
Concurrent Programming with

Java

Douglas C. Schmidt

schmidt@cs.wustl.edu

Washington University, St. Louis

� Portions of this material are based on Doug
Lea's book \Concurrent Programming in Java"

{ http://www.awl.com/cp/lea.html

1

Concurrent Processing in Java

� Java concurrency model

{ Combination of Active and Passive Objects based

on Threads and Monitors

� Think of each Thread as having its own
\logical processor"

{ i.e., an \active object"

� On uni-processors Threads may share the

CPU and have their execution interleaved

� On multi-processors Threads may be sched-
uled and run in parallel

{ Java speci�ciation doesn't mandate parallelism

2

Challenges with Java Threading

� Hard part is that threads are not indepen-

dent

� You must provide for

{ Synchronization

. How a thread knows whether or not another

thread has completed a particular portion of its

execution

{ Shared resources

. Mutual access and mutual exclusion

{ Communication

. Often done by a combination of synchronization

and shared resources

. e.g., message passing and shared memory

3

Java Threading Problems

� Avoiding Deadlock

{ No work being done because every thread is wait-

ing for something that another thread has

{ Particularly problematic in Java due to \nested

monitor problem"

� Avoiding Livelock (Lockout)

{ A thread is inde�nitely delayed waiting for resources

being used elsewhere

� Maintaining Liveness

{ Nothing that is supposed to happen will be delayed

inde�nitely

4

Threading Problems (cont'd)

� Scheduling

{ Allocating shared resources \fairly"

. Must adjust for the fact that some threads are

more urgent (\higher priority") than others

� Non-determinism

{ The order in which events happen is not, in gen-

eral, fully speci�ed or predicatible

� Performance

{ Context switch, synchronization, and data move-

ment can be bottlenecks

5

Goals of Java Concurrency

Control

� Resource accessed by one thread at a time

� Each resource request satis�ed in �nite time

� Abnormal termination of thread does not

directly harm other threads that do not call

it

� Waiting for a resource should not consume

processing time (i.e., no \busy waiting")

6

Concurrency Control Techniques

� Critical Regions (e.g., using mutexes and
semaphores)

{ De�ne a critical region of code that accesses the

shared resources and which can be executed by

only one thread at a time

� Tasking and task rendezvous (e.g., Ada)

{ Combines synchronization and communication

� Monitors (e.g., Java)

{ A monitor is a collection of data and procedures

where the only way to access the data is via the

procedures and only one of the procedures in the

monitor may be executing at one time and once a

procedure starts to execute

{ All calls to other procedures in the monitor are

blocked until the procedure completes execution

7

Threads in Java

� Java implements concurrency via Threads

{ Threads are a built-in language feature

{ The Java Virtual Machine allows an application to

have multiple threads of executing running con-

currently

� The Java Thread class extends Object and

implements Runnable

public class java.lang.Thread

extends java.lang.Object

implements java.lang.Runnable

{

// ...

}

public interface Runnable {

public void run();

}

8

Java Threading Example

� A Thread-safe Stack

import java.lang.*;

interface My_Stack

{

public void push (Object item);

public Object pop ();

public Object top ();

}

class MT_Bounded_Stack implements My_Stack

{

public MT_Bounded_Stack () { this (50); }

public MT_Bounded_Stack (int max_size) {

this.top_ = 0;

this.max_ = (max_size);

this.stack_ = new Object[this.max_];

}

private Object[] stack_;

private int top_;

private int max_;

9

public synchronized void push (Object item) {

while (this.is_full ())

try { wait(); } catch (InterruptedException ex) {};

this.stack_[top_] = item;

this.top_++;

notifyAll();

}

public synchronized Object pop () {

while (this.is_empty ())

try { wait(); } catch (InterruptedException ex) {};

this.top_--;

Object return_object = this.stack_[this.top_];

notifyAll();

return return_object;

}

public synchronized Object top () {

while (this.is_empty ())

try { wait(); } catch (InterruptedException ex) {};

return this.stack_[this.top_ - 1];

}

protected boolean is_empty () { return this.top_ == 0; }

protected boolean is_full () {

return this.top_ == this.max_;

}

}

10

Main Application

class MT_Stack_App

{

public static void main (String args[]) {

if (args.length == 0)

System.out.println (

"usage: " + args[0] + " stacksize");

else {

Integer size = new Integer (args[0]);

MT_Bounded_Stack stack =

new MT_Bounded_Stack (size.intValue ());

