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Abstract The powerful processors and variety of sen-
sors in new and planned mobile Internet devices, such
as Apple's iPhone and Android-based smartphones, can
be leveraged to build cyber-physical applications that col-
lect sensor data from the real world and communicate
it back to Internet services for processing and aggre-
gation. This article presents key R&D challenges fac-
ing developers of mobile cyber-physical applications that
integrate with Internet services and summarizes emerg-
ing solutions to address these challenges. For example,
application software should be architected to conserve
power, which motivates R&D on tools that can predict
the power consumption characteristics of mobile soft-
ware architectures. Other R&D challenges involve the
relative paucity of work on software and sensor data
collection architectures that cater to the powerful ca-
pabilities and cyber-physical aspects of mobile Internet
devices, which motivates R&D on architectures tailored
to the latest mobile Internet devices.
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1 Introduction

Emerging trends and opportunities. Mobile In-
ternet devices, such as the iPhone and Android-based
phones have become incredibly popular. For example,
Apple has sold over 33.8 million iPhones and the Mo-
torola Droid phone sold over 400,000 units in its �rst
week. The proliferation of these devices is expected to
increase,e.g., the Android platform will likely be avail-
able on dozens of phones in scores of countries within
a year.

The broad dissemination of these mobile Internet
devices, their accelerated processing power, range of
sensors, and pervasive cellular connections make them
ideal platforms for building novel mobile cyber-physical
applications. A cyber-physical application is a computer
system that processes and reacts to data from exter-
nal stimuli from the physical world and make decisions
that also impact the physical world [31]. Traditional
cyber-physical applications include ight avionics, elec-
tronic medical devices, and power grid control systems.
Since cyber-physical applications can impact the phys-
ical world and must respond to physical events, they
often require rigid performance and safety assurance.

Mobile Internet devices possess a variety of sensors
(such as ambient light sensors, accelerometers, GPS
sensors, microphones, and cameras) that cyber-physical
applications can use to sense environmental stimuli,
When cyber-physical applications are combined with
Internet services, they can detect context information
from user environments and react to social network
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Fig. 1 Mobile Cyber-physical Application to Detect and Report
Tra�c Accidents

information derived from the user contacts, Facebook
account, and other social networking databases. Com-
bining data that is both immediately present in device
environments with information streams and processing
power available through the Internet facilitates novel
mobile cyber-physical applications.

R&D e�orts are tapping into the signi�cant poten-
tial of these devices. For example, developers have built
cyber-physical applications and Internet services to de-
tect and track user activities for health purposes [29],
track and analyzeCO2 emissions [11], detect tra�c ac-
cidents and provide situational awareness services to
�rst responders [32,16] (shown in Figure 1), measure
tra�c and derive road quality [28,24], and monitor car-
diac patients [18].

Compared with developing specialized hardware and
software solutions, building cyber-physical applications
atop mobile Internet devices o�ers a range of bene�ts
with equivalent functionality, including:

{ Maintenance of customized hardware and software
solutions, such as wireless sensor networks, has his-
torically been a key issue to address [20]. Not only
must sensors be kept in working order, they must
also have adequate battery power. In contrast, cyber-
physical applications based on mobile Internet de-
vices can rely on their owners to maintain and charge
the devices.

{ Complex networking strategies have been required
in traditional custom hardware solutions to com-
municate data back to base stations for compute-
intensive processing [21]. In contrast, mobile cyber-
physical applications can communicate with Inter-
net services using standard IP networking to trans-
mit data for aggregation and receive processed re-
sults.

{ Conventional sensor network nodes are often sta-
tionary due to the high power cost of movement. In
contrast, cyber-physical applications built on mobile

Internet devices travel with their owners and can
take measurements at multiple locations through-
out the day. Moreover, monitoring human-centered
phenomena (such as tra�c congestion) can be easier
and less costly when the sensors travel with mobile
Internet device users.

Open R&D challenges. Despite the bene�ts of
building mobile cyber-physical applications atop mobile
Internet devices and Internet services, however, various
open R&D challenges limit their development and de-
ployment in practice. This article presents key R&D
challenges for mobile cyber-physical applications and
supporting Internet services, including the following:

1. Optimizing power consumption early in the ap-
plication development lifecycle is hard, which makes
it expensive and time-consuming to develop appli-
cations that run for extended periods of time on
mobile Internet devices.

2. Avoiding costly overprovisioning to support In-
ternet data processing services for mobile cyber-
physical applications is hard since average process-
ing loads can be signi�cantly lighter than peak load
and overprovisioning for occasional peak loads wastes
resources for common usage conditions.

3. Developing a con�gurable cyber-physical software
product for a wide range of targets is hard due to the
variations between target platforms that make
it hard to optimize the software for each platform
and ensure that non-functional constraints are met.

