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Abstract The powerful processors and variety of sen-

sors in new and planned mobile Internet devices, such

as Apple’s iPhone and Android-based smartphones, can

be leveraged to build cyber-physical applications that col-

lect sensor data from the real world and communicate

it back to Internet services for processing and aggre-

gation. This article presents key R&D challenges fac-

ing developers of mobile cyber-physical applications that

integrate with Internet services and summarizes emerg-

ing solutions to address these challenges. For example,

application software should be architected to conserve

power, which motivates R&D on tools that can predict

the power consumption characteristics of mobile soft-

ware architectures. Other R&D challenges involve the

relative paucity of work on software and sensor data

collection architectures that cater to the powerful ca-

pabilities and cyber-physical aspects of mobile Internet

devices, which motivates R&D on architectures tailored

to the latest mobile Internet devices.
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1 Introduction

Emerging trends and opportunities. Mobile In-

ternet devices, such as the iPhone and Android-based

phones have become incredibly popular. For example,

Apple has sold over 33.8 million iPhones and the Mo-
torola Droid phone sold over 400,000 units in its first

week. The proliferation of these devices is expected to

increase, e.g., the Android platform will likely be avail-

able on dozens of phones in scores of countries within
a year.

The broad dissemination of these mobile Internet

devices, their accelerated processing power, range of

sensors, and pervasive cellular connections make them

ideal platforms for building novel mobile cyber-physical

applications. A cyber-physical application is a computer

system that processes and reacts to data from exter-

nal stimuli from the physical world and make decisions

that also impact the physical world [31]. Traditional
cyber-physical applications include flight avionics, elec-

tronic medical devices, and power grid control systems.

Since cyber-physical applications can impact the phys-

ical world and must respond to physical events, they

often require rigid performance and safety assurance.
Mobile Internet devices possess a variety of sensors

(such as ambient light sensors, accelerometers, GPS

sensors, microphones, and cameras) that cyber-physical

applications can use to sense environmental stimuli,
When cyber-physical applications are combined with

Internet services, they can detect context information

from user environments and react to social network
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Fig. 1 Mobile Cyber-physical Application to Detect and Report
Traffic Accidents

information derived from the user contacts, Facebook

account, and other social networking databases. Com-

bining data that is both immediately present in device

environments with information streams and processing
power available through the Internet facilitates novel

mobile cyber-physical applications.

R&D efforts are tapping into the significant poten-

tial of these devices. For example, developers have built

cyber-physical applications and Internet services to de-
tect and track user activities for health purposes [29],

track and analyze CO2 emissions [11], detect traffic ac-

cidents and provide situational awareness services to

first responders [32,16] (shown in Figure 1), measure
traffic and derive road quality [28,24], and monitor car-

diac patients [18].

Compared with developing specialized hardware and

software solutions, building cyber-physical applications

atop mobile Internet devices offers a range of benefits
with equivalent functionality, including:

– Maintenance of customized hardware and software

solutions, such as wireless sensor networks, has his-

torically been a key issue to address [20]. Not only
must sensors be kept in working order, they must

also have adequate battery power. In contrast, cyber-

physical applications based on mobile Internet de-

vices can rely on their owners to maintain and charge
the devices.

– Complex networking strategies have been required

in traditional custom hardware solutions to com-

municate data back to base stations for compute-

intensive processing [21]. In contrast, mobile cyber-
physical applications can communicate with Inter-

net services using standard IP networking to trans-

mit data for aggregation and receive processed re-

sults.
– Conventional sensor network nodes are often sta-

tionary due to the high power cost of movement. In

contrast, cyber-physical applications built on mobile

Internet devices travel with their owners and can

take measurements at multiple locations through-

out the day. Moreover, monitoring human-centered

phenomena (such as traffic congestion) can be easier

and less costly when the sensors travel with mobile
Internet device users.

Open R&D challenges. Despite the benefits of

building mobile cyber-physical applications atop mobile

Internet devices and Internet services, however, various
open R&D challenges limit their development and de-

ployment in practice. This article presents key R&D

challenges for mobile cyber-physical applications and

supporting Internet services, including the following:

1. Optimizing power consumption early in the ap-

plication development lifecycle is hard, which makes
it expensive and time-consuming to develop appli-

cations that run for extended periods of time on

mobile Internet devices.

2. Avoiding costly overprovisioning to support In-
ternet data processing services for mobile cyber-

physical applications is hard since average process-

ing loads can be significantly lighter than peak load

and overprovisioning for occasional peak loads wastes

resources for common usage conditions.
3. Developing a configurable cyber-physical software

product for a wide range of targets is hard due to the

variations between target platforms that make

it hard to optimize the software for each platform
and ensure that non-functional constraints are met.

