
OASIS: A Service-Oriented Architecture for Dynamic Instrumentation of
Enterprise Distributed Real-time and Embedded Systems

James H. Hill
Indiana University-Purdue University Indianapolis

Indianapolis, IN USA
hillj@cs.iupui.edu

Hunt Sutherland
GE Global Research
Niskayuna, NY USA

sutherland@crd.ge.com

Paul Staudinger
GE Global Research
Niskayuna, NY USA

staudinger@crd.ge.com

Thomas Silveria
Raytheon Company
Portsmouth, RI USA

thomassilveria@raytheon.com

Douglas C. Schmidt
Vanderbilt University
Nashville, TN USA

d.schmidt@vanderbilt.edu

John M. Slaby
Raytheon Company
Portsmouth, RI USA

john m slaby@raytheon.com

Nikita A. Visnevski
GE Global Research
Niskayuna, NY USA

visnevsk@research.ge.com

Abstract

Performance analysis tools for enterprise distributed
real-time and embedded (DRE) systems require instru-
menting heterogeneous sources (such as application- and
system-level hardware and software resources). Tradi-
tional techniques for software instrumentation of such
systems, however, are tightly coupled to system de-
sign and metrics of interest. It is therefore hard for system
testers to increase their knowledge base and analytical ca-
pabilities for enterprise DRE system performance using
existing instrumentation techniques when metrics of inter-
est are not known during initial system design.

This paper provides two contributions to research on
software instrumentation for enterprise DRE systems. First,
it presents OASIS, which is service-oriented middleware for
instrumenting enterprise DRE systems to collect and ex-
tract metrics without design time knowledge of which met-
rics are collected. Second, this paper empirically evaluates
OASIS in the context of a representative enterprise DRE sys-
tem from the domain of shipboard computing. Results from
applying OASIS to a representative enterprise DRE system
show that its flexibility enables DRE system testers to pre-
cisely control the overhead incurred via instrumentation.

1. Introduction

Emerging trends and challenges.Enterprise distributed
real-time and embedded (DRE) systems (such as power grid
management, shipboard computing environments, and traf-

fic management systems) are often composed of loosely
coupled applications that run atop distributed infrastructure
software (e.g., service-oriented middleware [10]) and de-
ployed into heterogeneous execution environments. In ad-
dition to meeting their functional requirements, these types
of DRE systems must also meet quality-of-service (QoS)
requirements, such as latency, response time, and scalabil-
ity, so that applications achieve their expected behavior in a
timely manner [13].

To ensure QoS requirements, DRE system testers must
analyze system performance via runtime monitoring of sys-
tems behavior and resources (e.g., CPU usage, memory al-
location, and event arrival rate). Conventional approaches
for monitoring enterprise DRE system behavior and re-
sources employ software instrumentation techniques [2, 8,
11,13] that collect metrics of interest (e.g., busy time for an
application, L2 cache memory usage, state of a component,
and number of heartbeats sent by a watchdog daemon) as
a system runs in its target environment. Performance anal-
ysis tools (such as testing and experimentation, distributed
resource management, and real-time monitoring/reporting)
can then be used to evaluate collected metrics and inform
DRE system testers if the system meets its QoS require-
ments. These tools can also identify bottlenecks in system
and application components that exhibit high and/or unpre-
dictable behavior and resource usage [9].

Although software instrumentation enables perfor-
mance analysis tools to evaluate enterprise DRE sys-
tem QoS requirements, conventional techniques [13] for
collecting metrics are tightly coupled to system imple-
mentations, i.e., DRE system developers must decide
what metrics to collect and then incorporate the neces-

sary probes to collect these metricsduring the system de-
sign phase. The drawback with this approach, however, is
that developers must either (1) redesign their systems to in-
corporate the new/different metrics or (2) usead hoctech-
niques, such as augmenting existing code to inject the
instrumentation hooks, without understanding the im-
pact on overall system design and maintainability. DRE
system developers therefore need better techniques to sim-
plify instrumenting enterprise DRE systems to collect
and extract metrics, especially when the desired met-
rics are not knowna priori.

