor value maps into a probabili~ we must

s+ this mapping cluing design, Finally,

we have called the world Grid to capture

its discrete nature wifilrs our simulation,

The boundary of the grid is a polygon al-

though in the first version of this program

it will likely be a simple rectangle.

More important even than the attributes

of an object a its relationships to other ob-

jects. Relationships indiate how objecsz in-

teract, how information flows among them,

and how objects can be assembled into a

complete system. Relationships afFect the

organization of the entire system while at-

tributes (and operations) are o%n used by

only a single class. Relationships include as-

sociation, aggregation, and generalization.

Association is any relationship among
the instances of two classes. In most cases,

binary associations me sufficient. A binary

association is indicated by a line between

two classes (or a loop on a single class) with
a multiplici~ symbol at each end to indi-

cate how many of each class may be re-

lated to an object of the other class. For

example, each cell may contain ~ro or

more bugs and zero or more bacteria. The
line between Cell and Bug indicates an as-

sociation; the black dot next to Bug shows

that “many” (zero or more) bugs maybe

associated with a given cell; the lack of a
49

— Modeling & Design —
symbol next to cell indicates that exactly

one cell is associated with a given bug. An

association and its mo ends may have

names but they may be omitted if there is

no arnblgui~.

A~egm”on is a special kind of associ-
ation indicating a par-to-whole relation-

ship. For example, a gene is part of a bug.

The diamond next to Hugon the line from

tie indicates that Bug is the aggregate and
Gene is the part. The lack of a multiplic-
ity symbol on either end indicatm that each

bug contains exactly one gene and each
gene is pmt of exacdy one btlg. In the case

of a one-to-one relationship such as Gene

is part of Bug, the two classes could be

merged into a single claas containing all

the attributes, but we choose to distinguish

Gene and Bug because they have distinct

n-es in the application domain and a

clew separation of properties.

Tbe realessenceof un ob
not inheritancebut thin

An object-orientedm
becumetbepotentia[to

moh[isalw

A grid is composed of many cells as

shown by the aggregation line between cell
and Grid. Each cell has a unique position

witiln the grid that distinguishes it from

all other cells. The position is not really an

attribute of Celt rather, it is an attribute of

the Cell-Gridassociation sin= it defines the

position of the cell uniquely with respect

to the grid. The association line be~een

Celland Gridwith the box next to Gridis a

qmlz~ed assoctition. The qualz$er in the

little box indicates an index value unique

within the qualified class. A grid and a po-

sition determine a unique cell; a cell cor-

responds to a grid and a position. There

is a one-to-many relationship between Grid

and Cek there is a one-to-one relationship
between the pair (Grid,Petit) and Cell.
50
Why bother to wen have a Gridclass?

~er all, the grid is unique withii the prob-

lem and it seems Wastefi to represent as-

sociations to fixed global objects. Don’t fall

for h reasoning. If you build unique global

objects into yom problem, you will often

fid that you wenruallywant to extend the

problem to accommodate multiple instanm

of the “unique” object. Therefore, define

a class for each object in the system, wen

those that you think are unique, and define

associations between those claasesand other

classes that depend on them.

This completes the basic object dia-

gram. It defines a snapshot of a system at
a moment in time in terms ofobjects, their

attributes, and their relationships. The goal

is to include enough information, and just

enough information, to tily define the

state of the system and the objects in it

without redundancy. Don’ t show redun-

ject-orientedana~sis is
kingin termsof objects.

ohl k objectoriented
ad inheritanceto the
ayspresent.

dant attributes during analysis. For exam-

ple, we could replace age by birthDate but

we would not show both at once because

to do so wodd indicate more fdom than

is actually present in the system. Don’t

show attributes or associations that are
derivable from other attributes or associ-

ations, For example, don’t indicate posi-

tion as an attribute of Bug; a unique posi-

tion value can be derived by navigation

from Bug to Cell to Grid.Don’t show asso-

ciations between clmses as attribute val-

ues. For example, we could have an at-

tribute gene witbin Bug and an attribute

bug within Gene, but this again would in-

dicate that the two values cot,dd be set in-

dependently, which they cannot.

Associations should always be used for
showing relationships between objects be-

cause they are inherently bidirectional;

pointers (attribute values referencing other

objects) we inherently an implementation

concept and do not belong in analysis.

What is not pr=ent in this analysis ob-

ject d~am? First of all, this diagram con-

tins no inheritance (or genera[iution, as

the relationship between the classes is

called). Some readers will be shocked that

I dare to describe an object-oriented prob-

lem without using inheritance. It is true

that an object-oriented language or nota-

tion needs the concept of inheritance to

be fully object-oriented. But that doesn’t

mean that you have to me inheritmce on

every problem. The real asence of an ob-

ject-oriented analysis is not inheritance but
thinking in terms of objects, An object-

oriented model is object-oriented because

the potential to add inheritance to the

I model is always present. For example, we

could specialize Bug into Herbivore and
carnivore subclasses in the hture.

Inheritance may or may not be necessary

in the analysis of a particular problem;

don’t think you have to use it all the time.

What else is missing from the analysis

model? You might note the absence of
methods. Although some authors would
disagree, we feel that identification ofap-
plication-domain objects should come

first. The object cbagram defines the uni-

verse of discourse on which behavior op-

erates. It is important to define what some-

thing h before describing wha~ it does.

Once the objects ~d their structural re-
lationships are identified, you can describe

what they do. Operations can then be
added to the model.

The analysis model does not attempt

to encapsulate information. The analyst
shodd take a “God’s eye” view of the prob-

lem and capture all the information avail-

able. Accessing attributes and traversing
associations are legitimate sourms of in-

formation that do not require any special

dispensation. How can you make a good

design if you conceal information from

you;self? Encapsulation is a design con-

struct intended to limit the WM ofchanges
within an implementation; it is not an anal-

ysis construct.
JOOP NOVEMBE#DECEMEIER 1991

— Modeling & Design —
Figure 2.

DYNAMIC MODEL
The obje~ model specifies the structure of

the objects in the Bugs simulation. During

analysis,you must, ;f murse, define th=
behavior that you want your system to

have. Behavior can be specified by the in-

teractions that occur between objects and

the transformations that objects undergo.

In the OMT methodology, interactions

are specified by the dynamic model and

transformations by the fincta”onal mohl

The dynamic model specifies the exter-

nal interactions of the system with outside

~ents. The dynamic model is represented

~aphically by state diagrams: on; for each

classwith dynamic behavior. Figure 2 shows

a xtiti dia~am for &s Bug. The state di-

agram shows the life history ofa bug. Each
rounded box is a different state. The be-

havior of a bug is very simple. It only has

one state, Alive,cluing much of its Iii. The

other sutes are initialization or termina-
tion states. An atrow between states shows

a state transition in response to an eoent,

which is an interaction between objects.
The open circle labeled “birth” points to

the initial s~te of the object, the state Alive.

The only event a bug responds to is

clock tick, i.e., the passage of a unit of time.

The passage oftime maybe regarded as an

event from the universe to an object. When

an event omurs, the object takes a transi-

tion from the current state labeled by the

event, When a transition occurs, an object

may perform an operation and transition

to a new state. When clock tick occurs, the

bug performs operation step and returns

to the Alive state. The bug also responds

to two possible conditions shown as tran-

sition labels in brackets. A transition oc-

curs whenever one of the mndltions be-

comes true. If the bug starves (weight= O),

then it transitions to state Dead, where it

performs operation die and then ceases to

exist (shown by the bt.dl’s eye). If the bug

gets fat enough (weight > *ong), then it

transitions to state Reproducing where it

performs operation reproduce, which cre-
ates two new bugs to take its place. The

original bug then ceases to tist. (We codd

have drawn the state diagram so a repro-

ducing bug made a single copy of itself and

continued to d but the way I have drawn

the diagram is more symmetric.)

The event clock tick &ts every bug. In
what order do the various bugs perform

their operations? For this simdation, it

doesn’t much matter so we don’t specify it.

Objeti are inherent~ comrrent. Since all

the major object-oriented languages ate se-

quential, during design we must serialize

the mecution of Bug operations but during

analysis a concurrent viewpoint is just fine.
This state diagram completely defines

the behavior of the system. N1 operations

are dtimately initiated by clock ticks. But

where do we speci@ the effect of an oper-
ation? That is done in the functional model,

FUNCTIONAL MODEL
The fictional model specifies the effect
of operations on data valua. It is expressed

by htifiw diapam, one per nontrivial

operation. Figure 3 shows the step opera-

tion on Bug that is performed every clock

ti& In the diagram, boxes represent ob-

jects, ovals represent functions, and arrows

represent the flow of dam values.
The diagram for step shows there we

three independent computations within

the operation updating of age, weight, and

spatial parameters. For example, the wrow

leaving Bug labeled “age” represents the

age attribute of Bug. The growOlderknc-

tion takes an age as input and yields a new

age as output (most liiely a simple incre-

ment). The arrow horn growOlderto Bug’

labeled age’ represents updating the age at-

tribute of Bug. The prime symbols are in-

cluded merely to clistinguish original and

updated VableS. They muld be Omid but
the diagram is easier to read if old and new

values are visually distinguished.

Operations growolder, trtehboke, and

eat are all simple operations that cart be

described by formulx. For example,

growolder might be age’= age+ 1 and eat

might be weight” = weight’ + foodValue.

The find operation is a simple data ac-

cess within the object diagram. Its inputs

we the location attribute of a bug and the
l*n,di*n IOcatim..direclion,

+

Ioo&alue

Remrla
Iu

Iocalion

Figure 3. Figure 4.
51

— Modeling & Design — —
G9n0 brie’
I

I I
GOM-

0

Figure 5.
grid itself. Its output is the bacterium (if

any) found at the location within the grid.

Howwer, we don’t want the bacterium it-
self but its food value as input to the eat

function. The solid mrowhcad on the out-

put of the fmd operation indicates a shift

in viewpoint about the dati value, look-

ing at it as an object rather than just a value.

We can then pull the attribute foodValue

out of the Bacterium object.

Operation movefrom Figme 3 has been

expanded into an entire data flow diagram
in Figure 4. This operation updates two

attributes simultaneously.

Figure 5 shows the reproduceoperation

on Bug. In this diagram, two new bugs are

created from scratch and their attributes

initialized from the attributes of the orig-

inal bug. The age of the new bugs is set to

the value O, however.

THREE MODELS
Theanalysisisnowcompleteanddesctibecl

by three separate but related models. The

object model describes the information

structures of the system. The dynamic

model describes the internal stimuli that

initiate activi~ on objects and the opera-

tions that are invoked. The functional
model describes the computations on val-

ues pefirmed by each operation. Together,

aU three models describe what a system

does with minimal constraints on how it

must be implemented.
As a final step of analysis, you may sum-

-ize operations from the dynamic and

knctional models onto the object model.

Figure 6 shows the Bugs object diagram

with operations allocated to object classes.

Operations that update attributes have
been allocated to the class owning the at-

tributes. For mample, growolder and me-

tabolize have been assi~ed to Bug.