4. Integrating external sensors to exploit the ben-

efits of combining conventional sensor solutions and

emerging cyber-physical applications is hard due to

different resource constraints and device capabili-
ties of mobile Internet devices and traditional sensor

platforms.

This article summarizes efforts by ourselves and oth-

ers to address these challenges and is organized as fol-

lows: Section 2 summarizes a motivating example of
a cyber-physical application and supporting Internet

services for detecting traffic accidents we developed;

Section 3 explores key R&D challenges and solutions

based on our motivating example; Section 4 describes
other emerging R&D opportunities in mobile cyber-

physical applications and Internet services; and Sec-

tion 5 presents concluding remarks and lessons learned.

2 Motivating Example: WreckWatch

To motivate the capabilities available to mobile cyber-
physical applications built on Internet devices, this sec-

tion describes the structure and functionality of Wreck-

Watch, which is multi-tier cyber-physical application
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Fig. 2 The WreckWatch Traffic Accident Detection Application
for Mobile Internet Devices

for detecting traffic accidents. WreckWatch is one of nu-

merous open-source1 sensor mobile cyber-physical ap-
plications we developed on the Google Android and

iPhone platforms. We use WreckWatch as a motivat-

ing example in this article since the range of challenges

we faced developing it apply to many mobile cyber-
physical applications and supporting Internet services,

as well.

WreckWatch is based on the premises that mobile

Internet devices now contain sufficiently sophisticated
sensors and networking capabilities that software appli-

cations can be built on top of them to serve as portable

black boxes. These black boxes can travel with drivers

and/or passengers to help detect traffic accidents and

provide critical situational awareness information to first
responders. Unlike existing traffic accident detection

systems, such as OnStar, WreckWatch is not tethered

to a particular vehicle and can travel seamlessly with

its owner.

WreckWatch runs as a background service on Google

Android and polls the accelerometer and GPS for cur-

rent speed and acceleration information. At speeds above

a predefined threshold, WreckWatch starts feeding speed
and deceleration information into a mathematical acci-

dent prediction model. If the model indicates that the

current pattern of deceleration and speed is indicative

of a traffic accident, WreckWatch reports the accident
to a central accident response server.

As shown in Figure 2, WreckWatch does not im-

mediately report the accident to the central server. In-

stead, a dialog is presented to the user asking if an
accident has actually occurred so users can cancel an

accident report for a false positive. If the user does not

1 WreckWatch and our other applications for mobile Internet
device sensor networks are available as open-source from code.

google.com/p/vuphone.

Fig. 3 The WreckWatch Communication Paradigm

respond to the dialog before a predetermined timeout,

WreckWatch submits an accident report.

WreckWatch uses a phone-based client and a central

Internet service to disseminate accident information to

first responders, emergency contacts derived from so-
cial data, and other motorists using a variety of voice

and data channels. Reported accidents are plotted by

the Internet service on Google Maps and made avail-

able to first responders and other motorists via the

WreckWatch client application. The central accident
reporting service uses the Asterisk Private Branch Ex-

change (PBX) to automatically place emergency calls

to 911 and dynamically provision an accident hot-line

for friends and family of the accident victims. Wreck-
Watch can also use the emergency hotline to automati-

cally send text messages to a list of emergency contacts

when wrecks occur.

Motorists can use WreckWatch’s multimedia upload

capabilities to provide first responders with detailed vi-

sual and audio information about wrecks. Likewise, ac-
cident bystanders can use their device cameras to take

pictures or videos of the accident and share them via

the central server with first responders, as shown in

Figure 3. WreckWatch’s ability to use networks of by-

standers to submit imagery of accidents exemplifies its
cyber-physical capabilities.

3 Overview of R&D Challenges and Solutions

The capabilities of WreckWatch described in Section 2
incur a number of demands on the software architec-

ture and Internet services that support it. For example,

careful design is required to ensure it does not consume

too much power, overconsume network bandwidth, or

overwhelm central servers. This section describes key
R&D challenges and presents promising solution ap-

proaches that we and others are developing to address

these challenges. We selected these challenges based on

our experience developing WreckWatch and other mo-
bile cyber-physical applications and supporting Inter-

net services described in Section 4. Although the so-

lutions are paired with individual challenge problems,
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many common themes, such as the use of model-driven

engineering, crosscut the solutions.

3.1 Challenge: Optimizing Power Consumption of

Mobile Cyber-physical Software Early in the Lifecycle.