System.out.println (

"starting up stack with size " + size);

JoinableThreadGroup thread_group =

new JoinableThreadGroup ("Producer/Consumer");

new Thread (thread_group, new Producer (stack),

"Producer").start ();

new Thread (thread_group, new Consumer (stack),

"Consumer").start ();

try {

thread_group.join ();

} catch(InterruptedException ex) {

System.out.println ("ThreadTest::main");

System.out.println (ex);

}

}

}

}

11

Producer and Consumer

class Producer implements Runnable {

public Producer (MT_Bounded_Stack stack) {

this.stack_ = stack;

}

public void run () {

for (int count = 1; true; count++) {

// Will block when stack is full.

this.stack_.push (new Integer (count));

System.out.println ("("

+ Thread.currentThread ().getName ()

+ ") pushed " + count);

}

}

private MT_Bounded_Stack stack_;

}

class Consumer implements Runnable {

public Consumer (MT_Bounded_Stack stack) {

this.stack_ = stack;

}

public void run() {

// Will block when stack is empty.

for (;;) {

System.out.println ("("

+ Thread.currentThread ().getName ()

+ ") popping " + this.stack_.pop ());

}

}

private MT_Bounded_Stack stack_;

}

12

A Joinable ThreadGroup

class JoinableThreadGroup extends ThreadGroup

{

public JoinableThreadGroup (String name)

{

super (name);

}

public JoinableThreadGroup (ThreadGroup parent,

String name)

{

super (parent, name);

}

// Wait for all the threads in the group to exit.

public void join() throws InterruptedException

{

Thread list[] = new Thread[activeCount ()];

enumerate (list, true);

for (int i = 0; i < list.length; i++) {

list[i].join();

}

}

}

13

Java Threading Model

� Unless you have better-than-average hard-
ware, all the active threads in a Java appli-
cation share the same CPU

{ This means that each runnable thread has to take

turns executing for a while

{ A thread is runnable if it has been started but has

not terminated, is not suspended, is not blocked

waiting for a lock, and is not engaged in a wait

� When they are not running, runnable threads

are held in priority-based scheduling queues

managed by the Java run-time system

14

Java Threading Topics

� Thread construction

� Thread execution

� Thread control

� Scheduling

� Priorities

� Miscellaneous

� Synchronization

� Waiting and Noti�cation

15

Thread Construction Methods

� Thread accept various arguments as construc-

tors

// Constructors

public Thread();

public Thread(Runnable target);

public Thread(Runnable target, String name);

public Thread(String name);

public Thread(ThreadGroup group, Runnable target);

public Thread(ThreadGroup group,

Runnable target, String name);

public Thread(ThreadGroup group, String name);

// Mark thread as a daemon

public final void setDaemon(boolean on);

16

Thread Construction Methods

(cont'd)

� The String name serves as an identi�er for
the Thread

{ Useful for tracing debugging

� The ThreadGroup is where the new Thread is
placed

{ Used to implement security

. e.g., prevent threads from being stopped arbi-

trarily

{ Defaults to same group as Thread issuing con-

structor

. e.g., will nest in a tree-like fashion

{ Can serve as target for group stop, suspend, and
resume

17

Thread Construction Methods

(cont'd)

� The start method activates the thread

{ i.e., will call the run hook (de�ned by the user)

� The setDaemon method allows a thread to
be terminated by the JVM when all other
non-daemon threads have exited

{ Used for \background jobs"

{ Must be called before thread is started

18

Thread Control Methods

� Java de�nes methods for controlling threads:

public static Thread currentThread();

public void destroy();

public isAlive();

public void run();

public void start();

public final void stop();

public final void stop(Throwable obj);

19

Thread Control Methods (cont'd)

� The start method causes a thread to call
its run hook

{ No synchronization locks held by the caller thread

are automatically retained

� The run hook should be de�ned by a user
to perform the desired task

{ The default behavior of run is to invoke the run
method of the Thread's runnable target (if it's not
null)

{ A thread terminates when the run method returns

. Unless it is stoped, an unhandled exception is

thrown, or if System.exit is called

� The isAlive method returns true if a thread
has started but not terminated

{ It will also return true if the thread is suspended

20

Thread Control Methods (cont'd)