We can use the analysis model to an-
52
swer all kinds of questions about the sys-

tem we are building. We can ask and an-

swer queries about the state of the system,

the r=ponse of the system to stimuli, and

how values are computed. Wean execute

the simulation to a certain level of detail,

We cannot completely execute the model

because we left some details open such as

the mapping of the gene rotation factors

into probability vectors. We omitted these

dd because we did not care exactly how

they are implemented.

This example is brief and I do not have

the space to mplain it in fill detail. There
are details in the diagrams that you can

pde out on your own. In hture columns,

I will follow the problem through the de-

sign and implementation stages.

During design, we must resolve any

open issues and expand the details of any
loosely specified operations. We must

also transform and optimize the analysis

model so that it is efficient enough for
implementation. During implementa-

tion, we must map the design into a

I I I

BUB

wighlWeig~
stmng:wnighi
qn:lima
timctiOn:Amlo

~fio
ealo
ntildnq)
move[)
Mpducoo
~le(byAngle)
mlabtimo
nkel[ty:Punl)

T-

ewilion POint

Gfld

00undary:?olqgon
—._

mutale[)
ran&mOiredlono: Angla

-. I

Figure 6. I
specific programing language and sat-

isfy all of the rules and conventions of

the chosen language.

OF MODELS AND COLUMNS
In hture columns, I hope to look at dif-

ferent aspecizof modeling and design mme-

times taking a high-level view of a broad
area and sometimes exploring some inter-

esting narrow issue in detail. I do not in-

tend to recapitulate the material in our

book in detail but I will touch on some of

it in passing and also bring up some new

issues. We ate still learning from others

and we hope they will learn from us so you

may see changes and inconsistencies over

time. That’s life, real and artificial.

Methodologies as well as bugs and designs

must evolve, so I would welcome feedback

from readers. ■

ACKNOWLEDGMENT

This month i column incids mate-

riul from tke Object-Oriented

Modeling and Design Tutorial by

James Rumbaugh et al Used ~per-

mission of the authorr.

REFERENCES

[Dewtn89] Dewtney,AK Mathematical-tions,

Scienh~cAmericaw 260,5, 1969.

[Rumb91] Rumba@, J., M. Blaha, W. Pmer&l,

F. Eddy, and W. Lorensen. Object-Oriented

Modeling and Dcsi~ PrenticeHall, Englewood
Cliffs,NJ, 1991.

Jame~Rumbaugb tia compuwscientitat General

Ehctric Research and Development Center in

Schenectady, ~ Dr. Rumbaugh bar been active

in ob].eti-on.ented techno[o~ for many years. He

hvehpedthe object-on”ented kinguage DSM, the

OMTmetbodohgy, and the 0A4Toolgraphic ed-

itor. He i~author (with Michael Bbha, Wiliam

Premerlani, Frederick Eddy, and Wi[liam

Loremen) ofObject-Oriented Modeling and

Design ~ Prentice Hall. He can be reached at

GE R&D Center, B~ K1-5B4~, PO Box 8,

Schenectady, NY12301, ~pbone at (518)387-

6358, or ~ emil at rumbaugh@crd.ge. corn.
JOOP NOVEMBE~DECEMBER 1991

Tools

Making inferences about

objects
by Paul Hatmon
I
N MY LAST COLUMN, I discussed

some of advantages that could be

gained by combining the features

of frames, a concept derived from

theA.I world, with the class/instance

aPPrO~ found in the WOrldof object-ori-
ented pro-. The tire offtames

and objects, as exemplified by the best of

the current expert system-building tools,

ofirs greater power and flerribllity.In mak-

ing that argument, I relied on the features

that frarna bring to objects including de-

fatdts md constraints on the values of at-

tributes, class-specific attributes, and the

ability to control inheritance in various

ways. In this column, I want to consider
the additional power that can be gained

when you combine object-oriented sys-

tems with inference/rule-based systems.
I propose to describe a sched~lng prob-

lem that I call the Trucks& Drivers prob-

lem. It provides a modest but interesting

example of how one can combine art in-

ferenm-based set of rules with an object-

oriented system to solve a problem much
more efficiently than either technology

codd by itself.

The Trucks & Drivers problem is sim-

ple: we want to develop a-truck schedul-

ing system that will identi$ pairs of trucks

and drivers that are available at the same

location and ready to be dispatched.

Rather than just p~ring any truck with

any available driver, we will also need to
. .

aPPIY some crlterla to assure that we u5e
the “best” available driver at any point in

time.

We will need to create three classes, one

to describe drivers, one to describe trucks,

and one to describe successful matches be-
tween the two. Our classes take the form

shown in Table 1.

We will describe the uses of the slots

and methods in a moment. Note first, how-

ever, that this application assumes an ex-

pert system tool that can automatidly link

with various relational databases. In this
case, we include a dBASEmethod in both

the Truck and Driver class. (This is a pre-

specified method available in the tool.)

This method will automatically generate

and execute the code necessary to obtain

information from records in database files

on trucks and drivers. In other words, the

Truckand Driverclmses will be instantiated

by drawing on values stored in records in
Truck and Driver database files.

In addition to the three classes, we will

write a single rtde that will be manipulated

by an inferenm engine. (An “inference en-

gine” is simply an algorithm for searching

for rules and evaluating rhem. The use of

an inference engine assures that the appli-

cation will use dynamic binding just as an

object-oriented application that incorpo-
rates virtual methods makes cer-rain deci-

sions at runtime.) We could, of course,

write an inference engine from scratch but

that wouldn’t be very efficient. It makes a

Ior more sense to acquire an errpertsystem-

building tool, develop our objects and rtdes
within that tool, and then embed that tools’

inference engine in the final application

when it is compiled.

To solve our scheduling problem, we

will need the following rule

If orderby (Driver?.Score)
andDriver?.Retum_Status= available
andTnrck?.Retunr_Status= available
.

andTruck? andDriver?with
Truck?.In_City= Driver?.In_City

Then send (M&e_Unavaihbleto Driver?)
send (MAe_Unavailableto Truck?)
send (Create_Result,Truck_Iicense

andDrivet_Narrretn class(Results))

This rtde is a pattern-matching rule be-

cause it dom not refer to any specific in-

s~ce of either Truckor Driver.Instead, the

inference engine automatically seeks out

instances of trucks and drivers and suc-

cessively binds them with this rule to de-

termine if there are one or more success-

ftd implementations of this rule.

To make this rule even more powefi,

we have included an orderby command in

the rule. The orderbycommand evokes the

A* algorithm, an AI search technique that

will prioritize any list of drivers according

to some set of criteria. In this specific ue,

the orderby command sends a message to

a method, Driver.Score, That method, in
turn, appli= a formula to the values of the

Seniority, Safety_Record, and Layover slots
associated with each insmce of the Driver

elms and creatm an index that orders the

&lvers aarding to a score assigned to each
instance. This index is held in memory so

it can be reused. The instance of Driverwith

the highest score is returned ro the rule.
Each time the rtde is reinstantiated the in-

stance of Driverwith the next highest score

is returned. This continues until the entire

list of Driverinstances is exhausted.

Driver? indicates that the rule will ex-

amine insmces of the Driverclass. As each

instance is identified, ir will be bound with

Driver?(e.g. Dnverl, Driver2, etc.) and sub-

stituted into the rule wherever Driver?oc-
53

— Tools —
Table 1.

class: Driver
slots:

methods:

class: Truck
slots:

methods:

Class:Results
slots:

methods:

Nme (any name)

Status (availabla/unavsilsble)

tity (SF, IA, NY, InRoute)

Serdority (no. of years wilh firm)

S~_Record (no. of accidents)

Iayover (number of days that ihe driver has had off

since last trip)

Retum_status (returnsvalue for status slot)

h_City (returnsvalue forci~ slot)

Driver_Nanre (returnsvalue of Driver_Name)

Make_umwlifable (-value OfatatusSfottou~)

Score (returnsa value derived by applying a forrnufa10

the values associated with the seniorii slot, Ihe safety
record slot and the layover slot)

dBASE(automatically generates code to obtain record
information from database)

License (License number)
Status (available/unavailable)
City (SF, M, NY, htRoule)

Retum_Status (returns value for slatus slot)
In_City (returns value for city slot)
Make_Unawdlable(changes value of ~s slot to unavailable)
License_Nrun (returns value of License)

dBASE (automstfcally generates cede 10obtain reoJrd
information from database)

Truck(fiinse)
Driver(name)

Create_Result (creates an instance of resufts class)
Truck_License (places value of lru& license in the new

instance)
Driver_Name (places value of driver in tie new instance
curs. Next, the inferenm engine will iden-

ti~ an instance of the Truck class and bind

it with the term Truck?. By binding and

unbinding instances of Truck and Driver,

the rule will be used over and over again.

The &use Driver?.R-_Shtus = avail-

able sends a message to the bound instance

of Driver to fire a method called

Retum_Status, This method, in turn, checks

the slot of the Driverinstance called Status

and returns its value. If the value of the

Dtiverl.Statis slot is available, this clause

succeeds and the inference engine moves

on to the next clause of the rule.

In a similar manner, the rde initiates a
54
message to the Truck instance (e.g., Truckl)

that has been bound to determine if the

truck is available.Auming the value of the

Truckl.status S1OV= avaiiable, the inference

engine proceeds to check the next clause.
The fourth clause sends mess~ to both

the Truck and the Driverinstances to deter-

mine what city each instance is in. If they

are in the same ci~, the rule proceeds,

Whenever a match is found, the infer-

ence engine proceeds to the men portion

of the nde and seu the value of each of the

instances’ Status slots to unavailable. Next,

it creates an instance of the Results class

and assigns the driver’s name and the
truck’s license to the new instance. (The

entire application is controlled by an Agenda

that began by initiating the fomd chain-

ing role. When the rde has fired as many

times as it can, the second item on the

Agenda, which ds for a printed list of all

instances of the Results object, is triggered

and the application is complete.)
Figure 1 illustrates the status of our

Truck&Driverapplication at the point when

the system has sucwsfilly fired the rule

once and identified one match. The in-

ference engine has now reinstantiated the

n.dewith new instances ofTruck and Driver
and is now ready to try for a second match.

(Note that the second rule will fill since

Truck2 is in a different city than Driver2.)
If you think of an instance as similar to

a relational database record, and you con-

sider the inswces of dlfient classes (files)

as records belonging to different fil=, then

our pattern-matching nde is doing what a

database programmer would cdl “joins.”
In most cases, however, pattern-matching

rides are much more ~cient than database

joins since the inference engine dynami-

cally sets sucmssful matches to “unavail-

able” thereby successively reducing the set

of available trucks and drivers that must

be checked during each sucmssive round

of search. In addition, the use of the A* al-

gorithm assures that the search vvillbe pri-

oritized. In other words, the use of infer-

encing, pattern-matching rules, and ckses

that can be institiated from a database

provides developers with a much more

efficient way to handle complex configu-

ration, planning and sched~lng problems

that either rules or objects, by themselves,

muld provide. (It is exactly these types of

problems that have led all major expert

system tool vendors to add object-oriented

capabilities to their tools.)

In addition, since an inference engine

examines whatever rules it finds in the

knowledge base when the application is

run we could easily modi~ our program
by adding additiond roles to the knowl-

edge base. We cor.dd add rulm to handle

exceptions. Similarly, in some emergenq,

we could add or modi~ rules to handle

special situations. All the arguments that

can be made for the advanq of the mod-
JOOP NOVEMBER/DECEMBER 1991

— Tools —
ularity inherit in object-oriented pro-
gramming CM also be made for the useof
inferencingand rides.The two techniques
combined, each representing a slightly dti-

ferent type of modularity, are much more

powerful than either by itself.