Context. Although the latest mobile Internet devices

have powerful processors (e.g., the Nexus One contains

a 1 Ghz processor), cyber-physical application software

can quickly use this computational power at the ex-
pense of increased power consumption. Whereas sim-

ple applications written for previous generation devices

consumed power slowly enough for devices to function

for days between charges, current mobile cyber-physical
applications use so many sensors that device batteries

can be exhausted within hours (e.g., the Apple iPhone

maximum battery life with continuous 3G data connec-

tion usage is ∼5 hours). When a mobile cyber-physical

application combines heavy processor usage with power
drain from a combination of sensors and data transfer,

battery life can be very short.

For example, WreckWatch runs continuously as a

background service on Google Android. In some of our
initial implementations, the highest possible update rate

provided by Android was used to receive GPS location

updates. The combination of processor usage for our

accident prediction model and GPS polling completely

drained the battery of an HTC G-1 phone in under
two hours. This rate of power drain presents a major

problem for a cyber-physical traffic accident detection

application designed to run continuously.

On software platforms that support multi-tasking,
such as Google Android and Palm Pre devices, cyber-

physical application software may be required to share

power, computing, and sensor resources with multiple

other applications. The cyber-physical application soft-

ware must draw power slowly enough for the device to
remain charged all day, while simultaneously allowing

users to place phone calls, browses the Web, and check

email. It is therefore critical that cyber-physical appli-

cation software be designed so that it does not become
such a significant power burden on a device that owners

are unwilling to run it.

Open problems. It is hard for developers of mo-

bile cyber-physical applications to predict the power

consumption of a software architecture early in the de-
velopment process. Our experience with WreckWatch

showed that the sensor software must be implemented,

deployed, and tested on the target hardware to deter-

mine its power consumption characteristics. The inabil-
ity to predict power consumption during the design

stage was problematic since design changes late in the

development process are more costly.

Fig. 4 Layering of Android Middleware and OS Abstractions

Many hard-to-predict platform factors play a role

in determining how a particular software design con-

sumes power. Middleware and OS task scheduling and

memory utilization strategies can affect how a software
architecture consumes power [12]. Likewise, networking

implementation details, such as design decisions in the

MAC layer of the OS [1], also play an important role.

Moreover, diversity in hardware (such as variation in
sensors) can consume power at different rates across

devices, e.g., using GPS on one device may be much

more costly than on another.

Conventional cyber-physical applications with cus-

tom hardware and software typically use lightweight OS
and middleware layers, such as TinyOS [19], that pro-

vide low-level programming APIs that tightly-couple

the software to the hardware. This minimalistic ap-

proach complicates software development, but allows
for more control over how power is consumed. The in-

creased control over how power is consumed makes it

easier for developers to forecast power consumption.

In contrast, cyber-physical applications built on mo-

bile Internet devices are perched atop an intricate set of
OS and middleware layers that expose high-level APIs

to developers and simplify software development. For

example, Figure 4 shows the depth of Android’s layers

of middleware and network stack abstractions, which

makes it hard to predict the power consumption of
each layer. For most applications, such as games or

user productivity applications that are not concerned

with power consumption, these higher-level APIs are

ideal. For cyber-physical applications that must con-
servatively consume power and always be on, these in-

termediate layers of abstraction make managing power

consumption harder.
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Emerging solution → Model-driven power con-

sumption analysis. Model-driven engineering (MDE)

tools [30] help specify high-level cyber-physical soft-

ware architectures rapidly and then generate architec-

ture emulation code to run on target devices and to ob-
tain rough estimates of power consumption. By utilizing

MDE tools along with device- or platform-specific code

generation, it becomes possible to address the challenge

of predicting mobile cyber-physical application power
consumption early in the development cycle. These MDE

tools allow developers to analyze and evaluate poten-

tial designs on a physical device before commiting to a

specific architecture.

The key benefits that an MDE-based power anal-

ysis approach provides are (1) the ability to generate

emulation or simulation code for an architecture before

it is implemented and (2) the capability to refine the
generated code as the system becomes more precisely

understood. Code generation is critical since it allows

developers to rapidly test power consumption charac-

teristics of an architecture before committing to the

cost of implementing a design. Refinement is another
important property because it allows the power con-

sumption estimates to become more precise as the de-

velopment process progresses. Increased precision in the

power consumption estimates allows developers to not
only tune high-level architectural properties but more

fine-grained implementation decisions.

For example, the System Power Optimization Tool

(SPOT) [32] is an MDE tool that models mobile soft-
ware architectures and generates emulation code. The

SPOT visual modeling environment (based on the Ec-

lipse IDE) allows developers to model the high-impact

aspects of their designs before commiting to a particu-
lar implementation. Designers can specify sensor, CPU,

networking, and OpenGL utilization. SPOT then gen-

erates Java code for Android devices that allows devel-

opers to run and analyze their designs without the te-

dium of manual implementation. It also allows develop-
ers to perform continuous integration testing [14], which

generated emulation code is incrementally replaced by

actual cyber-physical application logic as the software

evolves. This model-driven continuous integration pro-
cess helps application developers increase the accuracy

of their models throughout the software lifecycle.

