
Validating Distributed System Test Execution Correctness via System Execution
Traces

James H. Hill
Dept. of Computer and Information Science

Indiana University-Purdue University Indianapolis
Indianapolis, IN USA

Email: hillj@cs.iupui.edu

Pooja Varshneya and Douglas C. Schmidt
Dept. of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN USA

Email: {pooja.varshneya, d.schmidt}@vanderbilt.edu

Abstract—Effective validation of quality-of-service (QoS)
properties (such as event prioritization, latency, and through-
put) in distributed real-time and embedded (DRE) system
requires evaluating system capabilities in representative exe-
cution environments. This validation process typically involves
executing DRE systems composed of many software compo-
nents on many hardware components connected via networks.
Unfortunately, evaluating the correctness of such tests is hard
since it requires validating many states dispersed across many
hardware/software components.

This paper provides two contributions to research on vali-
dating DRE system capabilities and QoS properties. First, it
presents the Test Execution (TE) Score, which a methodology
for validating execution correctness of DRE system tests.
Second, it empirically evaluates TE Score in the context of a
representative DRE system. Results from this evaluation show
that TE Score can determine the percentage correctness in test
execution—thereby increasing confidence in QoS assurance and
improving test quality.

I. INTRODUCTION

Distributed real-time and embedded (DRE) systems, such
as large-scale traffic management systems, manufacturing
and control systems, and global financial systems, are
increasing in size (e.g., number of lines of source code
and number of hardware/software resources) and complexity
(e.g., envisioned operational scenarios and target execution
environments) [10]. It is therefore becoming more critical to
validate their QoS properties (such as event prioritization,
latency, and throughput) in their target environments con-
tinuously throughout their software lifecycles. Continuous
validation enables DRE system testers to locate and rectify
performance bottlenecks with less time and effort than
deferring validation to final system integration [16], [22].

System execution modeling (SEM) [21] is a promising
approach for continuously validating DRE system QoS
properties throughout their software lifecycles. SEM tools
enable DRE system developers to (1) model system behavior
and workload at high-levels of abstraction and (2) use these
models to validate QoS properties on the target architecture.
Although SEM tools can provide early insight a DRE
system’s QoS values, conventional SEM tools do not ensure
that QoS tests themselves execute correctly.

For example, it is possible for a DRE system to execute
incorrectly due to transient errors even though the test
appeared to execute correctly [23], e.g., since it did not
detect the effects of node failures on QoS properties be-
cause injected failures did not occur as expected. Likewise,
DRE systems have many competing and conflicting QoS
properties that must be validated [10]. For example, end-to-
end response time may meet specified QoS requirements,
but latencies between individual components may not meet
specified QoS requirements due to software/hardware con-
tention and QoS trade-off requirements, such as prioritizing
system reliability over intermittent response time.

These problems are exacerbated when metrics (such as
event timestamps, application state, and network interface
stats) needed to validate these concerns are dispersed across
many hardware/software components. Developers of DRE
systems currently determine test execution correctness via
conventional techniques, such as manually inserting check-
points and assertions [4]. Unfortunately, these techniques can
alter test behavior and performance, are locality constrained,
and focus on functional concerns rather than QoS properties.
DRE system testers therefore need improved techniques
that help reduce the complexity of ensuring test correctness
when validating DRE system QoS properties in their target
environments.

Solution approach → Correctness validation via sys-
tem execution traces. System execution traces [3] are
artifacts of executing a software system (e.g., a DRE system)
in a representative target environment. These traces log
messages that capture system state during different execution
phases, such as component activation versus passivation.
System execution traces can also capture metrics for val-
idating test execution correctness, such as event timestamps
that determine which components in an end-to-end activity
exceeded its allotted execution time. In the context of
correctness validation, system execution traces can help
quantify the correctness of a DRE system test that validates
QoS properties in terms of its states and trade-off analysis
of such properties.