4. Integrating external sensors to exploit the ben-
e�ts of combining conventional sensor solutions and
emerging cyber-physical applications is hard due to
di�erent resource constraints and device capabili-
ties of mobile Internet devices and traditional sensor
platforms.

This article summarizes e�orts by ourselves and oth-
ers to address these challenges and is organized as fol-
lows: Section 2 summarizes a motivating example of
a cyber-physical application and supporting Internet
services for detecting tra�c accidents we developed;
Section 3 explores key R&D challenges and solutions
based on our motivating example; Section 4 describes
other emerging R&D opportunities in mobile cyber-
physical applications and Internet services; and Sec-
tion 5 presents concluding remarks and lessons learned.

2 Motivating Example: WreckWatch

To motivate the capabilities available to mobile cyber-
physical applications built on Internet devices, this sec-
tion describes the structure and functionality of Wreck-
Watch, which is multi-tier cyber-physical application
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Fig. 2 The WreckWatch Tra�c Accident Detection Application
for Mobile Internet Devices

for detecting tra�c accidents. WreckWatch is one of nu-
merous open-source1 sensor mobile cyber-physical ap-
plications we developed on the Google Android and
iPhone platforms. We use WreckWatch as a motivat-
ing example in this article since the range of challenges
we faced developing it apply to many mobile cyber-
physical applications and supporting Internet services,
as well.

WreckWatch is based on the premises that mobile
Internet devices now contain su�ciently sophisticated
sensors and networking capabilities that software appli-
cations can be built on top of them to serve as portable
black boxes. These black boxes can travel with drivers
and/or passengers to help detect tra�c accidents and
provide critical situational awareness information to �rs t
responders. Unlike existing tra�c accident detection
systems, such as OnStar, WreckWatch is not tethered
to a particular vehicle and can travel seamlessly with
its owner.

WreckWatch runs as a background service on Google
Android and polls the accelerometer and GPS for cur-
rent speed and acceleration information. At speeds above
a prede�ned threshold, WreckWatch starts feeding speed
and deceleration information into a mathematical acci-
dent prediction model. If the model indicates that the
current pattern of deceleration and speed is indicative
of a tra�c accident, WreckWatch reports the accident
to a central accident response server.

As shown in Figure 2, WreckWatch does not im-
mediately report the accident to the central server. In-
stead, a dialog is presented to the user asking if an
accident has actually occurred so users can cancel an
accident report for a false positive. If the user does not

1 WreckWatch and our other applications for mobile Internet
device sensor networks are available as open-source from code.
google.com/p/vuphone .

Fig. 3 The WreckWatch Communication Paradigm

respond to the dialog before a predetermined timeout,
WreckWatch submits an accident report.

WreckWatch uses a phone-based client and a central
Internet service to disseminate accident information to
�rst responders, emergency contacts derived from so-
cial data, and other motorists using a variety of voice
and data channels. Reported accidents are plotted by
the Internet service on Google Maps and made avail-
able to �rst responders and other motorists via the
WreckWatch client application. The central accident
reporting service uses the Asterisk Private Branch Ex-
change (PBX) to automatically place emergency calls
to 911 and dynamically provision an accident hot-line
for friends and family of the accident victims. Wreck-
Watch can also use the emergency hotline to automati-
cally send text messages to a list of emergency contacts
when wrecks occur.

Motorists can use WreckWatch's multimedia upload
capabilities to provide �rst responders with detailed vi-
sual and audio information about wrecks. Likewise, ac-
cident bystanders can use their device cameras to take
pictures or videos of the accident and share them via
the central server with �rst responders, as shown in
Figure 3. WreckWatch's ability to use networks of by-
standers to submit imagery of accidents exempli�es its
cyber-physical capabilities.

3 Overview of R&D Challenges and Solutions

The capabilities of WreckWatch described in Section 2
incur a number of demands on the software architec-
ture and Internet services that support it. For example,
careful design is required to ensure it does not consume
too much power, overconsume network bandwidth, or
overwhelm central servers. This section describes key
R&D challenges and presents promising solution ap-
proaches that we and others are developing to address
these challenges. We selected these challenges based on
our experience developing WreckWatch and other mo-
bile cyber-physical applications and supporting Inter-
net services described in Section 4. Although the so-
lutions are paired with individual challenge problems,
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many common themes, such as the use of model-driven
engineering, crosscut the solutions.

3.1 Challenge : Optimizing Power Consumption of
Mobile Cyber-physical Software Early in the Lifecycle.

Context. Although the latest mobile Internet devices
have powerful processors (e.g., the Nexus One contains
a 1 Ghz processor), cyber-physical application software
can quickly use this computational power at the ex-
pense of increased power consumption. Whereas sim-
ple applications written for previous generation devices
consumed power slowly enough for devices to function
for days between charges, current mobile cyber-physical
applications use so many sensors that device batteries
can be exhausted within hours (e.g., the Apple iPhone
maximum battery life with continuous 3G data connec-
tion usage is� 5 hours). When a mobile cyber-physical
application combines heavy processor usage with power
drain from a combination of sensors and data transfer,
battery life can be very short.