SPOT provides developers with a rough idea of how
their design will perform as early and with as little

overhead as possible. This MDE tool also helps pierce

through multiple layers of abstraction to predict power

consumption accurately. Since SPOT produces actual

device code, speculation of how these layers will affect
power consumption is unnecessary because middleware

interaction is accounted for in the resulting data.

3.2 Challenge: Avoiding Costly Overprovisioning.

Context. Although mobile Internet device processing

power has improved significantly, some cyber-physical
data processing tasks (such as high-speed image pro-

cessing) are still not suitable for a mobile application.

Likewise, timely completion of complex tasks (such as

location-based searches) is not possible on mobile In-

ternet devices due to their limited memory, process-
ing speed, and power compared to server-based infras-

tructure. For example, data aggregation of terabytes

of information or image manipulation on thousands of

multi-megapixel files (e.g., aggregating camera images
to create 3D maps) are beyond the capabilities of to-

day’s mobile Internet devices.

One approach to handling tasks that cannot be ac-

complished by mobile applications is to use Internet

services to aggregate and process data for the mobile
cyber-physical applications. These Internet services run

on supporting servers in a cloud. Data harvested by

cyber-physical applications from mobile device sensors

can be sent to these Internet services, which aggregate
and process the data before sending the results back to

the devices.

For example, WreckWatch uses a centralized Inter-

net service to provide enhanced emergency response

services for the mobile Internet devices. WreckWatch’s
Internet service can collect and disseminate images and

video from an accident for emergency response teams.

WreckWatch’s Internet service also provides more com-

putationally taxing functions, such as the ability to dy-

namically provision emergency response VoIP hotlines
through its integrated Asterisk PBX. These features of

WreckWatch are only possible through the use of client-

side accident detection and imaging code in the mobile

cyber-physical application and server-side media aggre-
gation and PBX functionality.

Open problems. Using Internet services to sup-

port mobile cyber-physical applications requires devel-

opers to address the challenging problem of determining

how to efficiently provision servers to run the services.
Conventional approaches to server provisioning, such

as worst-case capacity planning, over-engineer comput-

ing platforms to ensure quality-of-service (QoS) require-

ments are met during peak load conditions. Due to
the excess capacity built into the computing platform,

however, many computing resources are idle under non-

peak load conditions. With mobile cyber-physical appli-

cations, processing load may change dramatically dur-

ing the day as users become stationary or go to sleep.

For example, WreckWatch’s peak loads are during

rush hour traffic periods when more cars are on the

road and more accidents occur. At night or when users
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have finished their morning commutes to work, the sup-

porting Internet service is substantially less loaded. Un-

planned occurrences, such as incliment weather, may

also cause spikes in the processing load of the Internet

service that are far above the average. This wide vari-
ation in processing load makes it hard for operators to

provision infrastructure that provide the low response

time needed by cyber-physical applications, but that

also does not require costly overprovisioning.

As power consumption becomes an increasingly im-

portant issue, service providers will not be able to over-

provision as easily due to regulation and higher power
costs. In 2003, it was estimated that data centers con-

sumed 22TWh of power [23]. Power consumption and

cooling are expected to become more important and

expensive for data centers in the future [4].

Emerging solution → Cloud computing and

resource auto-scaling. Cloud computing uses virtu-

alization [5] to allow dynamic provisioning of OS images
in a data center. Operators have traditionally purchased

individual hardware platforms for each OS image. With

cloud computing, virtual OS images are co-located on

the same hardware, allowing more efficient use of hard-

ware. These flexible OS image allocation techniques can
deploy Internet services into production environments

much faster and often reduce initial deployment cost.

Manually configured cloud computing environments
are often inefficient platforms for Internet services that

support mobile cyber-physical applications. For exam-

ple, these applications have periods of increased work-

load that are not always foreseen and which can fluctu-
ate significantly. Additional OS images must therefore

be deployed in the cloud to handle these periods of in-

creased activity. When the workload subsides, however,

the additional OS images are idle, wasting valuable re-

sources (such as power) and increasing operation costs.

Computing clouds, such Amazon’s Elastic Compute

Cloud (EC2), have recently introduced automated cloud
scaling [33]. EC2 uses auto-scaling to respond to fluc-

tuations in the computational needs of the Internet ser-

vice utilizing the cloud. For example, if a traffic accident

occurs, WreckWatch’s Internet service could see drasti-

cally increased loads.