Solution approach→ Service-oriented dynamic soft-
ware instrumentation. Dynamic software instrumenta-
tion [2, 12] is a technique that enables developers to con-
trol at runtime what and how metrics are collected,
as opposed to making such decisions during the de-
sign phase. When dynamic software instrumentation is
combined with service-oriented middleware methodolo-
gies, dynamic instrumentation no longer need be a con-
cern of DRE system developers. Instead, it becomes a
service that collects metrics from the system and pre-
pares the metrics for evaluation by performance analysis
tools. Moreover, this process can occur withouta pri-
ori knowledge (e.g., structure and quantity) of metrics
being collected.

This paper describes theOpen-source Architecture for
Software Instrumentation of Systems(OASIS), which is a
service-oriented dynamic instrumentation middleware for
enterprise DRE systems. OASIS enables DRE system de-
velopers and testers to collect metrics from a distributed
environment at runtime without making such decisions on
how to do so at design time. This loose coupling enables
performance analysis tools to leverage OASIS’s services to
analyze collected metrics, such as querying for specific re-
sponse times of events. We also present the results of ex-
periments that apply OASIS to a representative enterprise
DRE system. These results show that OASIS enables DRE
system developers to dynamically configure the instrumen-
tation middleware so that end-to-end response time is not
impacted significantly.

Paper organization.The remainder of this paper is or-
ganized as follows: Section 2 motivates OASIS via a case
study from the domain of shipboard computing; Section 3
describes the structure and functionality of OASIS; Sec-
tion 4 presents empirical results that evaluate OASIS’s im-
pact on representative QoS requirements; Section 5 com-
pares work on OASIS with related R&D efforts; and Sec-
tion 6 presents concluding remarks.

2. Case Study: The SPRING Scenario

This section motivates the need for OASIS via a case
study from the domain of shipboard computing. Figure 1

shows the SPRING scenario, which is a representative en-
terprise DRE system from the domain of shipboard comput-
ing. This scenario tests QoS concerns (such as throughput,

!"#$%&'(

)*(

+,"-'.$/(

+,"-'.$/(

+,"-'.$/(

+,"-'.$/(

+012--"$/(+012--"$/(+012--"$/(+3.-4567/(+89"&#.$/(

+89"&#.$/(

+89"&#.$/(

+:2#";2</(

+67"$2#.$/(+67"$2#.$/(+67"$2#.$/(

=%&$.'.>(?@8A((

=.-%#.$(:BC(

DE,0?@8AF3GH(

)I=((

D3JJH(

0"$K.$!2-&"(E-21<'%'(A..1'(

8-#"7%'"()I8(2771%&2L.-(

D36I*E(3.!7.-"-#(=.M"1H(

D$"2M'H(D$"2M'H(

Figure 1. Overview of the SPRING Scenario

latency, jitter, and scalability) of the underlying enterprise
DRE system infrastructure (e.g., hardware, middleware, op-
erating system, and network) that will host it. For exam-
ple, the scenario evaluates whether the infrastructure mid-
dleware can manage and meet the resource needs of appli-
cations in volatile conditions, such as changing arrival rates
of events and dynamic resource usage. Detailed coverage of
the SPRING scenario appears in [4].

Existing techniques for instrumenting enterprise DRE
systems, such as the SPRING scenario, assume software
instrumentation concerns (e.g., what metrics to collect and
how to extract metrics from the enterprise DRE application)
are incorporated into the system’s design. Tightly coupling
system instrumentation with the existing software design,
however, is not ideal because it prevents flexibility in the
system’s design and implementation as its evolves through-
out the software lifecycle, such as modifying the number of
components and substituting different technologies for vali-
dating QoS requirements. In general, developers and testers
of the SPRING scenario face the following challenges:

Challenge 1: Dynamic collection and extraction of met-
rics without design time knowledge metric composition.
Since the SPRING scenario is under development it is hard
for DRE system developers and testers to know all the met-
rics they need to collect for performance analysis tools dur-
ing early phases of the software lifecycle. Moreover, the
SPRING scenario has many operating conditions (such as
high and low event throughput) and the QoS of its critical
path can be affected by instrumentation. DRE system de-
velopers and testers therefore need mechanisms that enable
them to collect and extract metrics without making such de-

cisions at design time, and dynamically modify collection
to ensure instrumentation does not unduly perturb perfor-
mance. Section 3.2.1 shows how OASIS addresses this chal-
lenge by using a multi-level packaging technique that en-
ables the it to adapt to different metrics being collected.