This paper describes a method called the Test Execution

(TE) Score, which uses system execution traces to validate
DRE system test correctness. DRE system testers use TE
Score by first defining valid and invalid DRE system states
and QoS properties, such as number of events processed or
acceptable response time(s) for an event. TE Score then uses
system execution traces to evaluate test correctness using the
specified (in)valid state and QoS properties. Results from our
experiments show how applying the TE Score to a represen-
tative DRE system can provide DRE system testers with a
correctness grade (i.e., a percentage) that quantifies how well
their tests execute. Moreover, the TE Score helps identify
test errors that must be resolved to improve correctness and
increase confidence in QoS assurance for DRE systems.

Paper organization. Section II introduces a representa-
tive DRE system case study to motivate the need for TE
Score; Section III describes the structure and functionality of
TE Score; Section IV analyzes the results of experiments that
applied TE Score to the case study; Section V compares TE
Score with related work; and Section VI presents concluding
remarks.

II. CASE STUDY: THE QED PROJECT

The QoS-Enabled Dissemination (QED) [15] project was
a multi-year, multi-team effort that created and evaluated
information management middleware to meet the QoS re-
quirements of component-based DRE systems in the Global
Information Grid (GIG) [1]. The GIG is a large-scale DRE
system [10] designed to ensure that different applications
collaborate effectively and deliver appropriate information
to users in a timely, dependable, and secure manner. QED
provides reliable and real-time communication middleware
that is resilient to the dynamically changing conditions of
GIG environments. Figure 1 shows QED in context of the
GIG.

Figure 1. QED Relationship to the GIG

One of the key challenges facing the QED development
team was overcoming the serialized-phasing development
problem [19], where systems are developed in different
layers and phases throughout their lifecycle. In this software
development model, design flaws that negatively impact QoS
properties are often not identified until late in the software
lifecycle, e.g., system integration time, when it is much more
expensive to resolve the flaws [16], [22].

To overcome the serialized-phasing development problem,
QED testers used SEM tools to validate QoS properties of

the QED middleware on the target architecture continuously
throughout the software lifecycle. In particular, they used
CUTS and UNITE (see Sidebar 1) to ensure QED’s en-
hancements actually improved QoS properties of the existing
GIG middleware. Although CUTS and UNITE enabled QED
testers to evaluate QED’s enhancements, CUTS was bound
to the same limitations of evaluating QoS test correctness
discussed in Section I. In particular, the QED testers were
faced with the following challenges:1

Sidebar 1: Overview of CUTS and UNITE

CUTS [9] is a system execution modeling tool for large-scale
DRE systems. It enables DRE system testers to validate QoS
properties on the target architecture during early phases of
the software lifecycle. DRE system testers—such as the QED
team—use CUTS as follows:

1) Use domain-specific modeling languages [12] to
model behavior and workload at high-levels of ab-
straction;

2) Use generative programming techniques [5] to synthe-
size a complete test system for the target architecture;
and

3) Use emulation techniques to execute the synthesized
system on its target architecture and validate its QoS
properties in its target execution environment.

DRE system testers can also replace emulated portions of
the system with its actual counterparts as their development
completes through a process called continuous system inte-
gration testing.

The Understanding Non-functional Intentions via Test-
ing and Experimentation (UNITE) [7] toolis distributed
with CUTS to enable data mining of distributed system
execution traces to validate QoS properties. UNITE can
also constructs a QoS performance graph that illustrate data
trends throughout the lifetime of the system (i.e., how a QoS
property changed with respect to time).

Challenge 1: Inability to validate execution correctness
of QoS test. Executing a QoS test on a DRE system requires
running the system in its target environment. This envi-
ronment consists of many hardware/software components
that must coordinate with each other. To determine the
correctness of QoS test execution, DRE system testers must
ensure that all hardware/software resources in the distributed
environment behave correctly.

QED testers therefore need a method that simplifies
validating if QoS validation tests execute correctly. This
method should automate the validation process so testers
need not manually check all hardware/software resources
for correctness. The validation method should also minimize
false negatives (e.g., stating the QoS test executes correctly,
but in reality it failed to meet different QoS requirements,
such as sending the correct number of events within a

1Although these challenges are motivated in the context of the QED
project, they apply to other DRE systems that must validate their QoS
tests.

given time period). Addressing this challenge enables QED
testers can have greater confidence levels in QoS assurance.
Section III-A describes how the TE Score method addresses
this problem using state-based specifications.