There are certainly simplet problems

for which languages like Srnalltalkartd C++

are well suited, When you mnsider inte-

grating object-oriented programming U-
pabiliti~ into a CASE tool to facilitate the

development of large, complm commer-

cial applications, however, it’s hard to itnag-

ine that users aren’t going to want the ad-
vanced object-oriented features that radt

from combining f-es and objects. They

will also want the additional capabilities

that can only be obmined by mmbining

objects with inferencing and rules.

Several popdar expert system-building

tools could come close to the solution I
have reviewed. As far as I know, however,

onlyAion Corporation’s ADS tool has the
capabili~ of combining the inferencing
and pattern-matching capabilities ilh.ts-

trated with message passing and the fill

encapsulation that is illustrated. (Most m-

pcrt system tool vendors are still in the pre

ms of adding message passing and figur-

ing out how to dorce encapsulation whfle

still running efficiently in mainframe en-

vironments.) When you consider that

Aion’s ADS is written in C, runs on main-
frames in environments like IMS and

CICS, and accesses all the mainframe

databases, you realize why I believe that

the most powerful and practical object-
oriented programming environments are

being sold by mpert systems vendors.,

PRODUCT INFORMATION

AION DEVELOPMENTSYSTEM (ADS)

AION CORP.
101 University Aw.

PALOALTO, CA 94301

(415)328-9595, faH(415)321-7728.

I

I

Second instantiation of patternsnatching rule:

If orderby (Driver2.Score)
and Driver2.Returr_Status = available
and Truck2.Return_Status = available
and Truck2 and Dnver2 with

Truck2..Ir_Clty = Driver2.In_City
men
send (Make_Unavailable to Driver2)
send (Make_Unavailable to Truck2)
send (cmte_Result, Truck_License and

Driver_Narne to class (Results))

/ I \\~ Malte_Unavailabl

sTruck_Llcmx
Driver_Name

class:
Results Creati_Result

Tmc___

Driver_Name

TmckJ1cense H 1234 [
l~u FInh

,egH-

/ LayovcI H5 1

/ ~ Name U MaN I

I

Mske_Unavailabl(

.- !

LnyOvel ~4 [

Jre 1.The l’tucks& Driverssituation after one rule has fired,
AC~OWLEDGMENTS

The author wishes to acknowbdge the

he~ receivedfiom Jan Aikins and

Bernade~e Kowahki of Aion

Coloration in ~ettt”ngup and testing

this problem, The ryntax of the rule

and the ckssses ltited in this artieh,

however, are notfiom Aion i ADS.

Aion > syntax i~ more elegant, but

wotddreguire more information abowt

how an inference engine works, I

modt>ed the ~ntax to make it emier

to describe tbe~cks & ~rivers appli-

cation in such a short space.

Paul Harmon k the editor of two newshtter~:

Object-Oriented Strategies and Intelligent

Sohare Strategies. Heir the coauthor of three

popuksr book~ on qeti y~tems and the CEO of

ObjectCr~ Inc. He can be rcmhed at Harmon

hociater, 151 Coflingwoo4 San Franrisco.U

94114, ~phone at (415)861-1660, or by f~
at (415)861-5398.
55

Smalltalk

Combining modal and

nonmodal components to

build a picture viewer

by WML~nde & John ~gh
OVER THE PAST several

months, we watched a

colleague develop an ap-

plication interface that

had a requirement for

large numbers ofimnic bu~ons and static

pictures. A gret deal of his time was spent

importing color pictures from a Microsoft

Windows paint program through the clip-

board, finding thar minor variations were
needed, moving them back to the paint

program, and repeating the cycle.

There were several annoyances in this

cycle. Since there were many dictionaries

of such pictures, the picture to be updated

had to be located, often by inspecting suc-

cessive mndidates and displaying them by

sending each an explicit display message

to get a visual check. Next, care had to be

taken to place a copy of the picture on the

clipboard because the operation that ac-

tuaUymoves the bits into the clipboard ul-

timately destroys (teleases) the picture when

Figure 1. The picture viewer.
.

56
a new picture is placed in the clipboard.

Of murse, if you could be gu-teed that

the transfer was actually going to be suc-

cessful you could avoid making a copy.

When the dlpboard picture was success-

hlly pasted into the paint program, it was

necessary to come back to Smalltdk to ex-

plicitly release the original picture because

Smalltalk/V Windows keeps handla into

operating system memory where the bits
are actually kept, Coming back the other

way is much simpler because a new pic-

ture is created in the process.

What makes the prowss painful is that

you have to continually execute bits and
pieces of code that are kept, say, in a sPe-

cial workspace. Every now and then, this

code is discarded, sometimes deliberately

and sometimes accidentally, and must be

regenerated.

What was needed was a simple picture

browser (Fig. 1) that supported these op-

erations transparently. The browser we de-

scribe is based on an original design by

Wayne Beaton but has undergone sub-

stantial modifications. In particulm, rhe

new design subscribes to the usual editing

patadigm whereby a user is always editing

a copy rather than the original. It also makes

use of modal dialog boxes for opening and

saving information. The modal dialog

boxm and the browser, which we call the
picture viewer, were all developed with

Acumen’s Window Btider for Srnalltalk/V
Windows. It maybe a surprise to some of

you that dialog box functionali~ is already

supported by the builde~ i.e., there is no

need for an external dialog box editor.

I

DESIGNING THE PICTURE
VIEWER
The picture viewer is designed to keep +

of a number of different picture libtaries

that it maintains in a class variable called

HetureLibrdes — a dictionary in which

the key is the name of the library and the

value is another dictionary ofpictures keyed

by the picture name, We can also file out

the libraries but we won’t focus on that is-

sue here.
In a typical session with the viewer, a

user might open an misting libraty using

Open.,.in the Lib-menu (Fig. 2). Next,

he might look at the pictures it contains

by clicking on the N- (or Previous) but-
rons. The name of the picture is displayed

in the combo box while its extent is dis-

played to the right. It is also possibleto go
directly to a specific picture by selecting
the appropria~e name-in the combo box:

To copy a picture into the clipboard or

paste the clipboard over an existing pic-

ture, the Copy or Paste operation, re-

spectively, in ~e Picture menu can be used
(Fig. 3). Menu command New... requires

a prompt for the name of the picture; it

produces an empty picture that can sub-

sequently be pasted over.

Figure 2. The Library menu.
JOOP NOVEMBE~DECEMBER 1991

— Smalltalk —
Listing 1. Class L~eryWlog,

class LisKtueryDialog

superclass WBTopPane
mce vtiles resultme list

classmethods

-p[es

-plel
“HueryDialog examplel”
“NuecyDialog new

labek ‘Choowa cobr’;
open~ #(’red’‘green’‘blue’)

tice methods

generated by builder

eddSu~ aPane
“ Wane

own=. self;
wti #openedperfa- #opend;

addSubpane:(
Buttonnew

awna~ aPane;
_ #defaultPushButton;
wisem#clickedperForm:#ok;
conte* ‘Or;
ftancingB= (23@ 152

m~ . 128@ 120);

-q;

addsubpsal* (
Buttonnew

ownen aPane;
-#dicksd-ti;
conten~ ‘Cancel’;
tigti (139@ 152

lightBottarn2M @180);
-w;

Wubpen* (
IiStPane:=LiatBoxnew

OwneraPane;
nameFMItin ~ane’;
where#doubbCliclrSeled

perfonm#seb-~;
~ (22@ 23

~~ 244@ 137);

-w

buildMenscBarFon apme
Wotidng”

defaultFt-
~-tie

-[
“~*ts* ‘w-d) I
~comts * ‘wQ~) I
~mConstants* WsCa@n’)]

fi= [“461373ti]

isdlkviiElrtent
“270@ 218

brcllderaverride

Modal

“inre
ml

“label

openingand dassitg

openh aColl*on
list:= aCoUectian.
“se~ open

result
Aresult

top pane eventhandling

opeti he
liatpme

co- ~
seti~ (listiaEmpty

h [0]
IfPab [1]);

~s

ktpane eventFrandmg

ee~~. apane

‘Assumes the list en~is alreadyselected.”
selfok NL

button pane event hand3ing

cancek ignore
result:=ml
self*MOW.

ok ignore
resuk:=Wane ae~~m.
Sti Cloaew-.
Ecopy
cut
Paate

Delete
Reoame...

Figure 3. The Picture menu.

DESIGNING AND IMPLEMENT-
ING APPROP~E MODAL
DIALOG BOXES
The original implementation of the pic-

ture viewer used simple prompters for re-

acting to Open.,. and SaveAs... in the Li-

brary menu. To improve on this, we used

the Window Builder to design two dialog
boxes as shown in Figures 4 and 5.

Initially, these dialog boxes were

specifically designed for the picture viewer

but it quickly became apparent that Iide

work had to be done to make them more

generally useful. We called them List-

QueryDialog(for pickingand choosingm
atbittary element of a list) and ListExten-

sionDialog (for picking and choosing as

behre but also permitting the new element
to be supplied by typing it). See the cor-

responding example class methods in List-

ings 1 and 2 for how they might be used.
The dialog box was designed to respond

to four events:

9 the top pane’s #opened event, which

has to place the list of items in the list
pane.

● the list pane’s #doubl~Weet event
thatdoubleshr a click on the OKbutron.

● the OK and Cancel butrons’ #elieked

evenrthat, respectively,set the valueof

Lilsrrsryl

Llbray3

Figure 4. The Open,.. dialog kx.
57

— Smalltalk —
Llbrn~Name ~[

Llbrayl
Llbrary2

Figure 5. The SaveAs... dialog box.,

the resisdtinstancevariableto the item
selected in the list pane or nil.

We had to browse the Small* library

to find out that modal dialog boxes send

the message resultto obtain the value to

be returned (an Acumen extension).
When designing the dialog box in the

Window Builder, no option or switch was
.“>0
,.-. ,
located that enabled us to speclty whether

or not the resulting window was to be

modal. A modal window prevents users
from carrying on in an application until a

response is provided. Making a window

modal is simply a matter of dlcking a switch

in the builder,

There was, however, one problem that

was caused by the builder. We needed to

be able to supply an arbitrary title. Nor-

mally, tils is done by sencling the message
label: astig to the window. This causes

the window to redisplay the string it ob-

tains by sending itself the message label.
However, the builder insists on changing

the code for this method to ‘hbel:=user-

SuppLiedStigConstant, which causes any

label changes to be ignored, What the

builder should have done is add the re-
quired la~ aStig message in the gen-
erated pane construction method addSub-

panesTm. We simply replad the problem

method with the mrrect version that ex-
ists in a superclass.
,—, . ..- ._. .—–.
l“he dialog box lot class WtExtension-

Dialog was obtained by editing the List-

QueryDialog window to add NO more
pan= a static text pane (referenced by in-

stanm variable subtitlePane) and an entry

field (referenced by instance variable

narttePsrte).The static text pane’s contents

could be supplied by the user by sending

the window the message subtitb: astring.