Challenge 2: Dynamic discovery of metrics for analysis
without design time knowledge of metric composition.Ex-
isting third-generation languages and distribution middle-
ware technologies, such as Java, CORBA, and Microsoft
.NET, support dynamic types that enable transmission of
data without knowledge of its structure and quantify. Al-
though dynamic types are a plausible solution for this chal-
lenge, they are tightly coupled to a particular programming
languages and middleware. Since many enterprise DRE
systems (including the SPRING scenario) are composed
of heterogenous technologies DRE system developers and
testers need higher-level mechanisms that enable them to
discover metrics for performance analysis tools without be-
ing bounded to specific technologies. Section 3.2.2 shows
how OASIS addresses this challenge by using metadata to
describe metrics being collected beforehand so it is possi-
ble to discover the actual metrics later.

These challenges make it hard for DRE system develop-
ers and testers to apply different performance analysis tools
to the SPRING scenario throughout the software lifecycle,
particularly in early phases. Moreover, these challenges ex-
tend beyond the SPRING scenario and apply to other enter-
prise DRE systems that need to collect and extract metrics
without knowledge of such concerns at design time.

3. The Structure and Functionality of OASIS

This section describes OASIS and explains how it ad-
dresses the design challenges presented in Section 2 that
DRE system developers and testers encounter when instru-
menting enterprise DRE systems.

3.1. Overview of OASIS

The design challenges in Section 2 focus on the ability
to handle metrics (e.g., collect, extract, and analyze) with-
out knowledge of the metrics of interest (e.g., their struc-
ture and quantity to the underlying middleware and sys-
tem infrastructure). To address these challenges, the OA-
SIS service-oriented middleware can instrument enterprise
DRE systems to collect and extract metrics of interest with-
out knowledge of their structure or quantity. Metric collec-
tion and extraction in OASIS is also independent of spe-
cific technologies and programming languages, which de-
couples OASIS from enterprise DRE system software im-
plementation details. DRE system developers and testers are
thus not constrained to make decisions regarding what met-

rics to collect for performance analysis tools during the de-
sign phase of the system.

Figure 2 presents an high-level overview of OASIS. As

!""#$%&'()*+(),-.,*

/01(2-*3!+*

4(56&7-*

87(9-*

:;/*<&)&=-7*

8-7>(7?&)%-*

!)&#@A$A*:((#*

Figure 2. Overview of OASIS

shown in this figure, OASIS consists of the following five
entities:

Software probeis an autonomous agent [6] that collects
metrics of interest (such as the current value(s) of an event,
the current state of a component, or the heartbeat of a com-
ponent or the node hosting the component) and acts inde-
pendent of the application being monitored and other en-
tities in OASIS. For example, a heartbeat software probe
in the SPRING scenario has an active object that periodic
sends metrics that represent a heartbeat, whereas an event
monitor probe may send metrics each time a component
receives/sends an event.

OASIS supports application-level and system-level
probes. Application-level probes are embedded into an ap-
plication to collect metrics, such as the state of an appli-
cation component or number of events it sends/receives.
System-level probes collect metrics that are not eas-
ily available at the application-level or may collect re-
dundant metrics at the application-level, such as current
memory usage or heartbeat of each host in the target envi-
ronment. Both application- and system-level probes submit
their metrics to the embedded instrumentation node (EIN-
ode) described below. Finally, each software probe is iden-
tifiable from other software probes by a user-defined UUID
and corresponding human-readable name.

Embedded instrumentation node (EINode)is responsible
for receiving metrics from software probes. OASIS has one
EINode per application-context, which is a domain of com-
monly related data. Examples of an application-context in-
clude a single component, an executable, or a single host in
the target environment. The application-context for an EIN-
ode, however, is locality-constrained to ensure data trans-
mission from a software probe to an EINode need not
cross network boundaries, only process boundaries, for effi-
ciency. Moreover, the EINode controls the flow of data it re-
ceives from software probes and submits to the data and ac-

quisition controller described next. Finally, each EINode is
uniquely identifiable from other EINodes by an user-defined
UUID and corresponding human-readable name.

Data acquisition and controller (DAC)receives data from
an EINode and archives it for acquisition by performance
analysis tools, such as querying the latest state of com-
ponent in the SPRING scenario. The DAC is a persistent
database with a static location in the target environment that
can be located via a naming service [7]. This design decou-
ples an EINode from a DAC and enables an EINode to dy-
namically discover at creation time which DAC it will sub-
mit data. Moreover, if a DAC fails during at runtime the
EINode can (re)discover a new DAC to submit data. Fi-
nally, the DAC registers itself with the test and evaluation
manager (described next) when it is created and is identi-
fiable by an user-defined UUID and corresponding human-
readable name.