For example, WreckWatch runs continuously as a
background service on Google Android. In some of our
initial implementations, the highest possible update rate
provided by Android was used to receive GPS location
updates. The combination of processor usage for our
accident prediction model and GPS polling completely
drained the battery of an HTC G-1 phone in under
two hours. This rate of power drain presents a major
problem for a cyber-physical tra�c accident detection
application designed to run continuously.

On software platforms that support multi-tasking,
such as Google Android and Palm Pre devices, cyber-
physical application software may be required to share
power, computing, and sensor resources with multiple
other applications. The cyber-physical application soft-
ware must draw power slowly enough for the device to
remain charged all day, while simultaneously allowing
users to place phone calls, browses the Web, and check
email. It is therefore critical that cyber-physical appli-
cation software be designed so that it does not become
such a signi�cant power burden on a device that owners
are unwilling to run it.

Open problems. It is hard for developers of mo-
bile cyber-physical applications to predict the power
consumption of a software architecture early in the de-
velopment process. Our experience with WreckWatch
showed that the sensor software must be implemented,
deployed, and tested on the target hardware to deter-
mine its power consumption characteristics. The inabil-
ity to predict power consumption during the design
stage was problematic since design changes late in the
development process are more costly.

Fig. 4 Layering of Android Middleware and OS Abstractions

Many hard-to-predict platform factors play a role
in determining how a particular software design con-
sumes power. Middleware and OS task scheduling and
memory utilization strategies can a�ect how a software
architecture consumes power [12]. Likewise, networking
implementation details, such as design decisions in the
MAC layer of the OS [1], also play an important role.
Moreover, diversity in hardware (such as variation in
sensors) can consume power at di�erent rates across
devices,e.g., using GPS on one device may be much
more costly than on another.

Conventional cyber-physical applications with cus-
tom hardware and software typically use lightweight OS
and middleware layers, such as TinyOS [19], that pro-
vide low-level programming APIs that tightly-couple
the software to the hardware. This minimalistic ap-
proach complicates software development, but allows
for more control over how power is consumed. The in-
creased control over how power is consumed makes it
easier for developers to forecast power consumption.

In contrast, cyber-physical applications built on mo-
bile Internet devices are perched atop an intricate set of
OS and middleware layers that expose high-level APIs
to developers and simplify software development. For
example, Figure 4 shows the depth of Android's layers
of middleware and network stack abstractions, which
makes it hard to predict the power consumption of
each layer. For most applications, such as games or
user productivity applications that are not concerned
with power consumption, these higher-level APIs are
ideal. For cyber-physical applications that must con-
servatively consume power and always be on, these in-
termediate layers of abstraction make managing power
consumption harder.
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Emerging solution ! Model-driven power con-
sumption analysis. Model-driven engineering (MDE)
tools [30] help specify high-level cyber-physical soft-
ware architectures rapidly and then generate architec-
ture emulation code to run on target devices and to ob-
tain rough estimates of power consumption. By utilizing
MDE tools along with device- or platform-speci�c code
generation, it becomes possible to address the challenge
of predicting mobile cyber-physical application power
consumption early in the development cycle. These MDE
tools allow developers to analyze and evaluate poten-
tial designs on a physical device before commiting to a
speci�c architecture.

The key bene�ts that an MDE-based power anal-
ysis approach provides are (1) the ability to generate
emulation or simulation code for an architecture before
it is implemented and (2) the capability to re�ne the
generated code as the system becomes more precisely
understood. Code generation is critical since it allows
developers to rapidly test power consumption charac-
teristics of an architecture before committing to the
cost of implementing a design. Re�nement is another
important property because it allows the power con-
sumption estimates to become more precise as the de-
velopment process progresses. Increased precision in the
power consumption estimates allows developers to not
only tune high-level architectural properties but more
�ne-grained implementation decisions.

For example, the System Power Optimization Tool
(SPOT) [32] is an MDE tool that models mobile soft-
ware architectures and generates emulation code. The
SPOT visual modeling environment (based on the Ec-
lipse IDE) allows developers to model the high-impact
aspects of their designs before commiting to a particu-
lar implementation. Designers can specify sensor, CPU,
networking, and OpenGL utilization. SPOT then gen-
erates Java code for Android devices that allows devel-
opers to run and analyze their designs without the te-
dium of manual implementation. It also allows develop-
ers to perform continuous integration testing [14], which
generated emulation code is incrementally replaced by
actual cyber-physical application logic as the software
evolves. This model-driven continuous integration pro-
cess helps application developers increase the accuracy
of their models throughout the software lifecycle.

