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ABSTRACT
Effective validation of enterprise distributed real-time and embed-
ded (DRE) system quality-of-service (QoS) properties requires eval-
uating system capabilities in their target execution environments.
This validation process traditionally involves executing DRE sys-
tems composed of many software components on many hardware
components connected via networks. Evaluating the correctness of
such tests is hard, however, since it requires validating many system
states dispersed across many hardware/software components.

This paper provides two contributions to research on validating
DRE system capabilities and QoS properties. First, it presents the
Test Execution (TE) Score, which a methodology for validating ex-
ecution correctness of enterprise DRE system tests. Second, it em-
pirically evaluates the TE Score in the context of a representative
enterprise DRE system. The results of this evaluation show that the
TE Score method can determine the percentage correctness in test
execution—thereby increasing confidence in QoS assurance—and
help DRE system developers improve test quality.

1. INTRODUCTION
Enterprise distributed real-time and embedded (DRE) systems, such
as large-scale traffic management systems, manufacturing and con-
trol systems, and global financial systems, are increasing in size
(e.g., number of lines of source code and number of hardware/-
software resources) and complexity (e.g., envisioned operational
scenarios and target execution environments) [11]. It is therefore
critical to validate their quality-of-service (QoS) properties (such
as event prioritization, latency, and throughput) in their target envi-
ronments continuously throughout their software lifecycles. Con-
tinuous validation enables DRE system testers to locate and rectify
performance bottlenecks with less time and effort than deferring
validation to final system integration [18, 28].

System execution modeling (SEM) [20,27] is a promising approach
for continuously validating QoS properties of DRE systems in their

target environment throughout the software lifecycle. In particular,
DRE system testers can use SEM tools to:

1. Model DRE system behavior and workload at high-levels of
abstraction using domain-specific modeling languages [14],

2. Synthesize complete test systems from constructed behavior
and workload models that conform to the DRE system’s tar-
get environment (e.g., middleware platforms, operating sys-
tems, and networks) similar to rapid prototyping [3], and

3. Execute the test system in its target execution environment
using emulation techniques to validate QoS properties.

SEM tools also allow DRE system testers to replace emulated com-
ponents of DRE systems with their actual counterparts as the devel-
opment process unfolds. This incremental development and testing
method can yield more realistic results, thereby increasing confi-
dence in the QoS assurance process.

Although SEM tools can help validate QoS properties in represen-
tative target environments, conventional SEM tools do not ensure
that QoS tests themselves execute correctly. For example, it is pos-
sible for a DRE system to execute incorrectly due to transient er-
rors even though the test appeared to execute correctly [29], e.g.,
since it did not detect the effects of node failures on QoS proper-
ties because injected failures did not occur as expected. Likewise
enterprise DRE systems have many competing and conflicting QoS
properties that must be validated [11]. For example, end-to-end re-
sponse time may meet specified QoS requirements, but latencies
between individual components may not meet specified QoS re-
quirements due to software/hardware contention and QoS trade-off
requirements, such as prioritizing system reliability over intermit-
tent response time.

These problems are exacerbated when metrics needed to validate
these concerns are dispersed across many hardware/software com-
ponents. Developers of DRE systems currently determine test ex-
ecution correctness via conventional techniques, such as manually
inserting checkpoints and assertions [5]. Unfortunately, these tech-
niques can alter test behavior and performance, are locality con-
strained, and focus on functional concerns rather than QoS proper-
ties. DRE system testers therefore need improved techniques that
help reduce the complexity of ensuring test correctness when val-
idating enterprise DRE system QoS properties in their target envi-
ronments.



Solution approach→ Correctness validation via system execu-
tion traces. System execution traces [4] are artifacts of executing a
software system (e.g., an enterprise DRE system) in its target envi-
ronment. These traces log messages that capture system state dur-
ing different execution phases, such as component activation versus
passivation. System execution traces can also capture metrics for
validating test execution correctness, such as event timestamps that
determine which components in an end-to-end activity exceeded
its allotted execution time. In the context of correctness validation,
system execution traces can be used to quantify the correctness of
a enterprise DRE system test that validates QoS properties in terms
of its states and trade-off analysis of such properties.

This paper describes a method called the Test Execution (TE) Score,
which uses system execution traces to validate enterprise DRE sys-
tem test correctness. DRE system testers use the TE Score by first
defining valid and invalid DRE system states and QoS properties,
such as number of events processed or acceptable response time(s)
for an event. The TE Score then uses system execution traces to
evaluate test correctness using the specified (in)valid state and QoS
properties. Our experiments show how applying the TE Score to
a representative enterprise DRE system can provide DRE system
testers with a correctness grade (i.e., a percentage) that quantifies
how well their tests execute. Moreover, the TE Score helps identify
test errors that must be rectified to improve correctness and increase
confidence levels in QoS assurance for enterprise DRE systems.

Paper organization. Section 2 introduces a representative enter-
prise DRE system case study to motivate the need for the TE Score;
Section 3 describes the design and implementation of the TE Score;
Section 4 presents results of experiments that applied the TE Score
to the case study; Section 5 compares the TE Score with related
work; and Section 6 provides concluding remarks.

2. CASE STUDY: THE QED PROJECT
The QoS-Enabled Dissemination (QED) [17] project is information
management middleware designed to meet QoS requirements of
component-based enterprise DRE systems in the Global Informa-
tion Grid (GIG) [1], which is a large-scale distributed system [11]
designed to ensure that different applications can collaborate effec-
tively and deliver appropriate information to users in a timely, de-
pendable, and secure manner. QED’s aims to provide reliable and
real-time communication middleware that is resilient to the dynam-
ically changing conditions of GIG environments. Figure 1 shows
QED and an example in the context of the GIG.

Figure 1: QED Relationship to the GIG

The QED project has been used in previous studies related to dis-
tributed system testing, such as unit testing QoS properties [10].

The project is now in its second year of development and is slated
to run for several more years. Since the QED middleware is in-
frastructure software, applications that use it cannot be developed
until the middleware itself is sufficiently mature. The QED project
thus faces a common software engineering problem: the serialized-
phasing development problem [25], where systems are developed in
different layers and phases throughout their lifecycle. In this soft-
ware development model, design flaws that negatively impact QoS
properties are often not identified until late in the software lifecy-
cle, e.g., system integration time, when it is much more expensive
to resolve the flaws [18, 28].