Figure 3.2 shows how automated cloud scaling al-

lows on-demand deployment of additional computational

resources to handle increased workloads. The type of
OS image and resources deployed can also be tailored

for particular application needs. For example, if a sup-

porting Internet service requires substantially increased

processing power—but only marginally increased mem-
ory availability—then an OS instance with precisely the

needed resources can be provisioned. After the workload

returns to the normal state, the additional resources are

Fig. 5 Cloud Computing Can Dynamically Scale Resource Al-
location to Meet Load

released. As a result, the size of the cloud remains ap-

propriate for the current workload, regardless of unfore-

seen fluctuations, thereby helping to minimize power
consumption and operational cost.

3.3 Challenge: Addressing Platform Variations

Context. Unlike the desktop and server operating sys-
tem market, there may not be a dominante smartphone

operating system vendor. Gartner estimates that Win-

dows Mobile, Blackberry OS, iPhone OS, and Google

Android will each have roughly ≈13% of the market in
2012. Symbian is expected to have the largest share of

the international market with ≈30%. Many developers

and organizations will therefore likely create and main-

tain cyber-physical applications that are targeted for

multiple mobile Internet device operating systems and
versions.

For example, multiple versions of Google Android

were released during the development of WreckWatch.

Our development efforts initially targeted Android 1.0

and HTC’s G1, which was the only Android hardware
available at the time. Since the initial implementation

was finished, Google has released Android 1.5 and An-

droid 2.0 and there are now at least five different An-

droid devices by Motorola and HTC. We have also be-
gun the process porting WreckWatch to the iPhone.

Open problems. As shown in Figure 3.3, there is

significant complexity involved in managing the vari-

ability of cyber-physical software and determining the

appropriate software configuration for a given mobile
platform. For example, WreckWatch can run as a back-

ground service on Android in parallel with other appli-

cations. In contrast, WreckWatch cannot run concur-
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Fig. 6 Complexities of Targeting Multiple Platforms

rently with other applications on the current version

of the iPhone and must be redesigned as a modal ap-

plication. Each additional variation in platform design

increases development complexity.

Even within a single OS platform there can be vari-

ations across versions and devices that add develop-

ment complexity. For example, the 2.0 release of An-

droid provides a Bluetooth API that can be used by
a cyber-physical application to communicate with ex-

ternal sensors, whereas prior versions did not. The 3.0

release of iPhone added the ability to have notifications

asynchronously delivered to applications that were not

running. This notification API makes notifying Wreck-
Watch client users of new accidents easier than on prior

versions of the iPhone OS.

Although mobile Internet devices have signficant
processing capabilities, certain resources (such as bat-

tery power) are still limited. It is therefore essential to

optimize the configuration of a mobile cyber-physical

application for each individual capability set of a type

of device. Adding this resource optimization consid-
eration into the configuration problem makes it even

harder to manage and develop multiple software ver-

sions. The optimization process must also ensure that

any non-functional constraints on memory consumption
or other resources are met by the cyber-physical appli-

cation software’s configuration.

Emerging solution → Mobile cyber-physical

application software product-lines. Software product-
lines (SPL) [6] are a promising approach for dealing

with the complexity of managing a mobile cyber-physical

application targeted for multiple mobile Internet device

platforms. An SPL is a software platform designed with

points of variability so it can be rapidly reconfigured for

different requirement sets. A critical component of an

SPL is a model of the points of variability and the rules

governing their configuration.

A common approach to modeling SPL variability is

called feature modeling [17]. A feature model uses a unit
of abstraction, called a feature, that represents an in-

crement of product functionality or point of variability.

Feature models use a tree-like structure to specify the

constraints on their configurations.

A configurable mobile sensor software platform can

be created using SPL principles [36]. An SPL feature

model provides a roadmap that explicitly captures the

complex rules needed to reconfigure the software for
multiple target OS, middleware, and hardware sets. This

model helps prevent developers from making hard-to-

diagnose configuration mistakes and decreases develop-

ment time for new platforms [36].

SPL feature models can be transformed into math-

ematical representations, such as constraint satisfaction

problems (CSP) [3] or satisfiability problems (SAT) [22].
After an SPL feature model is in one of these mathe-

matical formats, optimized software configurations can

be derived that minimize cost, power, or other criti-

cal properties [36]. This type of configuration optimiza-

tion helps developers automatically generate precisely-
crafted cyber-physical application software configura-

tions for each target platform, which would otherwise

be hard to discover manually.

New techniques for optimizing SPL configuration

using constraint and SAT solvers can produce good re-

sults for deriving highly optimized software designs [3,

22] that can improve battery life and reduce cost for
mobile cyber-physical application software. In some re-

search endeavors, these SPL optimization techniques

have been shown to produce good results for dynamic

mobile software configuration at runtime. For example,
WreckWatch can use SPL configurations to help rapidly

setup highly optimized mobile cyber-physical software

deployments.