SPOT provides developers with a rough idea of how
their design will perform as early and with as little
overhead as possible. This MDE tool also helps pierce
through multiple layers of abstraction to predict power
consumption accurately. Since SPOT produces actual
device code, speculation of how these layers will a�ect
power consumption is unnecessary because middleware
interaction is accounted for in the resulting data.

3.2 Challenge : Avoiding Costly Overprovisioning.

Context. Although mobile Internet device processing
power has improved signi�cantly, some cyber-physical
data processing tasks (such as high-speed image pro-
cessing) are still not suitable for a mobile application.
Likewise, timely completion of complex tasks (such as
location-based searches) is not possible on mobile In-
ternet devices due to their limited memory, process-
ing speed, and power compared to server-based infras-
tructure. For example, data aggregation of terabytes
of information or image manipulation on thousands of
multi-megapixel �les ( e.g., aggregating camera images
to create 3D maps) are beyond the capabilities of to-
day's mobile Internet devices.

One approach to handling tasks that cannot be ac-
complished by mobile applications is to use Internet
services to aggregate and process data for the mobile
cyber-physical applications. These Internet services run
on supporting servers in a cloud. Data harvested by
cyber-physical applications from mobile device sensors
can be sent to these Internet services, which aggregate
and process the data before sending the results back to
the devices.

For example, WreckWatch uses a centralized Inter-
net service to provide enhanced emergency response
services for the mobile Internet devices. WreckWatch's
Internet service can collect and disseminate images and
video from an accident for emergency response teams.
WreckWatch's Internet service also provides more com-
putationally taxing functions, such as the ability to dy-
namically provision emergency response VoIP hotlines
through its integrated Asterisk PBX. These features of
WreckWatch are only possible through the use of client-
side accident detection and imaging code in the mobile
cyber-physical application and server-side media aggre-
gation and PBX functionality.

Open problems. Using Internet services to sup-
port mobile cyber-physical applications requires devel-
opers to address the challenging problem of determining
how to e�ciently provision servers to run the services.
Conventional approaches to server provisioning, such
as worst-case capacity planning, over-engineer comput-
ing platforms to ensure quality-of-service (QoS) require-
ments are met during peak load conditions. Due to
the excess capacity built into the computing platform,
however, many computing resources are idle under non-
peak load conditions. With mobile cyber-physical appli-
cations, processing load may change dramatically dur-
ing the day as users become stationary or go to sleep.

For example, WreckWatch's peak loads are during
rush hour tra�c periods when more cars are on the
road and more accidents occur. At night or when users
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have �nished their morning commutes to work, the sup-
porting Internet service is substantially less loaded. Un-
planned occurrences, such as incliment weather, may
also cause spikes in the processing load of the Internet
service that are far above the average. This wide vari-
ation in processing load makes it hard for operators to
provision infrastructure that provide the low response
time needed by cyber-physical applications, but that
also does not require costly overprovisioning.

As power consumption becomes an increasingly im-
portant issue, service providers will not be able to over-
provision as easily due to regulation and higher power
costs. In 2003, it was estimated that data centers con-
sumed 22TWh of power [23]. Power consumption and
cooling are expected to become more important and
expensive for data centers in the future [4].

Emerging solution ! Cloud computing and
resource auto-scaling. Cloud computing uses virtu-
alization [5] to allow dynamic provisioning of OS images
in a data center. Operators have traditionally purchased
individual hardware platforms for each OS image. With
cloud computing, virtual OS images are co-located on
the same hardware, allowing more e�cient use of hard-
ware. These exible OS image allocation techniques can
deploy Internet services into production environments
much faster and often reduce initial deployment cost.

Manually con�gured cloud computing environments
are often ine�cient platforms for Internet services that
support mobile cyber-physical applications. For exam-
ple, these applications have periods of increased work-
load that are not always foreseen and which can uctu-
ate signi�cantly. Additional OS images must therefore
be deployed in the cloud to handle these periods of in-
creased activity. When the workload subsides, however,
the additional OS images are idle, wasting valuable re-
sources (such as power) and increasing operation costs.

Computing clouds, such Amazon's Elastic Compute
Cloud (EC2), have recently introduced automated cloud
scaling [33]. EC2 uses auto-scaling to respond to uc-
tuations in the computational needs of the Internet ser-
vice utilizing the cloud. For example, if a tra�c accident
occurs, WreckWatch's Internet service could see drasti-
cally increased loads.