To overcome the serialized-phasing development problem, QED
testers use SEM tools to validate QoS properties of the QED mid-
dleware on the target architecture continuously throughout the soft-
ware lifecycle. In particular, they use CUTS and UNITE (see Side-
bar 1) to ensure QED’s enhancements to the GIG middleware actu-
ally improve QoS properties of the existing GIG middleware. QED
testers use (1) CUTS to measure the extent to which QED capabil-
ities can handle to the dynamically changing conditions of the GIG
and (2) UNITE to validate DRE system QoS properties irrespective
of system composition (i.e., how the system is structured and what
components communicate with each other) and implementation de-
tail (i.e., target architecture, language, and technology).

Sidebar 1: Overview of CUTS and UNITE
The Component Utilization Test System (CUTS) [9] is a system ex-
ecution modeling tool for large-scale distributed real-time and em-
bedded (DRE) systems that enables DRE system testers to conduct
system integration test and validate QoS properties on the target ar-
chitecture during early phases of the software lifecycle. DRE system
testers use CUTS via the following steps:

1. Use domain-specific modeling languages [14] to model be-
havior and workload at high-levels of abstraction;

2. Use generative programming techniques [6] to synthesize a
complete test system for the target architecture; and

3. Use emulation techniques to execute the synthesized system
on its target architecture and validate its QoS properties, such
as end-to-end response time, latency, and scalability, in its
target execution environment.

DRE system testers can also replace emulated portions of the sys-
tem with its actual counterparts as their development completes.
This incremental approach enables DRE system testers to perform
continuous system integration testing, i.e., the process of execu-
tion system integration test to validate QoS properties continuously
throughout the software lifecycle. CUTS supports validating QoS
properties on several network communication architectures, such
as the GIG/QED middleware, CIAO [12], OpenSplice [22], RTI-
DDS [23], and TCP/IP.

The Understanding Non-functional Intentions via Testing and
Experimentation (UNITE) [10] tool distributed with CUTS enables
DRE system testers to generate QoS performance graphs from sys-
tem execution traces and validate QoS properties. DRE system
testers first generate system execution traces by execution the sys-
tem in its target environment. They then use UNITE to define a
dataflow model [7] and use it to mine metrics of interest (e.g., event
throughput) for a QoS property from the system execution trace. Fi-
nally, UNITE constructs a QoS performance graph that shows that
QoS property’s data trend throughout the lifetime of the system (i.e.,
how that QoS property changed with respect to time). Section 3.1
presents a more detailed overview of UNITE’s methodology.

Although CUTS and UNITE enabled QED testers to evaluate QED’s
enhancements to QoS properties of GIG middleware, they still face
the following challenges that make it hard to effectively apply CUTS



and UNITE to the QED project.1

Challenge 1: Inability to validate execution correctness of QoS
test. Executing an enterprise DRE system QoS test requires run-
ning the system in its target environment. This environment con-
sists of many hardware/software components that must coordinate
with each other. To determine the correctness of QoS test execu-
tion, DRE system testers must ensure that all hardware/software
resources in the distributed environment behave correctly.

QED testers therefore need a method that simplifies validating if
QoS validation tests execute correctly. This method should au-
tomate the validation process so testers need not manually check
all hardware/software resources for correctness. The validation
method should also minimize false negatives (e.g., stating the QoS
test executes correctly, but in reality it failed to meet different QoS
requirements, such as sending the correct number of events within a
given time period). Addressing this challenge enables QED testers
can have greater confidence levels in QoS assurance. Section 3.1
describes how the TE Score method addresses this problem using
state-based specifications.

Challenge 2: Inability to perform trade-off analysis between
QoS properties. QoS properties are a multi-dimension concern [16].
It is hard to simultaneously ensure all enterprise DRE system QoS
properties with optimal performance, such as ensuring high re-
liability and low end-to-end response time; high scalability and
high fault tolerance; or high security and low latencies. Resolv-
ing this challenge requires trade-off analysis that prioritizes what
QoS properties to validate (or ensure) since some are more impor-
tant than others. For example, QED testers must ensure that high
priority events have lower latency than lower priority events when
applying QED’s enhancements to GIG middleware.

After QED testers validate the correctness of QoS test execution
(i.e., resolve challenge 1), they ideally want to validate multiple
QoS properties simultaneously since it is time-consuming to vali-
date a single QoS property in isolation. QED testers therefore need
a method that will assist in this trade-off analysis between mul-
tiple dimensions of QoS properties. Moreover, the methodology
should allow QED testers to determine (1) what QoS properties are
most important, (2) quantify the correctness of QoS test execution
based on the specified priorities, and (3) help identify and prioritize
where improvements in QoS test execution are needed. Section 3.2
describes how the TE Score method addresses this challenge by
adding priorities and weights to the state-based specifications used
to validate test correctness.

3. THE DESIGN AND IMPLEMENTATION
OF THE TE SCORE

This section describes the design and implementation of the TE
Score, which uses system execution traces to validate QoS test cor-
rectness test. Examples from the QED case study introduced in
Section 2 are used throughout this section to show how the TE
Score can be applied to a representative enterprise DRE system.

3.1 Specifying QoS Test Execution States
Validating QoS test correctness requires evaluating an enterprise
DRE system’s state and QoS properties over its complete lifetime,
1Although these challenges are motivated in the context of QED,
they apply to other enterprise DRE systems that must validate their
QoS tests.

i.e., from the time the system is deployed to the time it shuts down.
This requirement is necessary because QoS properties, such as la-
tency and end-to-end response time, often fluctuate over the life-
time of an enterprise DRE system due to hardware/software con-
tention, component failures, and workload variation. There can
also be states that the enterprise DRE system must reach (and main-
tain) to properly evaluating QoS properties, including ensuring a
component has received the correct number of events within a time
period to ensure end-to-end response time is evaluated under the
expected workload.