The entry field permits an element not in

the list to be supplied,

An additional handler, method eM-

~n~., for event #aeleet in the list pane
was added to ensure that the selected list

element was inserted into the entry field.

Selecting an element didn’t require a han-

dler in the previous dialog box because the

selected element was retrieved only when

the OK button was pressed. Of course,

even though there was no handler, the list

element was still selected as a user clicked

on it in the list pane.

The only other complication involves

the subtitle: astig message. Normally, a
Listing 2. Class ~ntinDhlog.

dsss ~nr)iab wubpan~ (toppane mwit handling

IistctueryDislog Wsna:= ListBm new
~~ ~~w Ownm apanq G sPsne

namaFotM= ‘ListParle’; namePaneeonten~ (listisBrapty
classmethods * #select *K p] M ~fllat]).

perfomc #cli~@; self au~. su~tle.
esampl.es wti #doubleCliclrSeleet superope~ SPane.

perbnrc #sek_~;

-~1 _Bloek (21@ 79 listprrne evwrt handling

~nDialog eqlel” ~ 243@ 193);
A.~ord)ialog new -q; c~ . tisne

Wk ‘Choosea colot; “-es the list en~ k abeadyselected.”
a- ‘Cobrname’;
_ #(’red’‘green’blue’)

a-(nsmePsneeontenk IistPane
nsmePime:=MtryPieMnew se~

Owns SPsnq
instancemethods namaForInslV= ‘nsmePane’; se~ . aPme

*Block (125 @27 “Assumesthe list err~ is abeadysebcted.”
genemti bybuIUer rightB_ 243@ 51); namePmeeontenWWane

-w se~tem.
addsu~ aPsne selfolc roll.

... -b Mg 1 qt for... ~-t
’267 @ 282 button pane event handling

SddBn- (

sutiPsne:= *ticText new dialogboxinitialisation & ignore
~ aPane; result:=nemepaneeontente.
namsForImstVm ‘subtitlePane’; alla Sstdng selfClosawindow.
m- ‘untid’; sum :=-g.
_B& (22@ 29 subtitkpane Nil

~rn 116@ 57); M* [suMlePane

W*; eontenk Sstdng]
JOOP NOVEMBER/DECEMBER 1991

— Smalltalk —

E3
Uitor Enhuwnnti

f
~~ti”~ 286

Multi-function editing for
SmalIt~, consistent with the
standard editor and adding over
~ user accessible commands,

including

● Text Status Pane
● Ordine Help
● Key Customization
“ co rnmand Completion

● Erthanced Cut/Paste
(with mdtiple co ies

rviewable in place
. Copy Ring Processing
c Place Marking
. Macro Facility
● Easy-to-use Enhanced

Search and Replace
s Text Transposition
. Case Alteration
● Text Fill and Margin

Settings
. Abbreviation Facility
● Non-printin Character

tinsertion art value
report

“ Progranlmirt g support
s User Preferences
s Miscellaneous Goodies

us S75.00 + $laoo Sisippislg.
Refinsdtinot satiaiied.

VlS4 and MasterCad Aeeepted
Ordering / rsssther &talk from:

Object OrchardLtd.
9 Fettes Row,
Edinburgh,
%otland, UK.
PHONE: +44 315581815
FAX: +44 315562718

E3 for Smalfialkfl Wndows
avaihble Ju~ 1991.
user woutd supply the subtitte (sm “Library

Name” in Fig. 5) before the window is

opened. At that time, the subtide pane

doesn’t exist so the subtitle must be stored

in a local variable (subtitle). When the win-

dow is opened, the #opened event handler

a pla= the string in the subtitle pane. Of

course, users might want to dynamically

change this subtide. The short but never-

thelesscomplex) implementation of method

subtiti: handles these possible scenarios.

SMALLTmti WINDOWS

EXTENSIONS TO SUPPORT

THE PICTURE VIEWER

To support the manipulation of the pic-

tures conveniently, it was necessary to add

obviously missing methods to class Eitiap,

e.g., deep ~d shallow mpy operations m
shown in Listing 3.

More fundarnend and problematic was

that fact that hatky through our imple-

mentation we discovered that mpy oper-

ations for dictionaries were incorrectly im-

plemented. We were ting deep copies of

libraries (dictionaries of bitmaps) and find-

ing that releasing the bitmaps in the mpy

destroyed the originals, too. Our initial re-

action was to implement our own private

method that performed the copy correctly

but we ultimately decided that a proper

solution required a change to the system.
The problem stems from the fict that

the original implementers provided an im-

plementer’s view of the solution rather than

Listing 3. Extensions to class Bitiap.

class Bitmap

instancemtiods

mW”n9

I btiap I
btip:= sewclass

scree=nti seifextant.
bi~ pen

copyStip: self
from seUboundingBox
at O@O.

“bitmap

Sham
‘M deepcopy

I

—

a user’s view. Intuitively, a shallow mpy

of art array provides a user with a new ar-

ray sharing the elements of the old. More-

over, changes to the new array don’t affect

the originat. Similarly, a shallow copy of

a dictionary shodd provide a user with a

new dictionary sharing the keys and val-

ues of the old. Changes to the new dic-
tionary should not affect the old (which

was not the case). A deep copy is similar

acept that a shallow copy of the elements
is made in the case of an mray (a shallow

copy of the keys and values in the me of

a dictionary). Consequendy, users expect

to be able to change the elements (keys

and values) in the deep mpy without af-

fecting the corresponding elements (keys

and values) of the original. AS implemented,

neither the shallow or deep mpy opera-

tion for dictionaries makes copies of the

keys and value. The revised methods are

shown in Listing 4.

IMPLEMENTING THE PICTURE
VIEWER
Thepictureviewermaintainstwoinstance
variables,libraryNameand pictrsreName

Listing 4. Extensions to class Dictionary.

1
class Dictio~

instmce mtiods

mw”n9

Shalti
“~ a copy of the receiver ti~
ties the receives keys and values
(but not tie same aasotion
objects) .“

Irmswerl
~:= self speeiea new.
seti aaaociationsDo:[:eiementI

answerW element*-].
“answer

-w
“*a copy oftie reeeiverwith
fiaUowcopiesofthe keysandvalues
(whichrequiresa deepcopyofWe
associationobjeets).”

I mswer I
answer:=selfapaeiesnew.
selfaasoeiatinsk FelementI
Circle30 on Readef Service Card

— Smalltalk —
—

Ckss ~etiewer
superclass WBTopPane
intice variables LibrarylibraryChanged

LiimryNamepictur~ame
picturepanepictureNames
PanepictureSisePane

ck variables PictureLibmries

classmethods

examples

aruurplal
“PictureVWere-plel”
PictureVim nawopen

c[msinitialirah”on

isriualize
“PictureViewerinitiake”
(pictureLibrariesmti Dictiow)

~ [setimleaae].
PictureLibraries:=Ditionarynew

“PictureViewHrelease”
PictureLibraries& [:libmy I

~raryti [:pictoreI picturerelearn]]

l17imryaccess and modfimtion

U*

“PictureVlewerlibraries”
‘Picturetibraries

Iiirasiex aDitinary
selfWliaa.
Picturetibmries:=mnary

instice methods

genemtedbybu17der

addSubpanesTmapme
“ apane

own- sek
wham #opened perform:#opend;
w- #close pasfow #cbsed;

add8ssbpane:(
StaticBoxnew

~ apane;
m: #bla&ame;
~d (166@ 189

_ottorn 257@ 214);

yourself);

Listing 5. Class PictureViewer.

addsubpam (
Buttonnew

owsse~apane;
where #clicked

perfom: #clickedN*;
mn~ ‘Next’;
tifigBti (175@ 224

~htBottorn 251@ 248);

yoslmlf);

addsubpane: (

pichsrePane:=GraphPanenew
owner aPane;
namaFosIMm’picturePane’;
framingBM (14@ 14

rightsottorn 257@ 180);
yossmelf);

add8ub~ (
Buttonnew

owner apane;
Wk #cIicked

-. #ctickedRevious;
m*nks: ‘Previous’;
fiamingBW (26@ 224

righ~ 102@ 248);
yourself);

addsubpam (
--me:= CtiBox new

owne~ a.Pane;
nameForInstVa

‘picturdamesPane’;
_ #dropDownW;
when: #select

- ~:;
wham#doublfickSelect

-~~;
tig~ (15@ 189

rightBottosm157@ 293);

~eq;

addSubpenC(
p_SWasre:= SticText new

ownex apanq

e. #centered;
mntmr~ ‘32@32’;
framingBW (168@ 193

ti~ . 255@ 212);
yolssaelfj

MldMenuB~Foc apane
,,, codenot shown...

(Win~ts * WsThickframe’)]
- [“47120384]

*tisxtent
“282@ 307

tie

bu17derovern”de

label

“Mel

hbrary menu mmmands

Wr@ew
selfpmmptPo~ael.
selfp**Libra~. liirary.
LiimryName:=pictureName:=ml
bi-ged:= hl.se.
seEfu~

mnuyopen
Inamekeysl
wlfpromptFo~ed.
name:=ListOueryWognew

labek‘ChooseapictureW-;
Opanm PictureLibmrieskeys

~calleclion.
nameiaNilh [’sew. ‘UsercancelM.” !
setiprivamtiy Iibray.
hbrq:= (pictureLibrariesahname)

-.
Liame:= name.

M :=mwkeye assortedcouacnon.
pictureName:=keysisSmpty

k [nil]
*[b fimt].

Libralychanged:=*.
*Mupdate

WraryName~

- [Aself~l-
setipriva~ (pictureMraries

* librarpName).
PictureLibraries* lib~ame

plrklibrary-.
~mryChanged:=hlae
60 JOOP NOVEMBE~DECEMBER 1991

‘,~p~ * q-
:wifiti~cJng Stiafltal~ “into Your

~m~zatimfl

●Designingand Managing Smalltalk

Class Libraries

cEffectively Managing Multi programmer
Smalltalk Projects

●Metrics for Measuring
Smalltalk Systems

●Organizing Your Smalltalk
Development Team

. Metalevel Programming

●Smalltalk in the MIS World

SSmalltalk as a Vehicle for Real-Time
and Embedded Systems

●Teaching Smalltalk to
COBOL Programmers

●Interfacing Smalltalk to a
SQL Database

● Realizing Reusability

Plus:

● Hard-hitting product reviews

● Book and conference reviews

● Lab reviews

● Best of Smalltalk Bulletin Board

● Personality Profile

If you’re programming in Smalltalk, you should be reading THE SMALLTALK REPORT. Become a Charter Subscriber!