� The stop method irrevocably terminates a
thread

{ It does not delete the Thread object, just stops

the activity

. Thus, you can call start again on the same

Thread object

{ You can call stop(Throwable) to stop a thread

by throwing the listed exception

{ When a thread is stopped, it releases all locks held

by objects running in the thread

� The destroy method stops and kills a thread
without giving it or the Java runtime system
any chance to intervene

{ Not recommended for routine use

21

Scheduling Methods

� Java allows you to schedule threads explic-

itly

public final void join();

public final void join(long millis);

public final void join(long millis, int nanos);

public void interrupt();

public final void resume();

public final void suspend();

public static void sleep(long millis);

public static void sleep(long millis, int nanos);

public static void yield();

22

Scheduling Methods (cont'd)

� Threads can synchronize with the termina-

tion of other threads via join

� The join method suspends the caller until
the target thread completes

{ i.e., it returns when isAlive is false

{ The version with a (millisecond) time argument re-

turns control even if the thread has not completed

within the speci�ed time limit

23

Scheduling Methods (cont'd)

� The suspendmethod temporarily halts a thread

{ Beware of using this -- it can be dangerous if the

thread being suspended holds JVM resources: : :

� The resumemethod allows a suspended thread

to continue normally

� The sleep method causes the thread to sus-
pend for a given time (speci�ed in millisec-
onds) and then automatically resume

{ The thread might not continue immediately after

the given time if there are other active threads

24

Scheduling Methods (cont'd)

� The interrupt method causes a sleep, wait,
or join to abort with an InterruptedException

{ This can be caught and dealt with in an application-

speci�c way

{ The interrupt method itself is not fully imple-

mented in Java 1.0.

� The yieldmethod relinquishes control, which

may enable one or more other threads of

equal priority to be run

25

Priority Methods

� Every thread has a priority

{ Threads with higher priority are executed in pref-

erence to threads with lower priority

� A Thread inherits priorities from the Thread

that created it

� Priorities can be changed by calling setPriority
with an argument between MIN PRIORITY and
MAX PRIORITY

{ The maximum thread priority can be limited by

the ThreadGroup to which the thread belongs

// Fields

public final static int MAX_PRIORITY;

public final static int MIN_PRIORITY;

public final static int NORM_PRIORITY;

// Methods

public final void setPriority(int newPriority);

public final int getPriority();

26

Priority Methods (cont'd)

� If there are multiple runnable threads at any

given time, the Java run-time system picks

one with the highest priority to run

� If there are more than one thread with the
highest priority, it picks any arbitrary one of
them

{ i.e., Java does not strictly require fairness

� A running lower-priority thread is preempted
(arti�cially suspended) if a higher-priority
thread needs to be run

{ This preemption need not occur immediately

{ Threads with equal priority are not necessarily pre-

empted in favor of each other

27

Miscellaneous Methods

� There are also a number of miscellaneous

Thread methods

{

// Methods

public static int activeCount();

public void checkAccess();

public int countStackFrames();

public static void dumpStack();

public static int enumerate(Thread tarray[]);

public final String getName();

public final ThreadGroup getThreadGroup();

public static boolean interrupted();

public final boolean isDaemon();

public boolean isInterrupted();

public final void setName(String name);

public String toString();

}

28

Synchronization Methods

� Java guarantees that most access and as-
signment operations are atomic on primitive
data (e.g., char, short, int)

{ i.e., they will always work safely in multithreaded

contexts without explicit synchronization

� Primitive operations include access and as-
signment to built-in scalar types except long
and double

{ Without explicit synchronization, concurrent as-

signments to long and double variables are al-

lowed to be interleaved

29

Synchronization Methods (cont'd)

� Synchronization is implemented by exclu-
sively accessing the underlying and other-
wise inaccessible internal mutex lock asso-
ciated with each Java Object

{ This includes Class objects for statics

� Each lock acts as a counter

{ If the count value is not zero on entry to a syn-

chronized method or block because another thread

holds the lock, the current thread is delayed (blocked)

until the count is zero

{ On entry, the count value is incremented

{ The count is decremented on exit from each synchronized
method or block, even if it is terminated via an ex-

ception

. But not if the thread is destroyed: : :

30

Synchronization Methods (cont'd)

� Any method or code block marked as synchronized

is executed in its entirety (unless explicitly

suspended via wait) before the object is al-

lowed to perform any other synchronized

method called from any other thread

� Code in one synchronizedmethod may make
a self-call to another method in the same
object without blocking