Our prior work [10] has used system execution traces to capture
both system state and metrics for evaluating QoS properties. Since
system execution traces are a collection of text-based messages,
this method provides an architecture-, technology-, and language-
independent mechanism for capturing state and QoS metrics. The
challenge, however, is mining the system execution traces and ex-
tracting the important information for validating correctness in QoS
test execution, as described in Challenge 1.

Our prior work [10] has also shown how to mine system execution
traces and extract data and metrics of interest using dataflow mod-
els. In the context of testing enterprise DRE systems, a dataflow
model DM = (LF, CR) is defined as:

• A set LF of log formats that have a set V of variables iden-
tifying what data to extract from log messages in a system
execution traces. These log formats will identify many oc-
currences of the same message in a system execution trace
where their difference is captured in V .

• A set CR of causal relations that specify the order of occur-
rence for each log format such that CRi,j means LFi →
LFj , or LFi occurs before LFj [26]. These relations help
determine how data flows across different application con-
texts, such as one component sending an event to another
component deployed on a different host.

Although our prior work has used dataflow models to validate QoS
properties, these models can also be leveraged to validate QoS test
execution states. In particular, the set of variables V across the set
of log formats LF in DM capture the state and metrics of an enter-
prise DRE system at any given point in time throughout its lifetime.
This information can thus be used to validate the correctness of test
execution.

Defining QoS execution states. In the context of validating test
execution correctness an execution state s = (DM, V ′, P ) of an
enterprise DRE system is formally defined as:

• A dataflow model DM that contains a set of variables for
capturing the system’s state and metrics throughout its exe-
cution lifetime;

• A set of variables V ′ used to evaluate the system’s state of
interest where V ′ ∈ V in the dataflow model DM ; and

• A preposition P that captures the context and expected value
the context over the of variables v such that Cv → Ev means
Cv defines the context for the expected value of P (e.g., the
name of the component) and Ev defines the actual value (or
effect) for the given context (e.g., the response time for the
specified component).



Implementing QoS test execution states in TE Score. To realize
test execution states in TE Score, we leverage UNITE’s capabili-
ties (see Sidebar 1) for specifying dataflow models. In particular,
QED testers create a dataflow model in UNITE, as shown in Fig-
ure 2. Using the set of variables defined in the dataflow model,
QED testers then select variables to define an execution state that
can help validate the execution correctness for their QoS test. This
execution state is specified as a preposition P where the context
Cv is an expression for defining the scope of the evaluation and the
expected value Ev is the expected state for the specified context.

!"#$

!"%$

!&'$"&()*+,$-!".$

!"#$/$0123456$78,+9$/$(:;:7<:=$:<:8+$0452$;&>8+9$*+$0452$

(:;<27):9$

!"%$/$0123456$78,+9$/$,:8+$:<:8+$0452$;&>8+9$*+$0452$

,:8=27):9$

?*(7*@A:,$-?./$

!"#/$123456$78,+B$452$;&>8+B$452$(:;<27):$

!"%/$123456$78,+B$452$;&>8+B$452$,:8=27):$$

-+&$&+C:($D&()*+,.$

E*>,*A$3:A*F&8$-E3.$

!"#G78,+$H$!"%G78,+$

!"#G;&>8+$H$!"%G;&>8+$

Figure 2: Example of a Dataflow Model in UNITE

Listing 1 shows a TE Score example that validates whether re-
sponse time for the ConfigOp component is always less than
30 msec. In this example QED testers select LF1.instName,
LF1.recvTime, and LF2.sendTime from the dataflow model
in Figure 2 and then define a preposition where the context checks
the value captured in the variable LF1.instName. If the speci-
fied context is valid, i.e., Cv is true, then the expected value of
the context is evaluated, i.e., Ev is tested. The execution state is
ignored if the context is invalid.

Cv : LF1 . ins tName = ‘ ‘ ConfigOp ’ ’
Ev : ( LF2 . sendTime − LF1 . recvTime ) < 30

Listing 1: Example State Specification in the TE Score

3.2 Specifying Execution Correctness Tests
Section 3.1 showed how the TE Score leverages dataflow models to
capture and define a single execution state for validating execution
correctness for a QoS test. In practice, however, there can be many
execution states that must be evaluated to determine execution cor-
rectness for a QoS test. For example, a DRE system tester may
need to validate that response-time of a single component is less
than 30 msec, the arrival rate of events into the system is 10 Hz,
and the end-to-end response time for a critical path of execution is
less than 100 msec because under those conditions do their experi-
ments produce meaningful workload for validating QoS properties.
Likewise, it may be necessary to ensure the test execution does not
reach an invalid state because it may be easier to express QoS test
execution states in terms of its invalid states, as opposed to its valid
states.

It is often hard, however, to validate all the execution states of a
QoS tests due to the enormous number of plausible states the sys-
tem can enter. Using the previous example, for instance, it can be
hard for DRE system testers to ensure that the response time of a
single component is less than 30 msec and the end-to-end response
time is less than 100 msec because QoS properties traditionally
conflict with each other. Due to conflicting interests when spec-
ifying execution states, therefore, it is often necessary to conduct
trade-off analysis for the different execution states. For example,
DRE system testers may want to specify that ensuring end-to-end
response time is more important than ensuring the response time of
a single component, as described in Challenge 2.

Defining execution correctness test specifications. Since an ex-
ecution state s can be either invalid or valid—and trade-off capa-
bilities are needed to validate correctness of QoS test execution—
we must extend the definition of an execution state s such that
s′ = (s, t, p, min, max) where:

• s is the original QoS test execution state (see Section 3.1);

• t is the QoS execution test state type (i.e., either invalid or
valid); and

• p is the priority (or importance) of the QoS test execution
state, such that lower priorities are considered more impor-
tant. This priority model is used because it does not put a
predefined upper bound on priorities and offers a more flexi-
ble approach when assigning priorities to QoS test execution
states;

• min is the minimum number of occurrences the specified
state s can occur throughout the execution of the QoS test
since QoS value can fluctuate and are rarely constant; and

• max is the maximum number of occurrences that the spec-
ified state s can occur throughout the execution of the QoS
test since QoS values can fluctuate and are rarely constant;

Using the new definition of a QoS test execution state s′, it is now
possible to define a correctness test CT = (S) as:

• A set S of QoS execution test states s′ where each state s′ ∈
S determines the execution correctness for a QoS test.