. CharterSubscriptionForm...
~yes, enter my Charter Subscription at the terms indicated. Name

~ 1 year (9 issues) Cl 2 years (18 issues) Title
Domestic $65 $120

Foreign $90 $170

Method of Payment
Address

Q Check enclosed (payable to THE 5MALLTALK REPORT)
City State Zip

foreignordersmustbeprepaidin US dollars drawn on a US bank Country Phone

❑ Bill me
Mail to: THE SMALLTALK REPORT

D Charge my D Visa Cl MasterCard Subscriber Services, Dept. SML

Card # Exp. Date PO Box 3000, Denville, NJ 07834

Signature
or Fax: 212-274-0646

Circle49 on Reader Service Card DILA

— Smalltalk —

62
Listing 5. Class PictureWewer(continued).

lilssasys~
Inanrel
name:=-ensionDialog new

IabekNamenewpicturelibr@;
sum. ‘LibmryName’;
open~ PictureLibrarieskeys

aaSotitiltin.
nameisNil *W [“sew. ‘Usercencelkd.”
selfp~ti~ (pictureLibraries

* name~ [Dictionarynew]).
PictureLibraries* name

pub ~rary &_.
libraryName:=name.
librxged:= fake.
selfupdtiLabel

librasyDelete
libraryNameiaNfi*w [“sew.
(MessageBoxCO- ‘Dew library’,
libreryNarne)

ifPak [“w~.
selfprivafiarLiia~ (PictumLibmries

at LibraryName).
Picturetirties mmove~ libmryName.
seH .~~~. library,
libraryName:=pictureName:=ti.
selfupdate

pitire menucomman&

KNew
I name pictureI
name:=selfpmsnptPorN- ‘picture’

* library.
nameisNil

~: [Ati]. “Userchangedh mind.”
picture:=Bitiap sme-nt O@O.
libraryah rmnepub picture.
pichrreName:=name.
libraryChanged:=tie.
setiupdatefiNames; updahh

pichrrecopy
I pictureI
(picture:=selfpictum)~ti~ [“sew.
Clipboard~p picturecopy

p~t
“seLfpictureCo~ ptimDeti

-Paste
pictureNameiaNilh. [Ase~.
(libraryak pictureName)release.
~rary atipictureName@

Clipboardg-ap.
libraryChanged:=We.
selfuePictum

pictslreDew
I namesnarneJndexI
pictureNarrreisNil -: [“sew,
(library~ pictureName)reheee.
~rary remova~ pictureName.
names:=pictureNamesPmecontents.
nemeIndex:=pictomNamesPane

selestadInk.
pictureName:=nameIndex> I

~: [names* naraeIrrdex- 1]
W- [namessise ~ 1

~. [names~ 2]
~ak [nil]].

librxged:= We.
selfu~reNaroes; upda~

PictureResrame
I namepictureI
pictureNameIaNilifl’m= [“sew.
name:=wlf pmsoptPorN-. ‘newpicture’

h library.
picture:=Mraryah pichrreNsrne.
libraryremove- pichrreName.
Ulrraryati name@ picture.
pictureName:=name.
libmryChanged:=me.
selfupdatePichueNames;update-

toppane mt hrsnding

ope- aPane
library:=Difionarynew,
lib~ame:= pitieName:= niL
bbrayChanged:=hlse.
selfupdate

cloaaskapme
se~ pmmptFo~ gad.
self prlvateClearLibr~. library,
“superclose

listpane event handling

se~N- aPane
pictureNarne:=aPaneselestedItem.
selfu~re

button pane event handing

ckdN~ aPane
Seu psivateMovaPichrrem* 1

~~ aPane
setipsivateMovaPictumByO& -1

~port operations

‘Wary ati pictureName~aenti [nil]

prornptPorNam%title in: aDictionary
lnamel
name:=Prompter

Prom@ ‘Enter’, titie,
‘ name ornothing to cancel’

default “.
(name iaNfl W [name iaSmpty])

ifhuu [%1]. “Userchangedhis mind,”
(aDiclionarykeys includes name)

ifl’rue:[
(Me~geBox ~

Nameabeadye. Tryagti.’)
mk [%1].

“selfpmmptPorNamwtitle

h aDictiom]

ifpak [-e]

prom@orSawI-ed I
lnarnel
libraryChangedifPak [nw~.
name:=MraryNamebsNil

ifl’s’o~p]
ifp- ~‘, libraryName].

(MessageBoxcon6ssm‘hges made,‘,
‘SaveMrary’,name,‘?’)

Walsx [AselfJ.
selfIibrarysave

updating I

Update!rabel
seUbbek ‘-e Library’,

(hiaryNameb3Nil
ifl’ru= [untitled’]
ifpakx @raryName]) I

updatePictureNaures
pictureNamesPanesonte~ ~rmy keys

asSo~lleclion.
picturWarnesPaneael~tem pictureName
JOOP NOVEMBEWDECEMBER1991

— Smalltalk —
Listing 5. Class PietureViewer(cosstinu~.

updatePicture
I pietoreoffset I
pieturePanepen

de~m~ erase.
pictureSizePaneconte~”.
pietureNemeieNil* [“selfl.
picture:=setie.
tiet~~eexlsmt--

-)
//2.

pieturePanepen
:~[

pichrrePsnepen
eopyB-p picture
from: picturebmmdingBox
ati ofiet].

pictoreSisePanecontenk pictureentent

privote

prhsateQearLils~ sDtionary

aDtionary

dm [picture I pictorerelease];
~b aDifionary* + 10.

m~~e anInteger
I namesnemdndexnewIndexI
names:=pictureNarmsPanemntenta.
naroeIndex:=pietureNsmesPane

eele~
narnetndw~fl

h [~ex :=-er

-
** [0]
Walew [namessim + l]].

new2ndex:=nameIndex+ arrInteger.
(nmIndex Isetweem1 ati names *)

Wak [“sew.
pietureNarne:=namesati newIndex.
seLFupdatetiNmneq

Updatepieture

(see Listing 5), for keeping track of the

current library and picture names (either

can be nil) and an instance miable Ubrary

for maintaining a copy of the library being

edited — a library is a picture dictionary.

By working on a mpy, arbitrary changes

can be made without fear of undoable

changes. The update operation can redis-

play the complete user interhce from these

three variables. Instance variable li-

bra~ttged ensures that we don’t prompt

the user for a save if no changes have been

made. The remaining instance variables

provide access to the important panes.
The picture viewer is similar to the

modal dialog boxes in terms of the com-
plexity of the pan= and their interactions.

What dfierentia~ it from the dialog boxes

is the extensive Libraxyand Heture oper-

ations. To provide a flavor for the imple-

mentation, let’s consider one sample from

each group, say method tibraryOpenand
pichsrePaste.

Method libraryOpen begins by prompt-
ing the user to save the current library if

changes were made. If the library name is

nil, a librasySaveAs message is sent (which

prompts for a new name); otherwise, a E-

brarySave message is sent. Next, a dialog

box is created to obtain the new library

name from the user. If the user doesn’t

cancel (the name is nil if he does), the ex-
isting library (the working copy) must be

discarded by explicitly releasing each

bitmap. The working library must be re-

placed by a copy of the library specified by

the user. If there are pictures in the library,

the name of the first picture in the sorted

list is recorded; otherwise, nil is recorded.

Onec instance variables libratyName and
pietureName are set, the update method

can display all the required information in
the user interfaee.

Method pieturePaste implements the

code that permin a user to paste over an ex-

isting picture. If a new pictue is needed, the

user should have performed a New... oper-

ation prior to the paste. The implementa-

tion begins by making sure that there exists

a selected picture for modification. Nat,

the old picture must be explicitly released

before anew one earsbe obtied from the

clipbomd. The fact that the working library

has been changed is remrded and the sub-

set of the user inte~ &ed is updated

(in this ease,just the picture portion).
In general, the most worrisome prob-

lems with this specific application have to

do with making sure bitmaps are released

when they are no longer needed md mak-

ing sure that proper working mpies of li-

braries are obtained; i.e., copies that prop-

erly duplicate the bitmaps. Placing Kltmaps

in the dlpboard also requires a mpy because

clipboard operation -ttnap dtimatcly

releas= the bitmap when a new bitmap is

added via a subsequent eetBilntap message.
CONCLUSIONS

Srnalltalkprogramrners (ourselvesincluded)
have a tendency to be forever building new

tools. With the aid of a window builder,

such diversions carsbe easily justified since

they don’t take very much time and often

end up saving time in the long run.

AIso, it shodd be dear that there is lit-
tle Werenm between de.sigrsingadialogbox

and designing a nonmodal window since

the same tool a be usedfor desigrsingboth.

Tools that eliminate the problems in-

herent with the need for releming bitmaps

are a step in making it easier to avoid

mistakes. H

AC~OWLEDGMENT

Thfi urtick owe~ agreat &ulto Wayne

Beaten, whoprvduceei thejrstproto-

type. His interrartive homtration

convinced us of the utili~ and sim -

p[ici~ of a picture viewer.

W~R. LaLo& andJohn Pugh are Professors of

Computer Science at Carleton Univwsi~ in Ot-

tawa, Cana&. Their research interests include

object-oriented ~stems, conneetionistsy~tems,vi-

sualprogramming and suer inteface~. They are

co-autborr ofInside Smallralk:Volumes 1 and

2; two books that ~uroq the entire Smalltalk ys-

tim inc[uding the comphte window ck~es. Pugh

ti Coeditor oflhe Smalltalk Report.

Thq are cofiundm, of The Object PeophInc.

pecialitingin introducti~ anddvancedcounes

in Smdltalk, obj”ect-oricntedprogramrning, and

object-oriented a?esip.

ProfissorrLaLo& aiuiPugb can be mntarted

at the School of Computer Science, Carhton Uni-

versity, Ottawa, Ontario KIS 5B6 Canah, by

phone at (613)7884330, or by emai[(bitnet:)

at jpugb @carLtOn. cd.
63

Book Review

EIFFEL, THE LANGUAGE
Dr. Bertrand Meyer

Prentice Hall, Englewood Cliffs, NJ, 1991

—- Reviewed by Steven C. Bilow
I
N 1887, THE FMNCH engineer Gus-

tave Eiffel defended himself against

the Parisian artists who protested his

creation of a huge iron tower in the

inter of the city. In response to their
petition he stated: “Must it be assumed that

because we are engineers beauty is not our

concern, and that while we make our con-

structions robust and durable we do not

also strive to make them elegant ? ,.. Is it

not true that the genuine conditions of

strength alwayscomply with the secret con-

ditions of harmony ?“~’ bolrlly-ded

the premise that perfection in design was

the quintwential mmbinarion of beauty,

elegance, robustness, strength, harmony,

and purpose. This was an admirable goal

for Eiffel, the engineer, and the application

of these conmprs to software design is the

equally admirable goal of Eiffel, the lan-
guage, developed by Dr. Bertrand Meyer.

Dr. Meyer is well known to the object-
otiented sofmare community. His first

book, Object-Oriented Sojiware Construc-

tion, is a principal work in the field. His

language, Elffel, embodies several impor-

tant software engineering concepts. Some

were taken from earlier languages includ-
ing Simula, Smalltalk, Algol, Ada, and

CLU. But, regardless of their origin, the

mncepts behind Eiffel have influenced the
software community as a whole. Dr.

Meyer’s new book is titled EzfeL The Lan-

~age andis intended to be the definitive
reference for both users and implementors.