Figure 3.2 shows how automated cloud scaling al-
lows on-demand deployment of additional computational
resources to handle increased workloads. The type of
OS image and resources deployed can also be tailored
for particular application needs. For example, if a sup-
porting Internet service requires substantially increased
processing power|but only marginally increased mem-
ory availability|then an OS instance with precisely the
needed resources can be provisioned. After the workload
returns to the normal state, the additional resources are

Fig. 5 Cloud Computing Can Dynamically Scale Resource Al-
location to Meet Load

released. As a result, the size of the cloud remains ap-
propriate for the current workload, regardless of unfore-
seen uctuations, thereby helping to minimize power
consumption and operational cost.

3.3 Challenge : Addressing Platform Variations

Context. Unlike the desktop and server operating sys-
tem market, there may not be a dominante smartphone
operating system vendor. Gartner estimates that Win-
dows Mobile, Blackberry OS, iPhone OS, and Google
Android will each have roughly � 13% of the market in
2012. Symbian is expected to have the largest share of
the international market with � 30%. Many developers
and organizations will therefore likely create and main-
tain cyber-physical applications that are targeted for
multiple mobile Internet device operating systems and
versions.

For example, multiple versions of Google Android
were released during the development of WreckWatch.
Our development e�orts initially targeted Android 1.0
and HTC's G1, which was the only Android hardware
available at the time. Since the initial implementation
was �nished, Google has released Android 1.5 and An-
droid 2.0 and there are now at least �ve di�erent An-
droid devices by Motorola and HTC. We have also be-
gun the process porting WreckWatch to the iPhone.

Open problems. As shown in Figure 3.3, there is
signi�cant complexity involved in managing the vari-
ability of cyber-physical software and determining the
appropriate software con�guration for a given mobile
platform. For example, WreckWatch can run as a back-
ground service on Android in parallel with other appli-
cations. In contrast, WreckWatch cannot run concur-
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Fig. 6 Complexities of Targeting Multiple Platforms

rently with other applications on the current version
of the iPhone and must be redesigned as a modal ap-
plication. Each additional variation in platform design
increases development complexity.

Even within a single OS platform there can be vari-
ations across versions and devices that add develop-
ment complexity. For example, the 2.0 release of An-
droid provides a Bluetooth API that can be used by
a cyber-physical application to communicate with ex-
ternal sensors, whereas prior versions did not. The 3.0
release of iPhone added the ability to have noti�cations
asynchronously delivered to applications that were not
running. This noti�cation API makes notifying Wreck-
Watch client users of new accidents easier than on prior
versions of the iPhone OS.

Although mobile Internet devices have sign�cant
processing capabilities, certain resources (such as bat-
tery power) are still limited. It is therefore essential to
optimize the con�guration of a mobile cyber-physical
application for each individual capability set of a type
of device. Adding this resource optimization consid-
eration into the con�guration problem makes it even
harder to manage and develop multiple software ver-
sions. The optimization process must also ensure that
any non-functional constraints on memory consumption
or other resources are met by the cyber-physical appli-
cation software's con�guration.

Emerging solution ! Mobile cyber-physical
application software product-lines. Software product-
lines (SPL) [6] are a promising approach for dealing
with the complexity of managing a mobile cyber-physical
application targeted for multiple mobile Internet device

platforms. An SPL is a software platform designed with
points of variability so it can be rapidly recon�gured for
di�erent requirement sets. A critical component of an
SPL is a model of the points of variability and the rules
governing their con�guration.

A common approach to modeling SPL variability is
called feature modeling[17]. A feature model uses a unit
of abstraction, called a feature, that represents an in-
crement of product functionality or point of variability.
Feature models use a tree-like structure to specify the
constraints on their con�gurations.

A con�gurable mobile sensor software platform can
be created using SPL principles [36]. An SPL feature
model provides a roadmap that explicitly captures the
complex rules needed to recon�gure the software for
multiple target OS, middleware, and hardware sets. This
model helps prevent developers from making hard-to-
diagnose con�guration mistakes and decreases develop-
ment time for new platforms [36].

SPL feature models can be transformed into math-
ematical representations, such as constraint satisfaction
problems (CSP) [3] or satis�ability problems (SAT) [22].
After an SPL feature model is in one of these mathe-
matical formats, optimized software con�gurations can
be derived that minimize cost, power, or other criti-
cal properties [36]. This type of con�guration optimiza-
tion helps developers automatically generate precisely-
crafted cyber-physical application software con�gura-
tions for each target platform, which would otherwise
be hard to discover manually.

New techniques for optimizing SPL con�guration
using constraint and SAT solvers can produce good re-
sults for deriving highly optimized software designs [3,
22] that can improve battery life and reduce cost for
mobile cyber-physical application software. In some re-
search endeavors, these SPL optimization techniques
have been shown to produce good results for dynamic
mobile software con�guration at runtime. For example,
WreckWatch can use SPL con�gurations to help rapidly
setup highly optimized mobile cyber-physical software
deployments.