Implementing execution correctness test specifications in TE
Score. To realize execution correctness test specifications in TE
Score, QED testers specify a set of states that determine the execu-
tion correctness for a QoS test. Each state is defined as either valid
(i.e., an allowable state) or invalid (i.e., a state that is not allowed).
Likewise, each state in the correctness test is given a priority that
determines its level of importance when conducting trade-off anal-
ysis between different execution states.

s′1 : LF3.instName = “Receiver′′

→ LF4.eventCount
LF5.stopTime−LF6.startT ime

> 5

t = valid
p = 2
min = 1
max = 1



s′2 : LF1.instName = “ConfigOp′′

→ (LF2.sendT ime− LF1.recvT ime) > 30
t = invalid
p = 4
min = 1
max = unbounded

s′3 : LF7.endT ime− LF8.beginT ime < 100
t = valid
p = 1
min = 0
max = unbounded

Listing 2: Example Correctness Test Specification in the TE
Score

Listing 2 shows an example of a correctness test that validates the
correctness of QoS test execution. As shown in this example, there
are three different QoS execution states:

1. A state validating the arrival rate of events into a component
named Receiver is 5 events per second, which should only
occur once during the execution of the QoS test;

2. A state validating that the response time for a component
named ConfigOp is never greater than 30 msec throughout
the execution of the QoS test; and

3. A state validating the end-to-end response time of an event
that is always less than 100 msec throughout the entire exe-
cution of the QoS test.

3.3 Evaluating Execution Correctness Speci-
fications

After defining an execution correctness specification test (see Sec-
tion 3.2), the final process is evaluating it. The main goal of the
evaluation process is to provide a metric that quantifies the degree
to which a QoS test executes correctly based on its specified states.
This metric serves a two purposes: (1) it helps DRE system testers
determine how well their tests execute and meet expectations, e.g.,
ensuring a component receives the correct number of events within
a time period while meeting end-to-end response times, and (2) it
identifies areas where tests may need improvement, e.g., possibly
reducing the arrival rate of an event because its negatively impact-
ing latencies and system scalability.

Given the definition of an execution correctness specification for a
QoS tests presented in Section 3.2, evaluating these tests must ac-
count for both the QoS execution state’s type (i.e., invalid or valid)
and priority. Failure to account for these two properties can yield
false negative results that do not provide meaningful information
to DRE system testers. For example, the higher priority states (i.e.,
states with a lower priority number) should have a greater weight
on the overall evaluation of an execution correctness specification.
Likewise, the overall evaluation of an execution correctness speci-
fication should be negatively impacted whenever a valid execution
state is not reached, or an invalid execution state is reached.

It is therefore possible to use the priorities (or weights) and state
types to derive a weighted grading system such that Equation 1 cal-
culates the weight of a given state s′ in a correctness specification:

weight(s′) = maxprio(S)− prio(s′) + 1 (1)

As shown in Equation 1, maxprio(S) determines the highest pri-
ority number for a QoS execution state (i.e., the QoS execution
state with the least priority) and prio(s′) is the priority value of the
specified QoS execution state.

Since a weighted grading system is used to validate the correctness
of QoS tests execution, QoS execution states of greater importance
will have more influence on the overall grade than QoS execution
states of less importance. In particular, obtaining valid states in-
creases the QoS test execution correctness grade and reaching in-
valid states decreases the grade. Likewise, if a valid state is not
reached, then the grade is decreased, whereas and if an invalid state
is not reached the the execution correctness grade is increased.

Equations 2 and 3 help determine the number of points represent-
ing valid QoS execution states that can be reached or invalid QoS
execution states that cannot be reached for a given dataset DS.

points(DS, s′) =

(
evaluate(DS, s′) = true weight(s′)

evaluate(DS, s′) = false 0

(2)

points(DS, S) =
X
s′∈S

points(DS, s′) (3)

Equation 5 and Equation 4 also shows the equation that determines
the final grade for execution correctness specification of a QoS test.

maxpoints(S) =
X
s′∈S

weight(s′) (4)

G(DS, S) =
points(DS, S)

maxpoints(S)
× 100 (5)

As highlighted in this equation, the final grade for execution cor-
rectness for a given dataset is determined by number of points
award for each test execution state, i.e., number of valid states
reached and invalid states not reached, divided by the number of
total possible points.

Implementing correctness test evaluation in the TE Score. To
realize correctness test evaluation in the TE Score, the TE Score
leverages UNITE’s capabilities for data mining system execution
traces and constructing a dataset that represents the given dataflow
model. Once the dataset is constructed, TE Score processes each
state in the correctness test to derive a grade for the test. Algo-
rithm 1 shows the general algorithm TE Score uses to evaluate a
QoS execution state when grading the execution correctness of a
QoS test using Equations 2 – 5.

As shown in the Algorithm 1, given the dataset DS constructed
by UNITE and the execution state s′, the SQL state for the state
is constructed (line 6). After constructing the SQL statement, the
SQL statement is applied to the dataset and the number of rows
in the result set in stored. If the state s′ is a valid state, and the
number of rows is less than the min occurrences or greater than the
max occurrences, then 0 points is returned (line 11). Likewise, if
the state s′ is an invalid state and the count falls within the specified
range [min, max], then 0 points is returned (line 15).

Handling false negatives. There can be cases when querying the
dataset for the specified state may yield false negatives. For exam-
ple, if the expected value Ev of the context Cv is true, that does



Algorithm 1 General algorithm for evaluating execution correct-
ness state.
1: procedure EVALUATE(DS, s′, P )
2: DS: dataset from UNITE
3: s′: execution state
4: P : max points
5:
6: sqlstr← sqlstmt(s′)
7: n← get_count(DS, sqlstr)
8:
9: if is_valid(s′) then

10: if n ≤ min(s′) ∨ n ≥ max(s′) then
11: return 0
12: end if
13: else
14: if n >= min(s′) ∧ ≤ max(s′) then
15: return 0
16: end if
17: end if
18:
19: if is_unbounded(s′) ∧ has_false_negs(DS, s′) then
20: return 0
21: end if
22:
23: return points(s′, P )
24: end procedure

not necessarily mean that Ev is never false because the query’s re-
sult only returns data that matches the specified query. The query
does not validate if the dataset contains data that invalidates the ex-
pected value (i.e., check for false negatives), which can occur when
the max value is unbounded (i.e., the state can be reached infinite
number of times).