It is an extensive rewrite of the language

reference provided with the Eiffel distri-

bution from Interactive Software Engi-

neering. The book was published ~n ~

September, 1991, by Prentice HAI.
64
The book is intended to be as ingenious

as the language itself. It implements this

uniqueness kough the its structure. While

frequently adding to the text’s usefulness

as a reference, [he unconventional organi-

zation sometimes detracts from its read-
ability, Dr. Meyer dislikes traditional lan-

guage documentation in which software
engineers must sewch through volumes of

books for answers to simple questions. So,
instead of writing several books he inte-

grates his user’s guide, tutorial, reference

book, and philosophical statement into a

single contiguous unit. His goal is to pro-

vide a complete reference book for anyone

using, studying, or implementing tools for

the language. It is extremely difficult 10 sat-
is~ such a diverse intended readership and

Dr. Meyer should be mmmended for his

success, The biggest problem for hls read-

ers will lie in acclimating themselves to his

system for maneuvering through the book,

The navigation system involves “road

signs” plad in the left margin of the page.

It is quite workable but initially a blt mn-

&ing. The reader is led through the book
by eleven different road signs. Two of these
indicate that the text is either a preview of

coming id= or a reminder of previody ex-

plored ones. The orher nine denote that the

text covers either a feature’s purpose, ~-

ples, synu, semantics, rules, comments,

methodolo~, cav~rs, or ways of shorrcut-

ing the book The concept is excellent but

Meyer is addressing so many different au-

diences that moving through the text is

slightly flustering and takes some practice,

The book is divided into five parts cov-

ering syntactic and semantic conventions,

linguistic organization and architecture, in-
ternals, a description of the kernel library,

and ten appendims. Each section contains

between two and twelve chapters. This is

not light reading, but its author has set him-
self a very specific goal and reminds us that

his book is designed to be “against all odds,

not TOO boring.” In this, he has succeeded

unconditionally.

It is necessu-y to stress that while the

book is certairdy not boring it is rather mm-

plertreading. The manuscript provided for

this review numbers 594 pages plus thirry-

five pages of pre~. Those who d~ire only

an overview of the language will require

proficient mastery of the “sign post” nota-

tion. Those wishing to actually use or im-

plement Eiffel will have an easier time since

they will neither need, nor want, to cir-

cumvent the extensive detail. Regardless of

the reader’s level of expertise, the book pro-

vides significant insights and much new

knowledge. But, Iii many of the best things

in life, reading it will require work.
The book begins with a brief introduc-

tion to the language and describes its prin-

ciple features. Unique concepts such as as-

sertions, exception handling, contracting,

and genericity are introduced as well as the
more establishedones like inheritanm, poly-

morphism, and data abstraction. These

form the first section of the book and lead

into the subsequent, and more substantial,

chapters. Readers who desire only a basic

overview of Eiffel may actually find this

section done sufficient.
The second section deals primarily with

the structure of the language. It presents

concepts, syntax, and examples for each

major linguistic element. Elffel is based on

a very extensive concept of chs. An Eiffel
JOOP NOVEMBEdDECEMBER1991

— Book Review ——.

,

~
‘

I,
class is much more than simply an abstract

data type it is the primal form from which
all else is derived. Rather than limiting a

class definition to data and fincn”ons, Eif-

fel classes consist of constructs for index-

ing, generici~, specific inheritance rela-

tions, instance creation, dau and functions

(collectively called features), invariants, and

even the specific indication ofobsolescenm.

Many of these constructs are optional but

Me provided for flexibility.
Among the primary class components

Me the group of constructs called fiutures.

These are similar to what Smalltalk groups

into method and in.rtance van”abks or C++

calls &ta mbemand mberfitiom. In
ElEel, the client-level distinction between

data and algorithm is purposelyclouded. An
account balanu in a banking application is

the same to the outside world regardless of

whether it is computed or simply stored

away. Thus, to a client it is unne=ary for

a supplier to distinguish between a finction

that returns the balance and a vwiable that

simply stores it. On the level of supplier in-

ternals, however, there must remain differ-

entiation. Eiffel implements this through

four types of features: variables, constants,

procedures (which do not return results),

and functions (which do return results).

These are detailed in Chapter 5 and ert-
panded throughout the book

Progressing to deeper levels of detil we

me presented with extensive descriptions

of every aspect of the language. In Chap-

ter 6, inheritance is discussed in both its

usage as a module extension mechanism
and its use in type cration. The client/sup-

plier relationship, and its provisions for

“design by contract, “ is covered in Chap-

ter 7. Chapters 8 through 13 mmplete the

section with extensive discussions of rou-

tines, correctness, feature adaptation, re-

peated i~eritanm, typ=, and conformanm.

Internals and libraries we the subjects

of the tilrd and fourth parts of the book.

The third deals primarily with the inter-
nals of classes, control constructs, external
language interfaces, and lexical de~ils. This

is what Dr. Meyer refers to m the meat of
Eiffel. We are introduced to many of the

elements that make the writing of programs

possible including mechanisms such as se-
quencing, branch instructions, loops, and

rescue clauses for exception handing. Ob-

ject creation, duplication, and comparison

are also discussed, as are feature calls and

type checking.

The final section covers an aspect of Eif-

fel that is not, per se, part of the language.

This is the basic set of class libraries. These

Chapters discussonly the libraries that make

up the basic Eiffel system. A fi.tture book,

Ezfil.” The Libraries, willdiscusstils aspect
of the languagein greaterdetail. The pre-

sent book limits its discussion to those

clwses required by every implementation

of the language.

Within the seven chapters that com-

prise this section many aspects of the Eif-

fel philosophy are revealed. Most notable

are the discussion of the universal class,

called ~, and the descriptions of the

classes for 1/0, strings, arrays, and arith-

metic. The section also includes a discus-

sion of a set of classes called persistence

cLzs~e~that provide a secondary storage

mechanism.

The discussion of Class ~ is among

the more insightful aspects of the book.

This class is a child of the class PUWOW

and a grandchild of the class GENERAL.The

resulting hierarchy establishes the back-

bone of the class structure. Any class that

does not have an mplicit inheritance clause

will be a child of~. Wile the obiect ori-

entation of the language does not exrend

to the minute level present in Smalltalk or

SELF, its inherent object structure does

come close to that which the designers and

users of those languages desire. Unforttt-
nately, the chapter that discusses this im-

portant aspect of the language is limited to

five pages and, while it is one of the rare

succinct discussions in the book, a more

intensive treatment would have given some

significant insight into Dr. Meyer’s con-

cept of the language.
The final chapters discuss classes that

~e slightly less unique but just as essential.
Th~ include input/output, ex~tion han-

flln~ arraysand strings, and the arithmetic

classes like integers, reals, and doubles. For

simplicity, there are a limited number of
bmic classes and redundan~ is minirnimd.
The bmk diwws~ these classes in the -e
concise manner as before ordy this time the
brevity is refreshing,

EtfeL” The Language concludes with a

set ofappendices that discuss such elements
of the language as style, history, references,

and the development environment. Also
included are summaries of such items as

reservedwords and syntax. Among the more

usefi.dappendices we those that assist the
reader in migrating from Version 2.3 to

Version 3 and vice versa. Each appendix is

well focused and well written.
Eiffel is a unique and rigorous language

and Dr. Meyer’s book rnaintins those traits.

The book is distinctive in its structure and

hence requires a special approach on the

part of the reader. While intended to be

read from cover to cover, doing so may

prove somewhat tedious unless one desires

tremendous detail. Dr Meyer realizes this

and has provided several methods for more

general readers to circumvent the techni-

calities. His navigation system is a bit com-

plex but adequately accomplishes his goal.

The book is relatively difficuk reading but

those who tackle it will find much en-

lightenment. There is no question that this

publication is a tremendously significant

contribution to the literature and it comes
highly recommended. It provides a defini-

tive description of every aspect of the lan-

guage. In comparison to similar language

mfirenm, it is quite readable and Dr. Meyer
shodd be applauded hr his novel approach.

Just as Gustave Eiffel promoted elegana,

rigor, and robustness in architecture,

Bertrand Meyer’s Elffel carries those char-

acteristics into the world of software. I rec-

ommend the book to anyone interested in

Eiffel, object-oriented design, or rigorous

software engineering methods. I also rec-

ommend patience.

Steven C. Bilow i~pre~ent~ a Senior Technical

Support Specialist for the Computer Grapbic~

Group at Tektronix, Inc. in WLronvi&, Oregon,

andan indtpdnt cOn.ndiunt in mmputergrapb-

USso+are. Hti interesfi are in the area.i Ofmatb-

ernaticaisuface reirtingand obJ)ct-on.entetf ar-

cbitecturesfir graphics systems.
65

– AdvertiserIndex–

Page# Circle

72Asmnt Logic (Recruitment)

6759Berard Software Engineering, Inc.

C49Borland International

912 Centerline Software

816Code Farms

47..,.,18 C++ Across America

73............48. C++ at Work

C234 Digitalk

138 Franz

4 General..l... General Electric

C357 G1ockenspiel

Insert2Hewlett-Pacbd

454Instatiations

665 O.. International OOPDirectoT

72. Lee Johnson International (Recruitment)

69..,45JOOPFOU onAna~~b &Design

7447JO0PVldeo. “Choosing O-O Methods”

7....54.....Knowledge Systems Corp.

21....,.......26.Lund Software House

41..,loomys

317Object Design

2560Object International

59............30Object Orchard

43..,Oregon..............Oregon Software

29,1.......l..43..lRational Consulting

27Sequiter................Sequiter Software

4656Sec hboratories

387Sirr Graph Computing Ltd.

61.,49 The SrnaIltalk Report

37.,28SoftPert Divisinn, Coopers& Lybrand

3925lSnlution Systems

17............13StructSoft

7139 The X]oumal

66

Object-Oriented Software Engineering

Modeler‘Software Testing

Berard Software Engineering meets the needs of its
clients with a comprehensive approach that covers
more than just definitions and references. Understand-
ing the procedural, cultural, political, and competitive
aspects of object-oriented technology is equally impor-
tant for the success of any project.

The company’s founder has been heavily involved in
object-oriented software engineering technology since
1982. During this time, he has:

● conceived of, and managed the devel-
opment of over 1,000,000 lines of ob-
ject-oriented software,

● researched and documented many key
aspects of object-oriented software en-
gineering,

● trained thousands of individuals in ob-
ject-oriented software engineering, and

● provided consulting for specific object-
oriented software engineering problems
for more than 50 clients in the U.S.,
Canada, Europe, and Japan.

For more information, contact Dan Montgomery at Berard Software Engineering, Inc.,
101 Lakeforest Boulevard, Suite 360, Gaithersburg, Maryland 20877

Phone: (301) 417-9884 — FAX: (301) 417-0021 — E-Mail: dan@bse,com

Circle 59 on Waler SeMce Card

68
Product News

What’s new?
ObjectCfi announced new version
of object-oriented CASE tool

On November 15, ObjectCraft, Inc.
willbeginshippingVersion 2.0 of its C++

CASE tool, ObjectCr&. Version 2.0 in-

corporates several signifiat improvements

to the existing product that have been re-

quested by the users. The major new fea-
tures include the abili~ to import existing

C++ files into the ObjectCraft environ-

ment, print ObjectCraft diagrams, and

write C++ methods inside ObjectCraft.

ObjcctCfi is a PC-based productivity tool
that lets programmers develop object-

oriented programs visually.