{ Similarly for calls on other objects for which the

current thread has obtained and not yet released

a lock

{ Only those calls stemming from other threads are

blocked

� Synchronization is retained when calling an

unsynchronized method from a synchronized

one

31

Synchronization Methods (cont'd)

� If a method is not marked as synchronized
then it may execute immediately whenever
invoked

{ i.e., even while another synchronized method is

executing

� Thus, declaring a method as synchronized
is not su�cient to ensure exclusive access

{ i.e., any other unsynchronized methods may run

concurrently with it

� The synchronized quali�er for methods can
be overridden in subclasses

{ A subclass overriding a superclass method must

explicitly declare it as synchronized

� Methods declared in Java interfaces cannot

be quali�ed as synchronized

32

Synchronization Methods (cont'd)

� Individual code blocks within any Java method

can be synchronized as follows

synchronized(anyObject)

{

anyCode();

}

� In Java, block synchronization is considered
to be a more basic construct than method
synchronization

{ A synchronized method is equivalent to one that

is not marked as synchronized but has all of its

code contained within a synchronized(this) block

� Class-level staticmethods and blocks within
staticmethods may be declared as synchronized

{ A non-static method can also lock static data

via a code block enclosed by synchronized(getClass())

33

Waiting and Noti�cation

� Java implements Monitors for all Objects

� The methods wait, notify, and notifyAll
may be invoked only when the synchroniza-
tion lock is held on their targets

{ This is normally ensured by using them only within

methods or code blocks synchronized on their tar-

gets

� Compliance cannot usually be veri�ed at
compile time

{ A IllegalMonitorStateException occurs at run-
time if you fail to comply

34

Waiting and Noti�cation (cont'd)

� A wait invocation results in the following
actions:

1. The current thread is suspended

2. The Java run-time system places the thread in an

internal and otherwise inaccessible wait set asso-

ciated with the target object

3. The synchronization lock for the target object is

released (n times if it was acquired n times), but

all other locks held by the thread are retained

{ In contrast, suspended threads retain all their

locks

35

Waiting and Noti�cation (cont'd)

� A notify invocation results in the following
actions:

1. If one exists, an arbitrarily chosen thread, say T,

is removed by the Java run-time system from the

internal wait set associated with the target object

2. T must re-obtain the synchronization lock for the

target object

{ This will always cause it to block at least until

the thread calling notify releases the lock

{ It will continue to block if some other thread

obtains the lock �rst

{ Once T acquires the lock the lock count is re-

stored to the value n when T had locked the

object originally

3. T is then resumed at the point of its wait

36

Waiting and Noti�cation (cont'd)

� A notifyAll invocation works in the same
way as notify

{ Except that the steps occur for all threads waiting

in the wait set for the target object

� Two alternative versions of the waitmethod
take arguments specifying the maximum time
to wait in the wait set

{ If a timed wait has not resumed before its time

bound, the thread behaves as if a notify had

selected it from the set of waiting threads

� If an interrupt occurs during a wait the
same notify mechanics apply

{ Except that control returns to the catch clause

associated with the wait invocation.

37

Synchronization Examples

� Bounded counter interface

public interface BoundedCounter {

// minimum allowed value

public static final long MIN = 0;

// maximum allowed value

public static final long MAX = 5;

// invariant: MIN <= value() <= MAX

// initial condition: value() == MIN

public long value();

// increment only when value() < MAX

public void inc();

// decrement only when value() > MIN

public void dec();

}

38

Synchronization Examples

(cont'd)

� Synchronized bounded counter

public class BoundedCounterVI

implements BoundedCounter

{

protected long count_ = MIN;

public synchronized long value() { return count_; }

public synchronized void inc() {

while (count_ == MAX)

try { wait(); } catch(InterruptedException ex) {};

if (count_++ == MIN)

notifyAll(); // signal if was bottom

}

public synchronized void dec() {

while (count_ == MIN)

try { wait(); } catch(InterruptedException ex) {};

if (count_-- == MAX)

notifyAll(); // signal if was top

}

}

39

Synchronization Examples

(cont'd)

� Synchronized bounded counter

public class BoundedCounterV1

implements BoundedCounter

{

protected long count_ = MIN;

// Note that long values require

// synchronization.

public synchronized long value() {

return count_;

}

public synchronized void inc() {

awaitIncrementable();

setCount(count_ + 1);

}

public synchronized void dec() {

awaitDecrementable();

setCount(count_ - 1);

}

40

protected synchronized void setCount(long newValue)

{

count_ = newValue;