In some situations, such as when resource constraints

on memory or power are added, deriving SPL soft-

ware configurations using CSP or SAT techniques can

be time consuming. For example, attempting to de-

rive configurations of the WreckWatch software that fit
within the memory limits of less powerful mobile Inter-

net devices is challenging. Applying emerging heuris-

tic methods, such as Filtered Cartesian Flattening [35],

to derive configurations can drastically reduce solving
time. These types of heuristic techniques can be used

to aid developers when the complexity of the cyber-

physical application’s resources or other non-functional
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Fig. 7 WreckWatch Integration with Heterogeneous External
Sensor Network

constraints cannot be tackled by existing CSP or SAT

techniques.

3.4 Challenge: Integrating External Sensors

Context. With the emergence of pervasive and ubiq-
uitous computing, everyday objects and activities will

contain embedded sensing, computing, and communica-

tion capabilities. These smart devices will increasingly

interact in networks to jointly perform computational

tasks. Conventional device networks dedicated to a sin-
gle application will have to open up, connect, and in-

teroperate with each other to allow multiple and new

applications to use their services. Devices may even be

required to discover each other dynamically and inter-
act in an ad hoc fashion. The integration of mobile In-

ternet devices with conventional sensor networks is one

instance of these network-of-networks scenarios.

For example, Figure 7 shows how WreckWatch can

dynamically connect to a sensor network embedded in

the road or road-side units to deliver detailed informa-
tion on the road condition that led to the accident. It

can further establish an ad hoc communication link to

sensors attached to passengers to collect and integrate

health data that would allow for remote assessment of

the required medical aid.

Open problems. Most embedded devices have a
custom-made software and hardware platform designed

for a specific purpose. Mobile Internet devices are made

to stay online while on the move. These devices are

equipped with sufficient memory, processing, and com-

munication units to check emails, browse the Web, and
make phone calls.

Conventional sensor platforms are low-cost devices

deployed in a high density to monitor environmental

phenomena or to track objects. Compared to mobile

Internet devices, conventional sensor platforms are far

more restricted in terms of their storage and process-

ing capabilities, communication range, and power sup-

ply. Moreover, the operating system for conventional

sensor platforms differs considerably from mobile In-
ternet devices since conventional sensor platforms can

be recharged less often and controlling energy consump-

tion is a major concern.

The different device and network capabilities result

in incompatibility issues that make a seamless inte-

gration between cyber-physical applications and exter-

nal sensor networks a significant research challenge. In-
compatible communication links prevent today’s mobile

Internet devices from exchanging IP-based messages

with conventional sensor platforms via a low-power ra-

dio connection. Incompatibility stemming from device
heterogeneity is traditionally overcome by proprietary

communication interfaces and gateway concepts.

Proprietary interfaces complicate the development
of new applications, however, because they require in-

depth knowledge of technical details [10]. Moreover,

proprietary interfaces cannot be reused when new de-

vices with different features are added. Application-

level gateways have been introduced to compensate for
the lack of a common language understood by all de-

vices and also to translate between the different mes-

sage formats. Moreover, communication via such an

application-layer gateway introduces an additional level
of indirection which bears extra configuration cost and

hampers system evolution [34][26].

Emerging solution → A service-oriented de-
vice architecture (SODA) [7] based on mature In-

ternet technology is a promising integration approach

for heterogeneous sensor networks. Physical devices in

a SODA can be modeled as services that hide device-

specific implementation details behind well-defined, open
or standardized interfaces. A service consumer may ac-

cess and control a wide range of physical devices via

their service interfaces without being affected by the di-

versity of the underlying device-specific hardware, firm-
ware, and software.

There are two benefits of device-centric, service-orient-

ed architectures when integrating external sensors. First,
services abstract from technical details and provide ready-

made building blocks that can be quickly combined to

build new applications [27]. Second, when physical de-

vices become available, corresponding services can be
announced through which other devices can find out

about their capabilities [2].

Web services realize a service-oriented architecture
and have been successfully deployed as an integration

media for business systems and distributed applications.

They comprise a number of standards to define the de-
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scription, registry, and communication of services. Web

services are poorly suited for embedded devices, how-

ever, since they are too resource-intensive. The Device

Profile for Web Services (DPWS) [9] helps address this

drawback by defining a minimal set of implementa-
tion constraints to enable secure Web service messag-

ing, discovery, description, and eventing on resource-

constrained devices. For example, the DPWS restricts

the size and complexity of messages, provides an asyn-
chronous publish-subscribe mechanism, and allows for

dynamic service discovery.