Forfirther information, contact ObjectCrafi,

Inc,, 2124 Kittredge St., Ste. 118, Berke~, G

94704, (415)621-8306

ParePlace supports team

programming vvith new release of
Objectworks\C++

ParcP1ace Systems has announced a ma-

jor upgrade to iw integrated development

environment for C++. Objecrworks\C++
Release 2.4 now supports team program-

ming and provides complete integration

with popular UNIX development tools,

cooperatin~ with the UNIX environment

and permitting tools such as ‘make’ to be

used without modification. New features

include increased performance and de-

bugger enhancements for peer and light

weight processes support.

Forfirtber in.rmation, contart ParcPkrce SyJ-

tenrs, 1550 Plpouth St., Mountain View, C4

94043, (415)691-6700.

Network Integrated Services
announces model and simtdation

C++ CktSS lib-

Network Integrated Services, Inc. is now

shipping MEJIN++ Version 1.1, a 109-

class library that allows programmers to

use the finest features of the C++ language I
to develop mathematical, statistical, and
queuing models efficiently.

MEJIN++ allows developers to reduce
complex models to a collection of inter-

acting entities at runtime. The main fea-

tures are an exception handling mecha-

nism, persistent data collections, statistics

and math tools, and discrete event simu-

lation. MEJIN++ includes object code li-

braries for Borland and Zortech compilers

under MS-DOS and documented, portable

C++ 2. l-compliant source code.
Forfirtber infi~tion, contact Network Inte-

~ated Services, Inc., 221 West @er Ra!, Santa

Aria, CA 92707-3426 (714)755-0995.

Rational offers C++ Booth
Components

Rational Consulting announced that it
is distributing and supporting The C++

Booth Components, a reusable software

component library. The C++ Booth Com-
ponents represent the second generation of

a widely used and mature component li-

brary, the Ada Booth Components. The

Booth Components are available on a va-

riq of platforms including IBM PCs, Mac-

intoshes, and UNIX workstations, as we~ as

minicomputers and ~cs. The Booth

Components provide a reusable, extensible

class library of structures and tools imple-
mented and delivered in C++ source code.

For fii-tber infirrnation, contact Rational 3320

Scott BIvd., Santa Clara, ~ 95054-3197.

Sequiter So- announces new
CodeBase++ release

Sequiter Sobare announced the release

of CodeBase++ 1.04, a C++ class lib~ for

database management, which now includes

support for the Clipper .NTX index files.

CodeBase++ gives C++ developers the flex-

ib~lty of wing the three most popular indm
hrmats: .NDX (Clipper, dBASE III+, lV),

.MDX (dBASE IV), and .N~ (Clipper).
Forfirtber information, contact Sequitir So@-

ware, Inc., #209, 9644-54 Ave., Edmonton,

Alberta T6E 5V1, Can&, (403)448-0313.

G

c

b

g

[

o
v

c

l

t

F

w

f

a

a
g

b

w

w

c

t

h

c

A

p

S
it

g

in

in

th
Object-oriented asynchronous
communication library

Greenleaf Software, Inc. has released

reenleafComm++, a c4asslibrary for asyn-

hronous communications. As a C++ li-

rary, it provides a hiermchy of classes that

ive the progtarnmer simple access and mn-

rol of serial communimtions with or with-

ut terminal emulation. Classes are pro-
ided for serial port controls, modem

ontrols, file transfer protocols, and calcu-

ation of check values. There are also classes

hat support hardware dependent fea[ures,

or firther infirrnation, contact Grcen~af Sofi-

are,Inc., l@79 DaIkrs Pkwy., Ste. 57o, Dal-

h> ~75248, (800)523-9830.

First Class Soti -ounces
performance analpis tool for

SmallAk/V

Fitst Class Software has annound Pro-

ile/V, an efficient, interactive pefiormance

nalysis tool hr Digitalk’s SmalldW Mac

nd Smalltalk./V 286. Profile/v helps pro
rarnmers get the most out of Smalltalk/V

y showing where time is being spent both

hich methods are most expensive and

hich statements within each merhod are

ostliest. Profile/v also includes a novel fil-

ering mechanism called “gathering” that

elps users profile the recursive methods

ommon in object-oriented programs.

Forfirtber in~rmation, contact Fir~t CkJ

So@are, P. O. Box 226, Boulder Creek, ~

95006-0226 (408)338-4649.

pprentice program for SmaUtalk/V
Windows

Knowledge Systems Corporation is now

roviding a new training program, “The

malltalk Apprentice Program,” for Dig-
alk’s Smalltalk/V Windows. This pro-

ram is a custom~, project-focused ttain-

g course devoted to both developing

ternal Smalltalk experts and advancing

e specific corporate project with which
JOOP NOVEMBEdDECEMBER1991

●

focu
is an

JOOP Focus on Analysis & Design gives you the what,

where, when, how, and why of object-oriented analysis and

design.

Published with the same editorial integrity as the

Journal of Object-Oriented Programming this expert-re-

viewed selection of editorial proceedings delivers the latest

thinking insightful perspectives, mind-opening techniques,

and applicable case studies in this crucial stage of object

development.

JOOP Focus on Analysis & Design discusses the most criti-

cal issues and provoking questions facing this process.

Written by many of the originators of object methodolo-

gies — such as Grady Booth, Steve Mellor, Sally Schlaer

— these articles define, demonstrate, simplify, compare,

and contrast their approaches. This info-packed softcover

book takes you through the inner workings of the process,

explaining each step and concept, giving you a frame of

reference you can draw from immediately.

s
d

Is
d

on
esign

--------------------- --------------------- --------------------- --------

ORDER FORM

JOOP Focus ON ANALYSIS & DESIGN
Q Yes, send mea copy of JOOP Focus ON ANALYSIS & DESIGN.

Your satisfaction is guaranteed — your money will be rehnded if you are

not satisfied. Just return the book within ten days.

Method of Payment
o Ch~k enclosed (payabfeto/OOP in $u.5. drawn on a U.S. banti

o Charge to my o Visa o MasterCard
Card number Exp. Date_

Signature

o BiII me (shipped upon receipt of payment)

Return by FAX (212) 274-0646

or by mail to JOOP Focus ON A&D
588 Broadway, Suite 604

New York, NY 10012

(212) 274-0640

Name

Company

Address

City State Zip

Country Telephone

Signature

All orders must be signed to be valid. D1IA

Circle45 on Reader Servim Card

– Product News –
.L - J-._A. --- -__l--A n--.:-&---&- ---
ln~ sLuacn Ls arc LasKcu. c al Llclpanls arc

provided with individual workstations in

secure offla space, access to KSC devel-

opment s~expertise, and training Witiln

the context of their project. The Smalltalk

Apprentice Program is also available for

Objectworks/Smalltalk Release 4,

Smallralk/V PM, and Smalltalk/V 286.

Forfirther information, .ontactKnowledge Sy~-

tems Coloration, 114 MacKenan Dr., Ste.

100, Cat-y, NC 27511 -644G (919)4814000.

KnowledgeMan and GURU
introduce BLOBS, mtdtimedia, and

object-based technology in
Vet-sion 3.0

Micro Data Base Systems, Inc. is now

shipping version 3.0 of both Knowledge-

Man and GURU. KnowledgeMan is a re-

lariomd database management system for

business applications. GURU is a com-

prehensive expert system environment. Ver-

sion 3.o allows developers to incorporate

object-based elements into their applica-
tions,

KnowledgeMan and GURU are both
available for single-user MS DOS-based

PCs, 0S/2, most popular LANs, DEC

VAX/VMS, and Surs UNIX environments.

Forfirtber infimsation, contict Micro Data

Bme Systetnr, Inc., Two Executive Dr., P. O.

Box 6089, hfiyette, IN47903-6089,

(31~4@-2581.

Servio announces first commercially
available Kanji object database

Servio’s Gemstone now supports ma-
nipdation of tiended UNIX code (EUC)
standard Japanese batter strings. Kanji

support is immediately available in Japan

and will be made available worldwide this

fall. Gemstone is an object database man-

agement system that mergm advanced ob-

ject-oriented technology with a full-
featured, multiuser database management

system,

For firtber information, contact Scrvio Co~o-

ration, 1420 Harbor Bay P~., Akme&, C4

94501, (415)748-6200.
70
I Object Databases announces the

release of GTX object repository
GTX is a multimediaobject reposito~

providing real-time performance to mis-

sion-critical applications and commercial

products. G~ provik a high-pefirmanm

object repository to act as the underlying

data store for multimedia applications.

GTX is a V~MS database server that

supports large multimedia databases con-

sisting of complex, linked data types with
image, voice, and video objects; fault-tol-

erant network applications requiring a

strong transaction model and detailed

audit trails; real-time, high-volume data

capturewith a requirementfor immediate
querycapabili~, and redl of temporalob-
ject versionsrequiredfor group work and
online back-up. GTX’S most important
feature is intrinsic versioning, the auto-
matic generationand managementof his-
torical object versions.

For~rtber in+rmation, contuct Object

Databmes, 238 Broadway, Cambri~e, M

02139, (617)354-4220.

ONTOS, Inc. ships new version of
object database for C++

ONTOS, Inc. announced it is shipping

to its customers Release 2.1 of its ONTOS

object database management system for

UNIX. This release was designed to ad-
dress the needs of the growing number of

ONTOS customers ready to deploy dis-

tributed applications, such as network mana-

gement and data integration systems. ON-

TOS Release 2.1 also adds support for

IBM’s RISC System/6000 workstation.

The ONTOS databasewas designed as
a dlsmibutcd, client-server database for C++

programmers and provides object-oriented,

graphical tools to assist the database lay-

out, object manipulation, and application

development process. Key features of ON-

TOS Release 2.1 include open access to its
internal data structures, or “metaschema,”

flexible and optional transaction and con-

currency control models, extensible stor-

age management, and an integrated object

SQL.
Forfitiher information, contact ONTOS, Inc.,

Three Burlington Woo&, Burlington, W,

d
i

C
g

g

t

d

a

a

o

a

M
p

f

o

o

r

a

P

p

p

a

t

f

a

01803, (617)272-7110 ext. 500, or (800)388-

7110 ext. 500.

Object-oriented support added to

CASEtool

Object-oriented support for software

evelopment has been added to the Mac-
ntosh CASE tool TurboCASE. Turbo-

ASE 4.0 supports five new editors: four
raphics editors create different class dia-

rams and a fifth editor, a dictionary, gives

he user the ability to define classes. The

iagrams, which show class specifications

nd relationships, are integrated through

project database providing multiple views

f the sobare design. TurboCASE 4.0 is

n integrated tool following the smndard

acintosh user interface. The package sup-
orts the most widely used methodologies

or analysis, design, and modeling.

Forfirther infirrnation, contact S~ctSofi,

Inc., 5416 156thAve. SE Be&uue, WA

98006 (2ti)644-9834.

TGS Systems Prograph 2.5 Release
adds suite of new features

TGS Systems introduced Version 2.5
f Prograph — its Eddy award-winning,

bject-oriented visual programming envi-

onment for the Macintosh. In addition to

dding a wide mray of new features to the

rograph environment, this new version

rovides high-level System 7,0/IAC sup-

ort and a database engine. Prograph will

lso connect to SQL databasesthrough in-

erhces for DAL and Oraclq these inter-

aces are part of the company’s new line of

dd-on products,

Forfirtber infirrnation, contact TGS System,

2745 Dutch Vilhge Rd., Ste. 200, Halzfti,

Nova Scotia B3L 4Gz Cana&,

(902)455-4446
JOOP NOVEMBE~DECEMBER1991

=pecial Charter 5ubscriber Offer

Qyes, signme up as a Charter Subscriberto me X Journal at a 1
$10 savingsoffthe regular$49 rate.