Test and evaluation manager (T&E)is the main entry
point for user applications (see below) into OASIS. The
T&E manager gathers and correlates data from each DAC
that has registered with it. The T&E manager also enables
user applications to send signals a software probe to alter its
behavior at runtime,e.g., decreasing/increasing the hertz of
the heartbeat software probe in the SPRING scenario. .

Performance analysis toolsinteract with OASIS by re-
questing metrics collected from different software probes
via the T&E manager. They can also send signals/-
commands to software probes to alter their behavior at run-
time. This design enables DRE system developers and
testers and performance analysis tools to control the ef-
fects of software instrumentation at runtime and minimize
the affects on overall system performance, such as ensur-
ing the SPRING scenario’s critical path meets its deadline
while under instrumentation.

!"#$%&'
()*'

+,!'-./.0&1'

23&1'

)44567.8$/'

()*'

!"#$%&'
!"#$%&'
!"#$%&'

!"#$%&'

23&1'

)44567.8$/'9&1:$1;./7&'

)/.5<363'+$$5'

!"#$%&'
!"#$%&'
!"#$%&'!=&/>'-$/6>$1'

91$?&'

!"#$%&'
!"#$%&'
!"#$%&'@$AB.1&'

91$?&'

C)@"@'($;.6/')44567.8$/'($;.6/'+$$5'($;.6/'

!D&7>$1'*$;4$/&/>'

Figure 3. Deployment of OASIS in the SPRING
Scenario

Figure 3 shows an example deployment of the OASIS
entities above in the context of an Effector component from

the SPRING scenario. This figure also shows how DRE sys-
tem developers and testers write domain-specific software
probes—at either the application or system level—that col-
lect metrics unknown to the OASIS middleware, such as
probe that monitors incoming events or the heartbeat of a
component. While the system under instrumentation is ex-
ecuting in its target environment, software probes collect
metrics and submit them to an EINode. The EINode, in turn,
submits the data to the DAC, which stores the metrics un-
til user applications request metrics collected from different
software probes via the T&E manager.

Figure 3 also highlights the application and network
boundaries of OASIS. Software probes do not submit data
across different network boundaries; this is the responsibil-
ity of the EINode to localize instrumentation overhead on
the host. Likewise, the DAC and T&E manager are designed
to execute on hosts separate from those running the system
under instrumentation to ensure data management concerns
of the DAC and T&E manager do not interfere with the sys-
tem’s performance.

The remainder of this section discusses how OASIS ad-
dresses the design challenges of enabling dynamic instru-
mentation without design-time knowledge of the collected
metrics or being bounded to a specific technologies and pro-
gramming language.

3.2. Addressing the Dynamic Instrumentation
Challenges in OASIS

3.2.1. Solution 1. Dynamic collection of metrics.As dis-
cussed in Section 3.1, OASIS has no knowledge of what
metrics are collected during system instrumentation. In-
stead, DRE system developers and testers implement soft-
ware probes and register them with an EINode that en-
sures its data is properly collected by the OASIS middle-
ware. Figure 4 shows the UML class diagram for a soft-
ware probes interface. Each software probe hasinit()

<<interface>>

SoftwareProbe

init(params : sequence <string>) : int
fini() : int
handleCommand(cmd : string) : int

<<interface>>

SoftwareProbeFactory

create(einode : EINode) : SoftwareProbe

Figure 4. UML Class Diagram for OASIS’s
Software Probe Architecture

and fini() methods to initialize and finalize a software

probe, respectively. A software probe can optionally imple-
ment thehandleCommand() method, which allows it to
process commands sent from performance analysis tools via
the T&E manager. Finally, each software probe has a corre-
spondingSoftwareProbeFactory to support dynamic
creation and linking into the application via the Component
Configurator pattern [3] and associating the software probe
with an EINode to submit metrics.