// wake up any thread depending on new value

notifyAll();

}

protected synchronized void awaitIncrementable() {

while (count_ >= MAX)

try { wait(); } catch(InterruptedException ex) {};

}

protected synchronized void awaitDecrementable() {

while (count_ <= MIN)

try { wait(); } catch(InterruptedException ex) {};

}

}

41

Synchronization Examples

(cont'd)

� Synchronized bounded counter (using sub-

classing)

// No synchronization.

public class GroundCounter

{

GroundCounter (long value) {

value_ = value;

}

// Methods are *not* synchronized.

public long value_() { return value_; }

public void inc_() {

++value_;

}

public void dec_() {

--value_;

}

private long value_;

}

42

// Subclass adds synchronization.

public class BoundedCounterVSC

extends GroundCounter

implements BoundedCounter

{

public BoundedCounterVSC() {

super (MIN);

}

public synchronized long value() {

return value_();

}

public synchronized void inc() {

while (value_() >= MAX)

try { wait(); } catch(InterruptedException ex) {};

inc_ ();

notifyAll();

}

public synchronized void dec() {

while (value_() <= MIN)

try { wait(); } catch(InterruptedException ex) {};

dec_ ();

notifyAll();

}

}

43

Synchronization Examples

(cont'd)

� Synchronized bounded counter (using dele-

gation)

// No synchronization.

public class BareCounter

{

BareCounter (long value) {

if (value > BoundedCounter.MAX)

value = BoundedCounter.MAX;

else if (value < BoundedCounter.MIN)

value = BoundedCounter.MIN;

value_ = value;

}

// Methods are *not* synchronized.

public long value() { return value_; }

public void add(int value) { value_ += value; }

public void sub(int value) { add (-value); }

private long value_;

}

44

// Adapter adds synchronization.

public class BoundedCounterVD

implements BoundedCounter

{

// fixed, unique

private BareCounter delegate_;

public BoundedCounterVD() {

delegate_ = new BareCounter(MIN);

}

public synchronized long value() {

return delegate_.value();

}

public synchronized void inc() {

while (delegate_.value() >= MAX)

try { wait(); } catch(InterruptedException ex) {};

delegate_.add(1);

notifyAll();

}

public synchronized void dec() {

while (delegate_.value() <= MIN)

try { wait(); } catch(InterruptedException ex) {};

delegate_.sub(1);

notifyAll();

}

}

45

Synchronization Examples

(cont'd)

� Synchronized bounded counter (via \exter-

nal noti�cation")

public class BoundedCounterVNL

implements BoundedCounter

{

private NotifyingLong c_ = new NotifyingLong(this, MIN);

public synchronized long value() {

return c_.value();

}

public synchronized void inc() {

while (c_.value() >= MAX)

try { wait(); } catch(InterruptedException ex) {};

c_.setValue(c_.value()+1);

}

public synchronized void dec() {

while (c_.value() <= MIN)

try { wait(); } catch(InterruptedException ex) {};

c_.setValue(c_.value()-1);

}

}

46

// Generic notification mechanism

public class NotifyingLong

{

private long value_;

private Object observer_;

public NotifyingLong (Object o, long v) {

observer_ = 0;

value_ = v;

}

public synchronized long value () {

return value_;

}

public void setValue (long v) {

synchronized (this) {

value_ = v;

}

synchronized (observer_) {

observer_.notifyAll ();

}

}

47

Synchronization Examples

� Synchronized bounded counter (uses a state
machine)

{ Beware of interactions between state machines,

inheritance, and synchronization: : :

public class BoundedCounterVSW

implements BoundedCounter

{

static final int BOTTOM = 0;

static final int MIDDLE = 1;

static final int TOP = 2;

// the state variable

protected int state_ = BOTTOM;

protected long count_ = MIN;

public synchronized long value() {

return count_;

}

public synchronized void inc() {

while (state_ == TOP)

try { wait(); } catch(InterruptedException ex) {};

++count_;

checkState();

}

48

public synchronized void dec() {

while (state_ == BOTTOM)

try { wait();} catch(InterruptedException ex) {};

--count_;

checkState();

}

protected synchronized void checkState() {

int oldState = state_;

if (count_ == MIN) state_ = BOTTOM;

else if (count_ == MAX) state_ = TOP;

else state_ = MIDDLE;

if (state_ != oldState &&

(oldState == TOP || oldState == BOTTOM))

notifyAll();

}

}

49