To prevent false negatives from occurring in the evaluation, the TE
Score negates the expected value Ev and applies it to the dataset. If
the number of rows in the new result set is greater than the min(s′),
then the state has a false negative. For example, assume the bounds
of occurrence for s′ is [0, unbounded], which means that state
should always occur. Therefore when evaluating the negation of
the expected value Ev , the result set should be empty, i.e., the row
count of the new result set should be 0.

Determining the final score. Once all points for the correctness
tests are accumulated, the final step is assigning a grade to the test.
This grade helps distributed system testers determine how well their
tests are executing. Moreover, it helps identify what QoS execution
states are candidate for resolving and improving results in QoS as-
surance. The TE Score therefore uses Equation 5 to assign a final
grade to the correctness test by dividing the accumulated points by
the total number of points possible, then multiplying that result by
100 to get a percentage.

4. APPLYING THE TE SCORE TO THE QED
PROJECT

This section presents results from applying the TE Score to the
QED case study introduced in Section 2 to evaluate the test correct-
ness of various experiments performed on the QED middleware.

4.1 Experiment Setup

As discussed in Section 2, the QED project aims to enhance QoS
concerns of GIG middleware by adding adaptive information man-
agement capabilities to it. Enhancing the GIG middleware in this
manner enables it to prioritize user requests and meet QoS require-
ments of mission-critical applications in resource-constrained envi-
ronments. To ensure that the QED project does in fact improve the
QoS capabilities of GIG middleware, QED testers have constructed
several experiments designed to evaluate the QED enhancements.
In particular, QED testers wanted to evaluate the following QED
capabilities:

• Prioritized services for high priority users. Experiments
were performed to verify that higher importance subscribers
received prioritized services, e.g., higher throughput and low
response time for receiving information objects, when com-
pared to lower importance subscribers.

• Adaptive resource management capabilities to ensure sub-
scriber QoS requirements. Experiments were designed to
simulate resource constrained environments, such as limited
dissemination bandwidth or high CPU utilization conditions,
to validate the adaptive capabilities of QED middleware and
ensure subscriber QoS properties were not degraded when
compared to lower importance subscribers under such con-
ditions.

• QoS performance measurement for higher importance
versus lower importance subscribers. Experiments were
performed to measure QoS properties of higher importance
versus lower importance subscribers and validate that the
QED/GIG middleware met its minimum QoS requirements
for all subscribers.

QED testers used CUTS and UNITE to design several experiments
that evaluated these concerns empirically. These experiments con-
tained many software components running on many hardware com-
ponents communicating via a shared network. The application com-
ponents for their experiments were first modeled using CUTS’s
behavior and workload domain-specific modeling languages [14].
The constructed models were then used to generate source code
for the QED/GIG middleware. Finally, UNITE was used to mine
metrics of interest from system execution traces and generate per-
formance graphs that illustrated a given QoS metric’s data trend
(i.e., how the metric changes with respect to time.

Figure 3: QED Clients Modeled Using CUTS



Figure 3 highlights an example CUTS model for an experiment cre-
ated by QED testers. The workload generators in this figure were
used to simulate publisher (PubType1) and subscriber (SubType1)
client behavior. Publisher clients have attributes (such as payload
size and publish rate) that can be modified at runtime to change
publisher behavior. Likewise, subscriber clients have attributes
(such as information matching predicates) that can be modified at
runtime to alter the types of information objects the subscriber can
receive during the execution of an experiment. TestWorker and
LoggingWorker element in Figure 3 represent workload gener-
ators that capture system execution traces for either the publisher
and subscriber clients. These system execution traces are used by
UNITE to create datasets based on dataflow models and validate
QoS properties, such as throughput and latency.

Although QED testers used CUTS and UNITE to reduce complex-
ities (such as experiment design/implementation, data collection,
and data analysis) associated with validating QED’s enhancements
to the GIG middleware, QED testers were still faced with the chal-
lenge of ensuring that their experiments executed correctly, e.g.,
setting experiment configurations and ensuring that none of the
publishers, subscribers, and QED server fail at runtime. If any con-
figuration errors or runtime failures occur on an experiment nodes
or the experiment fails to show expected system behavior, QED
testers originally had to troubleshoot the issue manually by mining
dense system execution traces for the appropriate error messages.

QED testers therefore decided to use the TE Score to evaluate the
execution correctness of their experiments. More specifically, the
QED testers leveraged the generated system execution traces used
by UNITE to validate different execution states of QED experi-
ments (see Section 3.1 and Section 3.2) and grade the quality of
each individual experiment based on its execution states (see Sec-
tion 3.3). Listing 3 highlights example log formats used to mine the
generated system execution trace and example states for validating
and grading the execution correctness of several QED experiments
using the TE Score.

Log Formats

LF1 : {STRING c l i e n t } s t a r t e d wi th
e n v i r o n m e n t {STRING env }

LF2 : {STRING c l i e n t } s t a r t e d a t {LONG
s t a r t T i m e } wi th p u b l i s h r a t e = {INT r a t e }Hz

LF3 : {STRING c l i e n t } ended a t {LONG endTime }
LF4 : {STRING c l i e n t } r e c e i v e d {LONG e v i d }

wi th p a y l o a d of s i z e {INT s i z e } b y t e s

QoS Test Execution States

(a) Environment initialization state
s1 : LF1.env = “qed”
t1 : v a l i d
p1 : 1

(b) Publisher initialization state
s2 : LF2.client = “pub1”and LF2.rate = 6
t2 : valid
p2 : 1

c). Publisher runtime execution states

s3 : LF2.client = LF3.client and
LF3.endTime - LF2.startTime=360000

t3 : valid
p3 : 1

(d) Subscriber runtime execution states
s4 : LF4.size = 1024
t4 : valid
p4 : 1

s5 : LF4.client = “sub1”and LF4.evid > 5400
and LF4.evid < 6480
and LF4.size = 1024

t5 : valid
p5 : 2

s6 : LF4.client = “sub3” and
(LF4.evid > 150 or LF4.evid < 50)
and LF4.size = 1024

t6 : not valid
p6 : 4

Listing 3: Examples of the TE Score States

As shown in Listing 3, LF1, . . . , LF4 define log messages used to
capture clients’ states from the beginning to the end of the experi-
ment, and s1, . . . , s6 define test execution states that occur during
the experiment. The LF1 and LF2 log formats capture messages
used to validate the client’s startup configuration, LF3 captures the
clients end-time, and LF4 captures subscriber client runtime behav-
ior. Likewise, s1 and s2 are used to validate QED server and client
node startup configuration, whereas s3, s4, s5 and s6 are used val-
idate runtime behavior of the subscriber and publisher clients.