<<interface>>

EINode

sendData(data : sequence <octet>) : void

Figure 5. UML Class Diagram for OASIS’s
EINode

The EINode passed to thecreate() method of the
SoftwareProbeFactory provides a well-defined in-
terface so anySoftwareProbe can submit collected met-
rics. Figure 5 therefore presents the standard interface for
an EINode. As shown in this figure, the EINode exports a
single method to the software probe namedsendData()
with a single input parameter of typeBinaryData , i.e.,
an array of bytes. When a software probe is ready to submit
metrics for collection, it packages theBinaryData using
the specification presented in Table 1 and invokes the EIN-
ode’ssendData() method.

Name (size) Description
probeUUID (16) User-defined UUID
tsSec (4) Seconds value of timestamp
tsUsec (4) Micro-seconds value timestamp
seqeunceNum (4) Metric sequence number
probeState (4) Probe-defined value (if applicable)
dataSize (4) Size of metric data

Table 1. Key Elements in Data Packaging
Specification for OASIS Software Probes

Table 1 shows how each software probe packages its
metrics to include information for OASIS to learn the met-
ric’s origin, i.e., the UUID of the software probe, and the
probe/metric’s state at collection,e.g., collection timestamp,
sequence number of metrics, probe state, and metric’s data
size. The remaining contents of theBinaryData , such as
the actual metrics, are outside of the EINode’s concern and
remain unknown.

After an EINode receives packaged metrics from a soft-
ware probe, the EINode submits it to the DAC. The behavior
of an EINode for submitting collected metrics to the DAC

can vary between different implementations. Regardless of
an EINode’s implementation, the specification in Table 2
is used to package data received from a software probe into
BinaryData . An interface similar to the EINode (see Fig-
ure 5) is then used to send the packagedBinaryData ob-
ject to a DAC.

Name (size) Description
magic (3) Identification of OASIS packet
byteOrder (1) Byte-order of data
versionNumber (2) OASIS version number
reserved (2) padding for word alignment
einodeUUID (16) EInode unique id

Table 2. Key Elements in Data Packaging
Specification for OASIS EINode

Table 2 shows how the EINode prepends toBinary-
Data the header information OASIS needs to learn its
application-context origin. The EINode then submits the
data to the DAC for storage. If metrics sent to a DAC are
packaged according to Table 1 and Table 2 OASIS can
dynamically collect metrics without knowing their details.
This approach also decouples OASIS from any specific
technology or programming language since data are a well-
defined binary stream produceable using any language or
platform that supports sockets—thereby addressing Chal-
lenge 1 in Section 2.

3.2.2. Solution 2. Discovery of metrics for analysis.In
many cases, performance analysis tools requesting data
from OASIS via the T&E manager will know at design time
the metrics being collected by software probes submitting
data to an EINode. In other cases, such tools may want to re-
quest data for metrics not known at design-time. For exam-
ple, in the SPRING scenario, DRE system developers and
testers want to construct a generic GUI to monitor all met-
rics collected while the system is instrumented in its target
environment. Since the GUI does not know all the differ-
ent metrics collected by software probes at design time, the
GUI needs mechanisms to learn metrics at runtime.

We address the challenge of discovering metrics for anal-
ysis without design-time knowledge by requiring each OA-
SIS entity shown in Figure 2 to perform a registration and
unregistration process at startup and shutdown time, respec-
tively. The registration process between an EINode and a
DAC, as well as a DAC with a T&E manager, involves un-
derstanding the composition of metric collection (i.e., the
origin and path of metrics collected during system instru-
mentation). The registration process for a software probe
with an EINode, however, is more critical because this is
when the software probe notifies OASIS metric’s format.

1 <?xml ve rs i on= ’ 1 .0 ’ ?>
2 <xsd :schema>
3 <x s d : e l e m e n t name= ’ p robeMetada ta ’
4 t ype = ’ component . s t a t e ’ />
5 <xsd:complexType name= ’ component . s t a t e ’>
6 <x s d : a n n o t a t i o n i d = ’ me tada ta ’>
7 <x s d : a p p i n f o>
8 0A499B6B−7250−4B88−B9DC−360D32639081
9 </ x s d : a p p i n f o>

10 </ x s d : a n n o t a t i o n>
11 <x s d : s e q u e n c e>
12 <x s d : e l e m e n t name= ’ component ’
13 t ype = ’ x s d : s t r i n g ’ />
14 <x s d : e l e m e n t name= ’ s t a t e ’
15 t ype = ’ x s d : i n t e g e r ’ />
16 </ x s d : s e q u e n c e>
17 </ xsd:complexType>
18 </ xsd :schema>

Listing 1: Example Registration File for Software Probe in
OASIS

Listing 1 presents an example registration for a software
probe from the SPRING scenario that keeps track of a com-
ponent’s state (e.g., activated or passivated). Each software
probe’s registration in this listing is a XML schema defini-
tion (XSD) file. We use XSD since it provides a detailed
description of data types, such as quantity and constraints,
which can help with optimizations and filtering/managing
data. The element with the nameprobeMetadata de-
fines the root element that describes the format of the
metric collected by a software probe. Likewise, the child
annotation of theprobeMetadata element with the id
namedmetadata describes information about the soft-
ware probe, such as the user-defined UUID and description
of the software probe.