In some situations, such as when resource constraints
on memory or power are added, deriving SPL soft-
ware con�gurations using CSP or SAT techniques can
be time consuming. For example, attempting to de-
rive con�gurations of the WreckWatch software that �t
within the memory limits of less powerful mobile Inter-
net devices is challenging. Applying emerging heuris-
tic methods, such as Filtered Cartesian Flattening [35],
to derive con�gurations can drastically reduce solving
time. These types of heuristic techniques can be used
to aid developers when the complexity of the cyber-
physical application's resources or other non-functional
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Fig. 7 WreckWatch Integration with Heterogeneous External
Sensor Network

constraints cannot be tackled by existing CSP or SAT
techniques.

3.4 Challenge : Integrating External Sensors

Context. With the emergence of pervasive and ubiq-
uitous computing, everyday objects and activities will
contain embedded sensing, computing, and communica-
tion capabilities. These smart devices will increasingly
interact in networks to jointly perform computational
tasks. Conventional device networks dedicated to a sin-
gle application will have to open up, connect, and in-
teroperate with each other to allow multiple and new
applications to use their services. Devices may even be
required to discover each other dynamically and inter-
act in an ad hoc fashion. The integration of mobile In-
ternet devices with conventional sensor networks is one
instance of these network-of-networks scenarios.

For example, Figure 7 shows how WreckWatch can
dynamically connect to a sensor network embedded in
the road or road-side units to deliver detailed informa-
tion on the road condition that led to the accident. It
can further establish an ad hoc communication link to
sensors attached to passengers to collect and integrate
health data that would allow for remote assessment of
the required medical aid.

Open problems. Most embedded devices have a
custom-made software and hardware platform designed
for a speci�c purpose. Mobile Internet devices are made
to stay online while on the move. These devices are
equipped with su�cient memory, processing, and com-
munication units to check emails, browse the Web, and
make phone calls.

Conventional sensor platforms are low-cost devices
deployed in a high density to monitor environmental
phenomena or to track objects. Compared to mobile

Internet devices, conventional sensor platforms are far
more restricted in terms of their storage and process-
ing capabilities, communication range, and power sup-
ply. Moreover, the operating system for conventional
sensor platforms di�ers considerably from mobile In-
ternet devices since conventional sensor platforms can
be recharged less often and controlling energy consump-
tion is a major concern.

The di�erent device and network capabilities result
in incompatibility issues that make a seamless inte-
gration between cyber-physical applications and exter-
nal sensor networks a signi�cant research challenge. In-
compatible communication links prevent today's mobile
Internet devices from exchanging IP-based messages
with conventional sensor platforms via a low-power ra-
dio connection. Incompatibility stemming from device
heterogeneity is traditionally overcome by proprietary
communication interfaces and gateway concepts.

Proprietary interfaces complicate the development
of new applications, however, because they require in-
depth knowledge of technical details [10]. Moreover,
proprietary interfaces cannot be reused when new de-
vices with di�erent features are added. Application-
level gateways have been introduced to compensate for
the lack of a common language understood by all de-
vices and also to translate between the di�erent mes-
sage formats. Moreover, communication via such an
application-layer gateway introduces an additional level
of indirection which bears extra con�guration cost and
hampers system evolution [34][26].

Emerging solution ! A service-oriented de-
vice architecture (SODA) [7] based on mature In-
ternet technology is a promising integration approach
for heterogeneous sensor networks. Physical devices in
a SODA can be modeled as services that hide device-
speci�c implementation details behind well-de�ned, open
or standardized interfaces. A service consumer may ac-
cess and control a wide range of physical devices via
their service interfaces without being a�ected by the di-
versity of the underlying device-speci�c hardware, �rm-
ware, and software.

There are two bene�ts of device-centric, service-orient-
ed architectures when integrating external sensors. First,
services abstract from technical details and provide ready-
made building blocks that can be quickly combined to
build new applications [27]. Second, when physical de-
vices become available, corresponding services can be
announced through which other devices can �nd out
about their capabilities [2].

Web services realize a service-oriented architecture
and have been successfully deployed as an integration
media for business systems and distributed applications.
They comprise a number of standards to de�ne the de-
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scription, registry, and communication of services. Web
services are poorly suited for embedded devices, how-
ever, since they are too resource-intensive. The Device
Pro�le for Web Services (DPWS) [9] helps address this
drawback by de�ning a minimal set of implementa-
tion constraints to enable secure Web service messag-
ing, discovery, description, and eventing on resource-
constrained devices. For example, the DPWS restricts
the size and complexity of messages, provides an asyn-
chronous publish-subscribe mechanism, and allows for
dynamic service discovery.