Q 1 year (6 issues) — $39 Q 2 years (12 issues) — $78 J“~ x.~c

Outside the US, add $30 per year for air eervica

Method of paymant(foreign orders must bs prepaid in US dollars drawn on a US banw

Cl Check encloeed (drawn on a US bank and mada payable to TM X JouMti

Q Bill me Q Cherge my Q Vice Q MeeterCerd

Card# Enp.dete

Signature

Name Ttia

Company

Addreaa

city/sT/zip

Country/Poatelcoda

Talaphona

The X Journal, Subscriber Services, Dept XXX, DII.A

PO Box 3000, Denville, NJ 07834; or fax 212.274.0646

~~cent Logic

w Corporation

Workontwoleadingedges
● In~tivedeskrop~ls forSysm-level designem
“ Objeet@enti developmentforeommti produe~

Multiple Benefits

● Explore how ObjeeMorks/Smalltalk ean be used m
develop advaned design ai~ for System Engineers

● Grow with a smaller, dynamic mmpany dedieated to
the suti of its cusmmers

If you can make an ou~tanding contribution in the
Arehi=w of Ob~tUrien~ Systems,Objmt-
OrientedSoftwareEngineering,Objat-oriented Data
ManagementandGroupware,QurdityAssuranceof
Objmt-OrientedSy-s, Easeof Hng/Ease ofUse
andhave2-5yearsof Smalltalke~enee with a BS or
MS,pl~ sertdyourresume~

AscentLogicCorporation
180R-Orchard Way,Suite~
SanJose,CA 95134
or eau408-943a30
Anequal_ty cmpl~r.

Obj@works/Smsllulk is a tmdemark of ParcPlace Sys&ms, hc.

.,. LISTEN, even though you’re not “looking” now,
Exceptional career-advancing opportunities for a particular
personoccurinfrequently.The best time to investigate a
new opportunity is whenyoudon’thaveto!

You can increase your chances of hemming aware of such
opportunities by getting your resume into our full-~xt
database which indexes every word in your resume. (We
use a scanner and OCR software to enter it.) Later, we will
advise you when one of our search assigmnen~ is an M
match with your experience and interests; a free service.

We area 17 year-old San Francisw Bay Area based
employer-retained recruiting and placement firm
specializing in Object-Oriented sohware development
professionals at the MTS to V.P. level throughout the U.S.
and Canada

We would like to establish a relationship with you for the
l--term, as we have with hundreds of &r Obect-Oriented
professionals, Now is the time for you to add a new node in
your network of contacts!

Established 1974

lo- le&bn80n@cup.purt.9Lcm
Voi~ 415-524-7246 FAX/BBS (8, 1, N, 1200 bnM) 415.524-04]6

555 Pierce St., Suite 150S, A1bmy, CA 94706

.
Statement of ownership

Managemem and Circulation

Rquired by 30. US.C.3688

1. Tlrle of publica[iomthe Journal of Object-Oriented Programming

2. Date of fili~ 10/21/91

3. Frequency d ksuc Manrhly except for March/April, Jtdy/Augus[,and NovemherDcembel

A. Numbr of issuespublishedannually: 9

B. Annual SubscriptionPrice: $59

4. Location of known officet)fpublisher 588 Broadway,Suite 604, New York, NY 1~12

5. hcation of headquafierror general busine~ officesof rhe publishers(not printers): 588 Broad-

WY. Sui[e 604, New York, NY 1001 z
6. Name and add-d publkher,ed[tt]r,and managingeditm Publisher,KlchardP, Friedman,588
Brt>adway,Suite604, New York, NY l~12i Editor,Richrd Wiener, 5M Bmarhvay,Suite604, New
York,NY 1W12; ManagingEdimr,ElisaVtian, 568 Broadway,Suite 604, New York,NY 1~12

7. Ownec SIGS Publication, Inc., 588 Broadway,Sui~e604, New York, NY 10012; Richard
Friedman, 588 Broadway,Suite 604, New York, NY 1~12; Richard Wiener, 588 Broadway,Suite
604, New York, NY 1W12

8. Known bondholder, mortgagees, and other =curity holders owningor holdi~ 1 percent or
more of total amount of kinds,mortgages, or other securities;None.

9. For cmnpletion by nonprotir organizationauthorizedto mail at special rates (Section 424.12
DMM only): Not applicable

10. Extent and nature of circuhtim Average number of copies each issueduringpreceding 12
months: A. Total no. copiesprinted (net pressrun): 16,213; B. Paid circulation: 1. Sales thmugl
dealemand carriers, street vendorsand counter sal= 1,107; Z. Mail subscriptions8,565; C. Tot
paidcirculation 9,772; D. Free distributionby mail, carrier and other means, samplm,complem
tary, and other free copies:4,044 E. Total distribution(sumof C and D): 13,816; F. Copies nor<
tributerk1, ~lce use, left over, unaccounted, spoiledafter printing 1,377; .2.Remms fmm new
agents: 1,020; G. Total (sum of E and F, Ehouldequalnet pm run shownin A): 16,213.

Acrual number of copies single issuepublishednearesr to filingdate A. Total no. crrpies
printed (net pressrun): 19,625; PI.Paid circulation: 1. Sales through dealersand carriers, s~reet
vendors and counter sales: 2,5 17; 2. Mail subscriptions:10,486; C. Total paidcirculation 13 ,Oi
D, Free distributionby mail, carrier and other means, samplm,complementary, and other free
capies: 2,953; E. Total di.rtribution(sum of C and D): 15,956; F. Gpies not distributed:1. OE1
ure, Ief[over, unaccounted, spoiledafter printing: 1,130; 2, Returns from newsagents: 2,539; C
Total (sum of E and F, shouldequalner pressrun shwn in A): 19,625.

l— presented by

ONE-DAYINTENSIVE
TRAINING CIASSES IN C++

C++ Across America is the only single-daytechnid

training in C++ that offers you a choice of six

in-depth sessions presented by experienced in-

structors. Education sessions are objective and

product neutral,

And only at C++ Across America will you:

“ Learn how to effectively implement C++

into your organization

● Learn what others are doing with C++

“ Learn to program in C++

“ See new Microsoft C/C++ technology
demonstrated

I
“ Keep abreast of new language

developments

“ Improve your productivity with C++

● Determine the realistic productivity gains

to be expected from C++

I
MW — $399 off the suggestedretail price of Microsoft

C/C++ and a free one-year subscription to The C++

Repofi (a $69 value) — a total of $468 in savings. This

more than pays for the $299 registration fee.

TOPICSATAGLANCE

Morning

● C++ Program Guidelines(for
Reliabilityand Portability) Dan Saks

“ Object-Oriented Program Design
Using C++ (a primer) David Bern

“ Writing Efficient C++ Programs Tom Cargill

A*ernoon
● Moving from C to C++ Dan Saks

■ Effective Memory Management
in C++ David Bern

● C++ Programming style Tom Cargill

● Panel discussion of the design and management

of C++ class libraries

+..

Dr. Tom Love, softwsre management

consultant and instructor,

co-founder of Stepstone Corp.

Reed Phillips, President of Knowledge

Systems Corp.

In cooperation with Hewlett-Packard
Cor~”rate Engineering & HP-TV Network

—.

In this four-part, two-cassette course you will learn:

VIDEO COURSE
“Filled with &as, insights and information

you can use right away!”

a three-h~]ur vide~~ct)ursc rhat reviews e~’erything

\ you really need to know hcft)re implementing

t)hjcct-oriented programming — no matrer what

~ yuur applic;~tion.

~ The presenters have been actiy’ely involved in the

creation of the t)hject-oriented irLL~US(ry since the
.
> early 19S0’s. L(lvc and Phillips have successfLllly

ad~~ised many companies in their application L)f
; object tcchnoll)gy. On these tapes we present not

; thct)ry, not tcxtbot)k — hut practical, proven

~ advice th;~t works in the rcirl world.

Part 1 Objects in a nutshell —

Complete and comprehsnsiva
rsview of ths basics - Easy to

understand explanation of

terminology and relationships

among objects, classss, dynsmic

binding, inheritance and

encapsulation - Learn the

bsnefits and drawbacks of

object-oriented techniques -

Code reuse statistics reveal what

can be gained with object-

oriented technology,

Part 2 Ssperiences in using ob-

jects — Three project managers at

Hp give sound advica and reveal

traps and pitfalls - Don’t reinvent

the wheel; learn from othera who

have successfully used object-

oriented technology - Avoid costly

mistakes; get inside tipa on what

rsally works.

Circle 47 on Reeder Service Cerd

Pafl 3 Options for development
tools — History and mmparison of
objeti-oriented languages such as
C++, Smalltalk, Objective-C,
Actor, Eiffel, Hypertalk, Object
Pascal, MacApp - evaluate crite-
ria such as Sdu=tion, develop-
ment productivity,development
support tools, sy*ms integration,
and delivery i=ues - review an
edit debugging cycle.

Part 4 Laseons Ieerned end rec-
ommendations — Some costly
lessons explored on training the
team, analysis & design, introduc-
ing objscts into your organization,
choosing environments, productiv-
i~ and quality experiences, maa-
suring productivity, what the
realistic gains are from rsuse -
Get helpful hints, analyze projects
and look at the future of object
technology.

A decade of object-oriented
experience in a three-hour

video course
Save time and money — no travel, no registration fees, no

hassles. Watch and learn in the convenience of vour office;

train as many of your people as you ne~d.

Order today
Call (21 2)274-0640

or mail or fax this coupon for immediate delivery

--- 1

Please rush me “Choosing object-oriented methods” ~
U Domestic (177 min.,VHS) $195 plus $5 chipping & handling in US ~

U Foreign (177 min.,PAL) $265 plue $35 shipping& handling i
~ Volume discount deduct $50 per video for an order of three or more. ~

Method of payment: i
I

~ Check enclossd (payable to JOOP in US funds drawn on US bsnh) I

0 Purchase order # i
I

rd Credit card Q ~ss J Mastercard
I

Csrd# Exp. _
:
I

Signature
I
I
I

Name/Title i
I

Compsny I
I

Address

City/ST/Country/Code
i
1

	By Article Title
	Combining modal and nonmodal components to build a picture viewer
	Contravariance for the rest of us
	Delegation in C++
	Eiffel, the Language
	Making inferences about objects
	Multilevel secure object-oriented data model - issues on noncomposite objects, composite objects and versioning
	Real-world reuse
	The evolution of bugs and systems
	Understanding constructor initializers in C++

	By Author Name
	Bilow, Steven C.
	Harmon, Paul
	Harris, Warren
	Johnson, Ralph E.
	Koenig, Andrew
	LaLonde, Wilf
	Lorenz, Mark
	Magnusson, Boris
	Pugh, John
	Rumbaugh, James
	Thuraisingham, Bhavani
	Zweig, Jonathan M.

	By Topic
	Book Review
	C++
	Guest Editorial
	Modeling & Design
	Smalltalk
	Tools