During registration, a software probe passes its XSD file
to the EINode when thecreate() method is invoked on
its SoftwareProbeFactory (see Listing 4). The EIN-
ode then passes the XSD file to the DAC with which it is
registered. Performance analysis tools can request registra-
tion information for a software probe via the T&E manager,
which includes the metadata describing its metric format.
Using the metadata for a software probe, user applications
can learn about metrics at runtime for analytical purposes—
thereby addressing Challenge 2 in Section 2.

4. Evaluating OASIS’s Runtime Flexibil-
ity and Instrumentation Overhead

This section analyzes the results of experiments that em-
pirically evaluate the capabilities and performance of OA-
SIS in the context of the SPRING scenario presented in
Section 2, which is a representative enterprise DRE system
composed of programming languages and technologies that
executes in heterogeneous environments where computers
can run many different operating systems. The heterogene-
ity of the SPRING scenario influenced the design of OA-
SIS, as discussed in Section 3.

4.1. Experiment Setup

A key concern of developers of applications and mid-
dleware for DRE systems is that dynamic instrumentation
will negatively impact existing QoS properties, such as
response-time and utilization, of the instrumented system.
Due to the design of OASIS (described in Section 3), QoS
properties related to the DAC and the T&E Manager do
not impact existing QoS properties of the system undergo-
ing instruction, such as the application in the SPRING sce-
nario. Instead, the EINode and software probes have more
impact on QoS properties for instrumented system because
the DAC and T&E manager are not deployed in the appli-
cation domain. In contrast, the EINode and software probes
interact directly with the instrumented system.

Since the EINode and software probes have more of an
impact on existing QoS properties for the system undergo-
ing instrumentation, developers and testers of the SPRING
scenario were interested in determining if they could use
OASIS to monitor the application in real-time without caus-
ing the application in the SPRING scenario to miss its criti-
cal path deadline. In particular, system testers want to mon-
itor (1) as many events sent between each component and
(2) the heartbeat of each application. Monitoring these two
metrics greatly impacts the end-to-end response time of the
application in the SPRING scenario and evaluate OASIS’s
capabilities.

System testers therefore used the CUTS system execu-
tion modeling tool [5] to construct the application in the
SPRING scenario shown in Figure 1. CUTS was used to
(1) model the behavior and workload of each component
at a high-level of abstraction and (2) auto-generate source
code for the CIAO architecture from constructed models.
System testers then compiled the generated source code
on its target architecture and emulated the system on a
cluster of computers running in ISISlab (www.isislab.
vanderbilt.edu). Each computer in ISISlab used Em-
ulab software to configure the Fedora Core 8 operating sys-
tem. Likewise, each computer is an IBM Blade Type L20,
dual-CPU 2.8 GHz processor with 1 GB RAM.

4.2. Experiment Results

Section 4.1 provided background information that the
system testers of the SPRING scenario were interested in
executing. In particular, the system testers wanted to under-
stand how using the dynamic instrumentation capabilities
of OASIS would affect end-to-end response time of the ap-
plication in the SPRING scenario. Figure 6 shows a single
test run of the application in the SPRING scenario in ISIS-
lab, where system testers adjusted the hertz of the heartbeat
software probe. As shown in the figure, system testers ini-
tially started with a configuration of 1 hertz (or 1 event/sec)

!"#$#%# !"#$#&# !"#$#'# !"#$#(#

)*+,-./#0.12#34.5/+64#$#&77#894-#

Figure 6. Single Test Run of Adjusting the
Heartbeat Software Probe’s Hertz in SPRING
Scenario’s Application Under OASIS instru-
mentation.

for each heartbeat software probe embedded in a compo-
nent. Since the end-to-end response time for the applica-
tion’s critical path of execution between the Effectors and
Sensors was under its 500 msec deadline for this particular
scenario, the system testers decided to increase the heart-
beat software probe’s hertz to improve awareness of appli-
cation liveliness. After increasing the heartbeat to 5 hertz,
the end-to-end response time began increasing above 500
msec, as shown in Figure 6.