These features make DPWS an ideal candidate on
which to base a solution for the seamless integration be-
tween mobile Internet devices and conventional sensor
networks. For example, WreckWatch could dynamically
send a message into a wireless sensor network at a tra�c
intersection to discover available sensor platforms and
services. The mobile Internet device can then invoke all
service that match its requirements and aggregate the
returned data with local sensor readings. The use of
XML as message exchange format and the transmission
via the Internet Protocol allow for a communication in-
dependent from any device-speci�c low-level interfaces.

Additional R&D is needed to enhance DPWS since
it does not fully address the constraints of conventional
wireless sensor networks. In particular, DPWS uses UDP-
/IP and TCP/IP for transmission, which is not natively
supported in low-power IEEE 802.15.4 based radio net-
works. IP support in wireless sensor networks is a pre-
requisite for using DPWS and the 6LoWPAN working
group explores encapsulation and compression mecha-
nisms to receive and send IP packets over IEEE 802.15.4
based networks.

Since DPWS uses XML as message exchange format
allowing for a standardized data exchange, its verbosity
may require several radio packets to transmit a single
message. Design choices are being explored to minimize
the cost of providing structured data and functionality
description, such as compression and tag compacting
techniques [15] and HTTP-based service bindings [26].
In addition, Moritz et al. [25] propose adaptations and
enhancements to limit the number of exchanged DPWS
message for service discovery and meta data exchange.
These types of models will improve the integration ca-
pabilities of heterogeneous sensor networks.

4 Emerging R&D Opportunities and
Challenges

The R&D challenges and solutions addressed in Sec-
tion 3 were based on our WreckWatch application de-
scribed in Section 2. We are also creating other mo-
bile cyber-physical applications and supporting Inter-

net services that are in earlier stages of development.
This section describes the R&D challenges that have
emerged in our ongoing work on these applications, but
are not yet as well formulated as the challenges and so-
lutions presented in Section 3.

4.1 Augmented Reality

Augmented reality (AR) [13] is an emerging new area
for mobile cyber-physical applications and supporting
Internet services. The ability to combine virtual in-
formation with real world images was historically re-
stricted to expensive instrumentation, such as heads
up displays for ight avionics or luxury automobiles.
Recent advances in the area of augmented reality al-
low the creation of portable versions of these interfaces
using smartphones.

Mobile cyber-physical AR systems use GPS receivers,
accelerometers, and compasses precisely capture the ori-
entation and actions of smartphone users and deduce
what the user is looking at. Virtual geotagged informa-
tion is then obtained, typically from an Internet ser-
vice, and overlaid across a smartphone's camera dis-
play. Overlaying information on the display allows the
camera preview to serve as a looking glass that blends
virtual and real world imagery.

We are developing an AR system for creating Aug-
mented Reality Teaching Spaces (ARTS) in collabo-
ration with educators in the Humanities. The goal of
the ARTS project is to produce an AR platform that
allows teachers to use an Internet service to publish
geotagged information that students can see overlaid
across real-world imagery in a smartphone camera dis-
play. Figure 4.1 shows how this platform will be used to
fuse assignment information with real imagery from the
Vanderbilt campus. For example, biology, anatomy, ge-
ology, or archeology instructors could mark up demon-
strations with information that students can access in
the laboratory or in the �eld. English classes could re-
mediate literary works in virtual worlds that could be
a�ected by real world actions.

New research challenges are already being uncov-
ered in our development of AR projects. Interpreting
what the user is looking at based on compass and GPS
data requires precise estimations and fast fetching of
large geotagged datasets. Many existing cyber-physical
applications use custom hardware with high accuracy
sensors. We have found that commodity smartphones
have signi�cant jitter in their sensor readings, requir-
ing the use of complex data �ltering.

Additional R&D is therefore needed to study strate-
gies for handling the lower accuracy of commodity sen-
sors. Fetching geotagged datasets from an Internet ser-
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Fig. 8 An Augmented Reality Teaching Platform

vice fast enough to provide real-time AR is challeng-
ing with varying cellular connectivity and bandwidth.
We see the need to develop approaches for exposing
more physical heading information, such as location and
speed, to the supporting Internet services to more in-
telligently deduce what data to send to mobile cyber-
physical applications.

4.2 Interaction with Social Networks.

Social networking platforms, such as Facebook and Twit-
ter, provide Internet services that can be used by mo-
bile cyber-physical applications to glean key social data
about users. Recent mobile Internet device middleware
platforms (such as the Palm Pre's Web OS) also o�er
libraries that simplify access to these social networking
services. This type of social data can improve cyber-
physical applications in various ways, such as Wreck-
Watch's ability to notify friends and family when acci-
dents occur.