4.2 Experiment Configuration
Each experiment for evaluating QED’s enhancements to the GIG
middleware was executed in ISISlab (www.isislab.vanderbilt.
edu), which is powered by Emulab [24] software. Emulab enables
QED testers to configure network topologies and operating systems
to produce a realistic target environment for enterprise DRE sys-
tem integration testing. Each node in ISISlab is an IBM BladeType
L20, dual-CPU 2.8 GHz Xeon processor with 1 GB RAM. Each
node used in the QED experiments was configured to run the Fe-
dora Core 6 operating system and implemented network bandwidth
management, which was done by modifying Linux kernel settings.

Figure 4 shows the experiment setup on ISISlab. Each experiment

Figure 4: QED Experiment Deployment

was conducted using three ISISlab nodes: one node for running
subscriber clients that generated load on the GIG middleware’s
event dissemination service, one node for running publisher clients
that generated load on the GIG middleware’s submission service,
and one node for running the GIG server. Each experiment ran for 6



minutes using two GIG middleware configurations: (1) the baseline
GIG middleware implementation and (2) the enhanced QED/GIG
middleware [17] implementation that had adaptive QoS manage-
ment capabilities integrated into the baseline implementation. We
ran the experiments for 6 minutes so their results could be easily
compared in terms of throughput (i.e., the total number of informa-
tion objects received by each client).

Each experiment for validating QED’s enhancements to the GIG
middleware consisted of (1) three publishing clients that published
information objects using the GIG infrastructure and (2) three sub-
scribing clients that received information objects published by the
publisher clients. Each publisher client was configured to be either
high, medium, or low importance; each subscriber client received
information objects from all the publisher clients. Each publisher
client has a publication rate of 6 Hz and a payload (i.e., the amount
of data transmitted with an event) of 1 KB.

We configured the experiments to create a bandwidth bottleneck by
restricting available shared network bandwidth to 320 Kbps for the
QED/GIG middleware’s information dissemination service. Each
QED experiment was replicated using both the baseline implemen-
tation (i.e., the GIG middleware without QED enhancements) and
the QED/GIG implementation. Our goal was to highlight QED im-
plementation’s QoS management capabilities that were not present
in the baseline GIG middleware implementation.

QED testers defined validation states to evaluate the experiments
test execution correctness, as described in Section 4.1. Likewise,
Section 4.2 discussed the different configurations QED testers eval-
uated with the QED experiments. To evaluate the execution correct-
ness of their tests, however, QED testers had to determine a strategy
for performing each evaluation.

The QED testers therefore divided the test execution steps into the
following groups: (1) environment initialization on each node (e.g.,
setting environment variables on each node for the desired GIG
configuration and installing desired GIG components, (2) server
startup for desired GIG configuration, and (3) publisher and sub-
scriber client start-up with desired publish rate, predicates, and
event payloads. Likewise, for experiment validation, test correct-
ness states (see Listing 3) were divided into the following cate-
gories:

1. ENV INIT, which are environment states used to validate
that the proper environment variables are set on each pub-
lisher and subscriber node. The example state s1 in List-
ing 3 validates that the environment file used for the given ex-
periment sets the environment variables listed for QED/GIG
middleware;

2. PUB INIT, which are publisher initialization states that val-
idate the number of publishers running on the experiment
node and their publish rates. The example state s2 in the
Listing 3 validates that for publisher id pub1, publish rate is
set to 6 Hz. States similar to s2 were also defined for pub2
and pub3 in the experiment, respectively;

3. SUB INIT, which are subscriber initialization states that val-
idate the number of subscribers running on the experiment
node and their startup configuration, e.g., the importance of
each subscriber and the predicates strings for filtering infor-
mation objects;

4. PUB RUNTIME, which are publisher runtime states for val-
idating that each publisher maintains the given publish rate
and does not fail during the experiment. The example state
s3 in Listing 3 validates that each publisher runs for the en-
tire duration of the experiment, i.e., 6 minutes; and

5. SUB RUNTIME, which are subscriber runtime states for
validating that each subscriber receives the expected mini-
mum number of information objects with complete payload.
The states also check that each subscribers runs for the entire
duration of the experiment, i.e., 6 minutes.

The example states in Listing 3 validate that the size of received
payloads match the size of payloads sent by the publisher clients.
The example states also validate that subscriber clients with id sub1
and sub3 receive the minimum number of information objects as
per their expected QoS levels. Subscriber client sub1 is a high im-
portance subscriber and therefore should receive the highest QoS,
which is measured it terms of the number of information objects
received by a subscriber. Subscriber sub3 is a low importance
subscriber and therefore should receive lower QoS. The minimum
number of information objects defined for sub3 in s6 is an es-
timated minimum value to ensure that the lower importance sub-
scriber client is running.

Experiment initialization and environment validation states (i.e., s1

and s2) were given highest priority because correct configuration is
critical for correct runtime behavior of the experiment. Likewise,
runtime states (i.e., s3 and s4) are also given equivalent high pri-
ority because QED testers considered them as equally important
as the initialization states when ensuring correct runtime behavior.
State s3 ensures that all publisher clients run for complete duration
of the experiment i.e., 6 minutes and state s4 ensures that no corrupt
or incomplete payloads are received by the subscriber clients.