Since the heartbeat probe negatively impacted end-to-
end response time for the application’s critical path of ex-
ecution, system testers decreased the heartbeat software
probe’s hertz to 2. Figure 6 shows how this dynamic change
enabled them to increase awareness of application liveliness
and not negatively impact end-to-end response of the appli-
cation’s critical path of execution. System testers also in-
creased the heartbeat software probe’s hertz to 3 to deter-
mine the new configuration would impact end-to-end re-
sponse time. Unfortunately, 3 hertz caused the end-to-end
response time to gradually increase with respect to time.
System testers therefore learned that they could configure
the heartbeat software probe to execute at 2 hertz with-
out impacting end-to-end response time of the application’s
critical path of execution.

The results above are just one of many different execu-
tions of the SPRING scenario. Experience gained from run-
ning this scenario throughout the system lifecycle under-
scores the challenges of validating OASIS’s usage in en-
terprise DRE systems. In general, OASIS’s dynamic capa-
bilities can adapt to different application domains and its
generic instrumentation and data collection facilities help
remove complexities associated with distributed instrumen-
tation and data collection in enterprise DRE systems. To

truly leverage OASIS’s capabilities, however, DRE system
testers will need to discover patterns for instrumenting dis-
tributed systems, similar to patterns of software architec-
tures [1], and techniques for optimizing instrumentation and
data collection concerns in such systems.

5. Related Work

This section compares and contrasts our work on OASIS
with related research on techniques for instrumentation and
generic metric collection.

Instrumentation techniques.Tan et al. [13] discuss
methodologies to verify instrumentation techniques for re-
source management. Their approach decomposes instru-
mentation for resource management into monitor and
corrector components. OASIS also has a monitor compo-
nent (i.e., software probes) and a corrector component (i.e.,
user applications). OASIS extends their definition of in-
strumentation components, however, to include those nec-
essary to extract metrics from the system in an efficient and
effective manner (i.e., the EINode, DAC, and T&E man-
ager).

DTrace [2] is a non-intrusive dynamic instrumenta-
tion utility for production systems that has similar concepts
as OASIS (such as application- and system-level soft-
ware probes). DTrace, however, is locality constrained,
whereas OASIS can collect data in a distributed environ-
ment. DTrace and OASIS can both collect metrics with-
out design time knowledge of what metrics are being
collected via instrumentation. DTrace also has the op-
tion of filtering instrumentation data at the software
probe level using predicates. OASIS can achieve simi-
lar functionality—and greater flexibility—at the software
probe, DAC, and T&E manager levels if each compo-
nent uses a software probe’s registered metadata to learn
and filter collected metrics at runtime. Finally, it is be-
lieved that DTrace and OASIS can complement each
other to remove the locality constrained characteris-
tics of DTrace.

Generic metric collection techniques.XML is the basis of
several techniques for collecting metrics withouta priori
knowledge of their type. XML is used in technologies such
as Simple Object Access Protocol (SOAP) for Web Ser-
vices, XML-RPC, and XML Metadata Interchange (XMI).
OASIS likewise enables collection/transmission of metrics
without design time knowledge of their type. OASIS uses
raw binary streams to collect and transmit metrics, how-
ever, as opposed to verbose text strings as in XML that can
impact the performance of an enterprise DRE system. OA-
SIS uses XML to describe metametrics, which are metadata
that describes the metrics structure, data types, and quan-
tity, collected and transmitted at registration time (i.e., be-
fore the system is fully operational).

Generic data types, such as CORBA Any and Java Ob-
ject, can be used to dynamically collect and transmit met-
rics. OASIS improves upon these techniques since it is not
bound to a particular programming language or middleware
technology. Moreover, using generic types to collect and
transmit metrics makes it hard for receivers (such as user
applications) to learn about unknown types unless the lan-
guage supports built-in discovery mechanisms, such as re-
flection. OASIS removes this complexity by storing meta-
data about a software probe’s metrics (which is kept sepa-
rate from the actual metrics) so programming languages and
technologies used to implement user applications in OA-
SIS that do not support type discovery mechanisms can still
learn about metric types at runtime.