These features make DPWS an ideal candidate on

which to base a solution for the seamless integration be-

tween mobile Internet devices and conventional sensor
networks. For example, WreckWatch could dynamically

send a message into a wireless sensor network at a traffic

intersection to discover available sensor platforms and

services. The mobile Internet device can then invoke all
service that match its requirements and aggregate the

returned data with local sensor readings. The use of

XML as message exchange format and the transmission

via the Internet Protocol allow for a communication in-

dependent from any device-specific low-level interfaces.
Additional R&D is needed to enhance DPWS since

it does not fully address the constraints of conventional

wireless sensor networks. In particular, DPWS uses UDP-

/IP and TCP/IP for transmission, which is not natively
supported in low-power IEEE 802.15.4 based radio net-

works. IP support in wireless sensor networks is a pre-

requisite for using DPWS and the 6LoWPAN working

group explores encapsulation and compression mecha-

nisms to receive and send IP packets over IEEE 802.15.4
based networks.

Since DPWS uses XML as message exchange format

allowing for a standardized data exchange, its verbosity

may require several radio packets to transmit a single
message. Design choices are being explored to minimize

the cost of providing structured data and functionality

description, such as compression and tag compacting

techniques [15] and HTTP-based service bindings [26].

In addition, Moritz et al. [25] propose adaptations and
enhancements to limit the number of exchanged DPWS

message for service discovery and meta data exchange.

These types of models will improve the integration ca-

pabilities of heterogeneous sensor networks.

4 Emerging R&D Opportunities and

Challenges

The R&D challenges and solutions addressed in Sec-
tion 3 were based on our WreckWatch application de-

scribed in Section 2. We are also creating other mo-

bile cyber-physical applications and supporting Inter-

net services that are in earlier stages of development.

This section describes the R&D challenges that have

emerged in our ongoing work on these applications, but

are not yet as well formulated as the challenges and so-

lutions presented in Section 3.

4.1 Augmented Reality

Augmented reality (AR) [13] is an emerging new area

for mobile cyber-physical applications and supporting
Internet services. The ability to combine virtual in-

formation with real world images was historically re-

stricted to expensive instrumentation, such as heads

up displays for flight avionics or luxury automobiles.
Recent advances in the area of augmented reality al-

low the creation of portable versions of these interfaces

using smartphones.

Mobile cyber-physical AR systems use GPS receivers,

accelerometers, and compasses precisely capture the ori-
entation and actions of smartphone users and deduce

what the user is looking at. Virtual geotagged informa-

tion is then obtained, typically from an Internet ser-

vice, and overlaid across a smartphone’s camera dis-
play. Overlaying information on the display allows the

camera preview to serve as a looking glass that blends

virtual and real world imagery.

We are developing an AR system for creating Aug-

mented Reality Teaching Spaces (ARTS) in collabo-
ration with educators in the Humanities. The goal of

the ARTS project is to produce an AR platform that

allows teachers to use an Internet service to publish

geotagged information that students can see overlaid
across real-world imagery in a smartphone camera dis-

play. Figure 4.1 shows how this platform will be used to

fuse assignment information with real imagery from the

Vanderbilt campus. For example, biology, anatomy, ge-

ology, or archeology instructors could mark up demon-
strations with information that students can access in

the laboratory or in the field. English classes could re-

mediate literary works in virtual worlds that could be

affected by real world actions.
New research challenges are already being uncov-

ered in our development of AR projects. Interpreting

what the user is looking at based on compass and GPS

data requires precise estimations and fast fetching of

large geotagged datasets. Many existing cyber-physical
applications use custom hardware with high accuracy

sensors. We have found that commodity smartphones

have significant jitter in their sensor readings, requir-

ing the use of complex data filtering.
Additional R&D is therefore needed to study strate-

gies for handling the lower accuracy of commodity sen-

sors. Fetching geotagged datasets from an Internet ser-
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Fig. 8 An Augmented Reality Teaching Platform

vice fast enough to provide real-time AR is challeng-

ing with varying cellular connectivity and bandwidth.

We see the need to develop approaches for exposing
more physical heading information, such as location and

speed, to the supporting Internet services to more in-

telligently deduce what data to send to mobile cyber-

physical applications.

4.2 Interaction with Social Networks.

Social networking platforms, such as Facebook and Twit-
ter, provide Internet services that can be used by mo-

bile cyber-physical applications to glean key social data

about users. Recent mobile Internet device middleware

platforms (such as the Palm Pre’s Web OS) also offer
libraries that simplify access to these social networking

services. This type of social data can improve cyber-

physical applications in various ways, such as Wreck-

Watch’s ability to notify friends and family when acci-

dents occur.