Interacting with the social networks of users clearly
o�ers signi�cant possibilities for mobile cyber-physical
applications. Care must be taken, however, to ensure
that automated interactions with social networks do
not harm user reputations or cause emotional damage
to friends and family. For example, WreckWatch has
the potential to detect accident false positives and send
noti�cations to emergency contacts, as shown in Fig-
ure 4.2. WreckWatch is carefully designed to minimize
these inccorrect accident reports, but cannot guarantee
that mistakes will not be made.

Veri�cation has been used to ensure physical safety
properties, such as that a plane will not crash due to
an unforeseen software state. Likewise, it is becoming

Fig. 9 Accident False Positive Dissemination to Social Network

important to investigate how veri�cation can be used
in the context of noti�cations to social networks. Al-
though sending a noti�cation of a non-existent acci-
dent from WreckWatch to user emergency contacts is
not physically catastrophic, it is certainly problematic.
Additional R&D is therefore needed to investigate tech-
niques for verifying correct interactions with social net-
works when the messages that are being sent have sig-
ni�cant potential for producing negative impacts.

4.3 Patient Diagnosis

Typical cyber-physical application for health care use
expensive proprietary hardware that it is not feasible
for a patient to take home. Mobile cyber-physical appli-
cations that can monitor patient health using onboard
sensors or connected external sensors can be produced
and delivered to patients much more a�ordably. More-
over, these mobile cyber-physical health systems can
use standard IP networking to send data back to Inter-
net services that aggregate information for doctors.

We are currently investigating the use of smart-
phone accelerometers and networked Bluetooth accel-
erometers to provide continual real-time monitoring of
the symptoms of Parkinson's disease. As shown in Fig-
ure 4.3, the mobile cyber-physical application that we
are developing will collect tremor characteristics from
patients and then relay this information to an Internet
service. Doctors will then use this service to see trends
in symptoms over the course of a day and adjust med-
ication dosages more precisely.

Collecting data from onboard smartphone sensors
is relatively easy for a mobile cyber-physical applica-
tion. Processing and disseminating data in real-time be-
comes much more challenging for our Parkinson's mon-
itoring application or other applications that use mul-
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Fig. 10 Mobile Cyber-physical Application for Real-time Mon-
itoring of Parkinson's Disease Symptoms

tiple external sensors networked through USB, Blue-
tooth, or other means. Developers of cyber-physical ap-
plications must therefore determine appropriate archi-
tectures that can bu�er data when cellular connections
are unavailable, yet not overrun device memory.

It is possible to perform some onboard processing
on the phone to reduce the amount of data that must
be transmitted from the phone to the Internet service
or bu�ered, but these approaches require carefully bal-
ancing processing load, data accuracy, and timeliness of
results. Additional R&D is therefore needed to develop
the software patterns and architectures to manage large
streams of external sensor data that must be processed
on by a mobile cyber-physical application and then sent
to a supporting Internet service.

5 Concluding Remarks

The bene�ts of using mobile Internet devices as the
foundation for novel cyber-physical applications is grow-
ing as these devices continue to proliferate. Many types
of cyber-physical applications are easier to implement
atop mobile Internet devices compared with conven-
tional large-scale deployments of customized hardware
and software. Achieving this vision of building com-
plex mobile cyber-physical applications that leverage
supporting Internet services requires solutions to hard
R&D challenges, including optimizing power consump-
tion and devising software architectures that leverage
the increased power of these devices.

Our work developing mobile cyber-physical applica-
tions in the context of WreckWatch and related projects
yielded the following lessons:

1. Many components of the solutions are highly
related. For example, MDE tools can better con-
trol and understand computing clouds, drive the

con�guration of an SPL, and help predict power
consumption. Uni�ed MDE approaches, such as the
NAOMI platform [8], that tie many of these solu-
tion components may be required to analyze mobile
cyber-physical application properties that span de-
vices and services.

2. Analysis of properties, such as safety, that
span a combination of devices and services is
di�cult. New MDE approaches for analyzing these
systems of cyber-physical applications and internet
services will be needed.

3. Factoring social/human properties of systems
into system analysis is not well understood.
New R&D is therefore needed to evaluate the ram-
i�cations of interacting with social networks.

4. It is hard to integrate mobile Internet devices
with conventional sensor networks. Solving the
incompatibility issues caused by device heterogene-
ity with a service-oriented device architecture is a
promising direction to increase the integration ca-
pabilities of heterogeneous sensor platforms.

5. Individual mobile devices are prone to unex-
pected unavailability. Fluctuating environmental
conditions, geographical areas of limited coverage,
and battery exhaustion can cause mobile devices to
become unavailable unexpectedly, which motivates
additional R&D on handling intermittent failures.

The goal of this article was to present R&D chal-
lenges we found most pressing when developing and op-
erating our mobile cyber-physical applications and sup-
porting Internet services. Many other challenges must
also be addressed when developing these applications
and services. We look forward to working with the R&D
community to identify and resolve these challenges.
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