6. Concluding Remarks

Conventional techniques for instrumenting enter-
prise DRE systems and determining which metrics to
collect for performance analysis tools can limit their ana-
lytical capabilities. Moreover, deferring design decisions
related to instrumenting DRE systems and determin-
ing what metrics to collect can limit the metrics available
to performance analysis tools since the instrumenta-
tion may not be incorporated into the system’s design.
To address these limitations, this paper presented OA-
SIS, which is service-oriented dynamic instrumentation
middleware that enables enterprise DRE system devel-
opers and testers to collect metrics via instrumentation
without prematurely committing to tightly-coupled de-
sign decision during the early phases of a system’s lifecy-
cle. The results of our experiments show how OASIS helps
adapt the instrumentation needs of enterprise DRE sys-
tem developers and testers by enabling them to control the
impact of instrumentation overhead at runtime.

The following are our lessons learned thus far based on
our experience of applying OASIS to the SPRING scenario:

1. Dynamic configuration of probes at runtime minimizes
probe effects.OASIS’s ability to alter the behavior of soft-
ware probes at runtime helps minimize instrumentation
overhead,e.g., software probes have essentially the same ef-
fects on QoS if they are present or not. Enterprise DRE sys-
tem developers and testers therefore have greater levels of
confidence they can incorporate instrumentation into pro-
duction systems and still meet the system’s QoS require-
ments. Our future work will investigate techniques to auto-
mate minimizing probe effects for dynamic instrumentation
of enterprise DRE systems.

2. Separating metadata from data improves discovery ca-
pabilities. Since OASIS separates metadata (i.e., the XSD
files) from the actual data (i.e., collected metrics) for each
software probe, performance analysis tools to utilize col-
lected metrics at runtime without having prior knowledge

of its structure and quality. Our future work will investigate
techniques to optimize OASIS’s data collection, archiving,
and retrieval capabilities by leveraging this metadata.

OASIS is integrated into the CUTS system execution
modeling tool, which are available for download in open-
source form fromwww.cs.iupui.edu/CUTS .

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture—A System
of Patterns. Wiley & Sons, New York, 1996.

[2] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
Instrumentation of Production Systems. InProceedings of
the General Track: 2004 USENIX Annual Technical Confer-
ence, pages 15–28, June 2004.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[4] J. H. Hill, T. Silveria, J. M. Slaby, , and D. C. Schmidt. The
SPRING Scenario: An Heterogeneous Enterprise Distributed
Real-time and Embedded (DRE) System Case Study. Tech-
nical Report TR-CIS-1207-09, Indiana University-Purdue
University Indianapolis, December 2009.

[5] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Apply-
ing System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS. InPro-
ceedings of the 12th International Conference on Embedded
and Real-Time Computing Systems and Applications, Syd-
ney, Australia, August 2006.

[6] H. S. Nwana. Software Agents: An Overview.Knowledge
Engineering Review, 11(3):1–40, 1996.

[7] Object Management Group.Naming Service, version 1.3,
OMG Document formal/2004-10-03 edition, October 2004.

[8] K. O’Hair. The JVMPI Transition to JVMTI. java.
sun.com/developer/technicalArticles/
Programming/jvmpitransition , 2006.

[9] T. Parsons.Automatic Detection of Performance Design and
Deployment Antipatterns in Component Based Enterprise
Systems. PhD thesis, University College Dublin, Belfield,
Dublin 4, Ireland, 2007.

[10] M. Pezzini and Y. V. Natis. Trends in Platform
Middleware: Disruption Is in Sight. www.gartner.
com/DisplayDocument?doc_cd=152076 , Septem-
ber 2007.

[11] A. Srivastava and A. Eustace. ATOM: A System for Building
Customized Program Analysis Tools. InPLDI ’94: Proceed-
ings of the ACM SIGPLAN 1994 Conference on Program-
ming Language Design and Implementation, pages 196–205,
1994.

[12] A. Tamches and B. P. Miller. Using Dynamic Kernel In-
strumentation for Kernel and Application Tuning.Interna-
tional Journale High Performance Computing Applications,
13(3):263–276, 1999.

[13] Z. Tan, W. Leal, and L. Welch. Verification of Instrumenta-
tion Techniques for Resource Management of Real-time Sys-
tems.J. Syst. Softw., 80(7):1015–1022, 2007.