Interacting with the social networks of users clearly
offers significant possibilities for mobile cyber-physical

applications. Care must be taken, however, to ensure

that automated interactions with social networks do

not harm user reputations or cause emotional damage

to friends and family. For example, WreckWatch has
the potential to detect accident false positives and send

notifications to emergency contacts, as shown in Fig-

ure 4.2. WreckWatch is carefully designed to minimize

these inccorrect accident reports, but cannot guarantee
that mistakes will not be made.

Verification has been used to ensure physical safety

properties, such as that a plane will not crash due to

an unforeseen software state. Likewise, it is becoming

Fig. 9 Accident False Positive Dissemination to Social Network

important to investigate how verification can be used

in the context of notifications to social networks. Al-

though sending a notification of a non-existent acci-

dent from WreckWatch to user emergency contacts is

not physically catastrophic, it is certainly problematic.
Additional R&D is therefore needed to investigate tech-

niques for verifying correct interactions with social net-

works when the messages that are being sent have sig-

nificant potential for producing negative impacts.

4.3 Patient Diagnosis

Typical cyber-physical application for health care use

expensive proprietary hardware that it is not feasible

for a patient to take home. Mobile cyber-physical appli-

cations that can monitor patient health using onboard

sensors or connected external sensors can be produced
and delivered to patients much more affordably. More-

over, these mobile cyber-physical health systems can

use standard IP networking to send data back to Inter-

net services that aggregate information for doctors.

We are currently investigating the use of smart-

phone accelerometers and networked Bluetooth accel-

erometers to provide continual real-time monitoring of

the symptoms of Parkinson’s disease. As shown in Fig-
ure 4.3, the mobile cyber-physical application that we

are developing will collect tremor characteristics from

patients and then relay this information to an Internet

service. Doctors will then use this service to see trends
in symptoms over the course of a day and adjust med-

ication dosages more precisely.

Collecting data from onboard smartphone sensors

is relatively easy for a mobile cyber-physical applica-
tion. Processing and disseminating data in real-time be-

comes much more challenging for our Parkinson’s mon-

itoring application or other applications that use mul-
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Fig. 10 Mobile Cyber-physical Application for Real-time Mon-
itoring of Parkinson’s Disease Symptoms

tiple external sensors networked through USB, Blue-
tooth, or other means. Developers of cyber-physical ap-

plications must therefore determine appropriate archi-

tectures that can buffer data when cellular connections

are unavailable, yet not overrun device memory.
It is possible to perform some onboard processing

on the phone to reduce the amount of data that must

be transmitted from the phone to the Internet service

or buffered, but these approaches require carefully bal-

ancing processing load, data accuracy, and timeliness of
results. Additional R&D is therefore needed to develop

the software patterns and architectures to manage large

streams of external sensor data that must be processed

on by a mobile cyber-physical application and then sent
to a supporting Internet service.

5 Concluding Remarks

The benefits of using mobile Internet devices as the

foundation for novel cyber-physical applications is grow-
ing as these devices continue to proliferate. Many types

of cyber-physical applications are easier to implement

atop mobile Internet devices compared with conven-

tional large-scale deployments of customized hardware

and software. Achieving this vision of building com-
plex mobile cyber-physical applications that leverage

supporting Internet services requires solutions to hard

R&D challenges, including optimizing power consump-

tion and devising software architectures that leverage
the increased power of these devices.

Our work developing mobile cyber-physical applica-

tions in the context of WreckWatch and related projects

yielded the following lessons:

1. Many components of the solutions are highly

related. For example, MDE tools can better con-

trol and understand computing clouds, drive the

configuration of an SPL, and help predict power

consumption. Unified MDE approaches, such as the

NAOMI platform [8], that tie many of these solu-

tion components may be required to analyze mobile

cyber-physical application properties that span de-
vices and services.

2. Analysis of properties, such as safety, that

span a combination of devices and services is

difficult. New MDE approaches for analyzing these
systems of cyber-physical applications and internet

services will be needed.

3. Factoring social/human properties of systems

into system analysis is not well understood.

New R&D is therefore needed to evaluate the ram-
ifications of interacting with social networks.

4. It is hard to integrate mobile Internet devices

with conventional sensor networks. Solving the

incompatibility issues caused by device heterogene-
ity with a service-oriented device architecture is a

promising direction to increase the integration ca-

pabilities of heterogeneous sensor platforms.

5. Individual mobile devices are prone to unex-

pected unavailability. Fluctuating environmental
conditions, geographical areas of limited coverage,

and battery exhaustion can cause mobile devices to

become unavailable unexpectedly, which motivates

additional R&D on handling intermittent failures.

The goal of this article was to present R&D chal-

lenges we found most pressing when developing and op-
erating our mobile cyber-physical applications and sup-

porting Internet services. Many other challenges must

also be addressed when developing these applications

and services. We look forward to working with the R&D

community to identify and resolve these challenges.
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