The runtime states (i.e., s5 and s6) are given lower priority because
they only measure the runtime behavior of the system. Since the
QEG/GIG middleware is a priority-based system, it is necessary
that QoS requirements of high importance clients and end-users
are given higher preference. It is therefore acceptable if the low-
importance subscriber clients do not meet the estimated minimum
number of information objects, while high-importance subscriber
clients receive their estimated minimum number of information ob-
jects. As a result, QED testers selected different relative priorities
for states s5 and s6.

4.3 Experiment Results
Given the scenarios and configurations discusses in Section 4.2, the
TE Score helps QED testers identify failures using system execu-
tion traces, as well as perform their desired QoS trade-offs. The
following four test cases showcase how the TE Score can be used
to quickly identify correct and incorrect executions in experiments.

Case 1: Validating execution correctness of performance eval-
uation experiment. As explained in Section 4.2, QED testers per-
formed experiments that compared the performance of the baseline
GIG middleware to the QED/GIG middleware under normal con-
ditions. The experiments measured throughput ( i.e., the number
of information objects received by each subscriber) for subscribers
of low-, medium-, and high-importance subscribers. The experi-
ments also demonstrated that the baseline GIG middleware did not
provide differentiated QoS of services to subscribers with varying



importance, whereas the QED/GIG middleware provided such ser-
vices.

Table 1 presents the execution correctness score calculated by the
TE Score for one execution of this particular experiment. As shown

Table 1: Results for QoS Performance Evaluation Using the TE
Score

ENV
INIT
SCORE

PUB
INIT
SCORE

SUB
INIT
SCORE

PUB
RUN-
TIME
SCORE

SUB
RUN-
TIME
SCORE

gig 100% 100% 100% 100% 50%
qed-gig 100% 100% 100% 100% 100%

in this table, the initialization states succeed. The QED testers
were therefore confident the experiment initialized correctly on all
nodes. The table, however, shows that the runtime states for the
subscriber (i.e., SUB RUNTIME SCORE) was different for the
baseline GIG middleware and GIG/QED middleware. For the base-
line GIG middleware, the execution correctness score was 50%,
whereas the execution correctness score for the GIG/QED mid-
dleware was 100%. Since the baseline GIG middleware does not
provide differentiated services to clients with varying importance,
all subscribers receive the same number of information objects—
resulting in only 50% execution correctness.

When the same experiment was run using QED/GIG middleware,
however, 100% execution correctness was observed. The TE score
for subscriber runtime states thus highlights the difference between
the baseline GIG middleware and QED/GIG middleware capabili-
ties.

Case 2: Validating execution correctness for client configura-
tion. As explained in Section 4.2 and Case 1, the QED testers
ran the same experiment using the QED/GIG middleware. When
switching the middleware for the experiments, in some cases, one
of the three publishers failed to start on the publisher node due to
low memory availability from the previous experiment. Due of this
failure, few information object were published and received by the
publisher and subscribers, respectively. Moreover, the experiment
did not execute correctly or to completeness.

Table 2 presents the correctness score calculated by the TE Score
for one execution of this particular case. As shown in this table, the

Table 2: Results for client configuration evaluation using the
TE Score

ENV
INIT
SCORE

PUB
INIT
SCORE

SUB
INIT
SCORE

PUB
RUN-
TIME
SCORE

SUB
RUN-
TIME
SCORE

gig 100% 100% 100% 100% 50%
qed-gig 100% 0% 100% 33% 80%

baseline QED middleware experiment executed as expected since it
has the same results from Table 1 in Case 1. The execution correct-
ness for the GIG/QED middleware experiment, however, did not
score well.

Table 2 also showed how the publishers failed to initialize. Due
to this failure, subscribers did not receive the correct number of

events—thereby having a low TE Score. Since QED testers were
using the TE Score they could quickly learn and troubleshoot the
problem was occurring when switching between experiments that
compared the baseline GIG middleware to the GIG/QED middle-
ware.

Case 3: Validating execution correctness of environment con-
figuration. After running experiments with baseline GIG middle-
ware, the QED testers had to update the environment configuration
on all nodes in the experiment so they could execute the replicated
experiment(s) using the enhanced QED/GIG implementation. Due
to configuration errors (e.g., errors in the automation script and in-
correct parameters passed to the automation script) the environment
update did not always succeed on each node, such as the node host-
ing the subscriber. Due to these errors, subscribers would be run
on their target node with invalid configurations. Moreover, the sub-
scribers failed to receive any information objects from the publisher
clients.

Table 3 presents the correctness score calculated by the TE Score
for one execution of this particular case. As shown in this table,

Table 3: Results for environment configuration evaluation us-
ing TE Score.

ENV
INIT
SCORE

PUB
INIT
SCORE

SUB
INIT
SCORE

PUB
RUN-
TIME
SCORE

SUB
RUN-
TIME
SCORE

gig 100% 100% 100% 100% 50%
qed-gig 0% 100% 100% 100% 0%

the experiments for the baseline GIG middleware executed as ex-
pected. The experiments for the GIG/QED middleware, however,
did not execute as expected.

Table 3 also shows that the environment initialization states (i.e.,
ENV INIT SCORE) was 0%, meaning none of its execution states
were reached. Likewise, because the environment initialization
states failed in this case, the subscriber runtime states (i.e., SUB
RUNTIME SCORE) failed to execute. Since the QED testers used
the TE Score to validate the execution correctness, they quickly
learned that the error was located on the subscriber node in this
case.

Case 4: Validating execution correctness when operating in re-
source constrained environments. As discussed in Section 4.2,
the QED testers wanted to compare capabilities of the baseline GIG
middleware and the enhanced GIG/QED middleware in resource
constrained environments, such as limited bandwidth for sending
events (or information objects). The baseline GIG implementation
does not support any adaptation capabilities when operating in re-
source constrained environments. In contrast, the GIG/QED mid-
dleware is designed to adapt to such conditions and ensure clients
meet their QoS requirements with respect to their level of impor-
tance. If the GIG/QED middleware cannot ensure all subscribers
will meet their requirements, then the GIG/QED middleware will
ignore the QoS requirements of low importance subscribers higher
importance subscribers can continue to meet their QoS require-
ments.

When the experiment was run with QED/GIG implementation, low-
er importance subscribers received fewer information objects than
the minimum number of information objects defined in state s6 in



Listing 3. Thus s6 failed for this test during test validation.

Table 4 presents the correctness score calculated by the TE Score
for one execution of this particular case. As shown in this table,

Table 4: Results for QoS trade-off analysis using TE Score
ENV
INIT
SCORE

PUB
INIT
SCORE

SUB
INIT
SCORE

PUB
RUN-
TIME
SCORE

SUB
RUN-
TIME
SCORE

gig 100% 100% 100% 100% 50%
qed-gig 100% 100% 100% 100% 87%

the SUB RUNTIME SCORE is of most importance since the exe-
cution states in the other categories was reached. The SUB RUN-
TIME SCORE is calculated using s6 in Listing 3. Since the ex-
periment using the GIG/QED middleware did not receive the cor-
rect number of events, Table 4 shows only partial success for sub-
scribers runtime validation states. This test, however, is still be
considered valid (and correct), since the service to higher impor-
tance subscribers still received events under resource constrained
conditions. If a higher importance subscriber had crashed at run-
time or received fewer events than expected, then SUB RUNTIME
SCORE would be much lower because the runtime execution state
for higher importance subscribers has a higher priority when com-
pared to runtime execution states for medium and lower importance
subscribers.

These test results show how the TE Score simplifies the evaluation
and trade-off analysis of QoS performance for experiments of the
QED/GIG middleware. Without the TE Score, QED testers would
have had to manually identify configuration and runtime failures
in the experiments. Moreover, QED testers would have had to
manually perform trade-off analysis between the different execu-
tion states of the experiments. By leveraging the TE Score to as-
sist with their efforts, QED testers could focus more on defining
and running experiments to validate their enhancements to the GIG
middleware, as opposed to dealing with low-level testing and evalu-
ation concerns (such as gathering and analyzing data collected from
many software components executing on many different hardware
node).

5. RELATED WORK
This section compares TE Score with other related work on cor-
rectness testing, QoS trade-off analysis, and leveraging system ex-
ecution traces for validation purposes.

System execution traces. Moe et al. [21] present a technique for
using system execution traces to understand distributed system be-
havior and identify anomalies in behavior. Their technique uses
intercepters, which is a form of “black-box” testing, to monitor
system events, such as sending/receiving an event. TE Score dif-
fers from their technique in that is uses a “white-box” approach to
understanding behavior. This is because metrics used to validate
test behavior comes from data generated inside the actual compo-
nent (i.e., the log messages). This offers a richer set of data to per-
form analysis, understand distributed system behavior, and detect
anomalies in the behavior that may not be detectable from “black-
box” testing alone.

Chang et al. [4] show how system execution traces can be used to
validate software functional properties. For example, their tech-

nique uses parameterized patterns [2] to data mine system execu-
tion traces and validate functional correctness to test execution. TE
Score is similar in that is uses system execution traces to capture
and extract metrics of interest. TE Score is different in that is fo-
cuses on validating correctness of QoS test execution, which in-
volves evaluating QoS execution states of the system.

Correctness testing. Many conventional techniques are used for
correctness testing of enterprise DRE systems, such as assertion-
based testing [5], continuous integration [8], and unit testing [19].
Irrespective of the correctness testing approach, conventional tech-
niques focus on the functional concerns of enterprise DRE systems.
TE Score differs from conventional approaches in that it focuses on
ensuring correctness in QoS test execution. In addition, TE Score
can also ensure correctness in functional properties as do many ex-
isting conventional techniques if the necessary data is captured in
system execution traces.

Tian et al. [30] present a reliability measurement for providing re-
liability assessment for large-scale software systems. Their tech-
nique uses failure detections in collected data to not only assess the
overall reliability of the system, but also track testing progress in
addressing identified defects in the software. TE Score is similar
in that it provides a measurement for assessing the correctness (or
reliability) of QoS test execution, and identifying where improve-
ments are needed. TE Score, however, differs in that it focuses
on assessing QoS test execution, which is based on QoS properties
that influence each other and cannot be assessed as disjoint con-
cerns like functional properties.

Trade-off analysis. Lee et al. [15] present an approach for con-
ducting trade-off analysis in requirements engineering for complex
systems. Their approach assists developers in measuring how dif-
ferent requirements influence each other. TE Score is similar in that
its weighted grading system assist developers in conducting trade-
off analysis between different QoS execution states. TE Score dif-
fers from Lee’s work in that TE Score measures how conflicting
concerns affect the entire solution (i.e., correctness of QoS execu-
tion test) whereas Lee’s work measures how different requirements
affect each other.

6. CONCLUDING REMARKS
The ability to quantify the degree of correctness when executing
QoS tests helps increase confidence levels in QoS assurance since
DRE system testers need not rely on ad hoc techniques to ensure
correctness properties exist in their QoS tests. This paper presented
and evaluated a methodology called the Test Execution (TE) Score
whose aim is to quantify the correctness of QoS test execution.
DRE system testers use the TE Score to define correctness tests that
take into account the different QoS execution states of the system.
Correctness tests also take into consideration that different QoS ex-
ecution states have different priorities. DRE system testers there-
fore can perform trade-off analysis within their correctness tests to
ensure that more important QoS execution states have greater influ-
ence on the results.

Based on our results and experience developing and applying TE
Score to a representative enterprise DRE system, we learned the
following lessons:

• Manually specifying the execution states helped reduce
false negatives because TE Score was not trying to deduce



them automatically. More importantly, it helped DRE system
testers understand the test execution process better by iden-
tifying important states that should influence overall correct-
ness in QoS test execution.

• Time-based correctness of QoS execution testing is needed
because QoS properties can change over time. In some cases,
DRE system testers many want to ensure correctness of QoS
test execution at different time slices using different QoS ex-
ecution states. Our future work will therefore investigate
techniques for leverage temporal-logic [13] to facilitate time-
based correctness testing of QoS test execution.

• Execution state-based specification helped perform trade-
off analysis it allowed finer control over how different states
affect the final analysis. More importantly, assigning prior-
ities to the different execution states helped improve DRE
system testers control how much affect a given state had on
the final analysis.

The TE Score, CUTS, and UNITE are freely available in open-
source format for download from www.cs.iupui.edu/CUTS.
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