Challenge 2: Inability to perform trade-off analysis
between QoS properties. QoS properties are a multi-
dimension concern [14]. It is hard to simultaneously ensure
all DRE system QoS properties with optimal performance,
such as ensuring high reliability and low end-to-end response
time; high scalability and high fault tolerance; or high
security and low latencies. Resolving this challenge requires
trade-off analysis that prioritizes what QoS properties to
validate (or ensure) since some are more important than
others. For example, QED testers must ensure that high
priority events have lower latency than lower priority events
when applying QED’s enhancements to GIG middleware.

After QED testers validate the correctness of QoS test
execution (i.e., they address challenge 1), they ideally want
to validate multiple QoS properties simultaneously since
it is time-consuming to validate a single QoS property in
isolation. QED testers therefore need a method that will
assist in this trade-off analysis between multiple dimensions
of QoS properties. Moreover, the methodology should allow
QED testers to determine (1) what QoS properties are
most important, (2) quantify the correctness of QoS test
execution based on the specified priorities, and (3) help
identify and prioritize where improvements in QoS test
execution are needed. Section III-B describes how the TE
Score method addresses this challenge by adding priorities
and weights to the state-based specifications used to validate
test correctness.

III. THE STRUCTURE AND FUNCTIONALITY OF TE
SCORE

This section describes the structure and functionality of
TE Score. Examples from the QED case study introduced
in Section II are used throughout this section to showcase
the applicability of TE Score.

A. Specifying QoS Test Execution States

Validating QoS test correctness requires evaluating a DRE
system’s state and QoS properties over its complete lifetime,
i.e., from the time the system is deployed to the time it shuts
down. This is necessary because QoS properties, such as
latency and end-to-end response time, often fluctuate over
time due to system dynamics and hardware/software con-
tention. There can also be states that the DRE system must
reach (and maintain) to evaluate QoS properties properly,
e.g., ensuring a component has received the correct number
of events within a time period to ensure end-to-end response
time is evaluated under the expected workload.

Prior work [7] has shown how to mine system execution
traces and extract data and metrics of interest using dataflow

models. In the context of testing DRE systems, a dataflow
model DM = (LF,CR) is defined as:
• A set LF of log formats that have a set V of variables

identifying what data to extract from log messages in a
system execution traces. These log formats will identify
many occurrences of the same message in a system
execution trace where their difference is captured in V .

• A set CR of causal relations that specify order of
occurrence for each log format such that CRi,j means
LFi → LFj , or LFi occurs before LFj [20]. These
relations help determine how data flows across different
application contexts, such as an event from one com-
ponent to another component.

These models can also be leveraged to validate QoS test ex-
ecution states. In particular, the set of variables V across the
set of log formats LF in DM capture the state and metrics
of a DRE system at any given point in time throughout its
lifetime. This information can thus be used to validate the
correctness of test execution.

Defining QoS execution states. In the context of validat-
ing test execution correctness, an execution state of a DRE
system can be defined as s = (DM, V ′, P):
• A dataflow model DM that contains a set of variables

for capturing the system’s state and metrics throughout
its execution lifetime;

• A set of variables V ′ for evaluating the system’s state
of interest where V ′ ∈ V in the dataflow model DM ;
and

• A preposition P that captures the context and expected
value of the context over the of variables v such
that Cv → Ev means Cv defines the context for the
expected value of P and Ev defines the actual value
(or effect) for the given context.

Implementing QoS test execution states in TE Score.
To realize test execution states in TE Score, we leverage
UNITE’s capabilities for specifying dataflow models. In
particular, using the set of variables defined in UNITE’s
dataflow model, QED testers select variables to define execu-
tion states that can validate the execution correctness of their
QoS test. This execution state is specified as a preposition
P where the context Cv is an expression for defining the
scope of the evaluation and the expected value Ev is the
expected state for the specified context.

Cv : LF1 . ins tName = ‘ ‘ ConfigOp ’ ’
Ev : (LF2 . sendTime − LF1 . recvTime) < 30

Listing 1. Example State Specification for TE Score

Listing 1 shows an example that validates whether re-
sponse time for the ConfigOp component is always
less than 30 msec. In this example QED testers select
LF1.instName, LF1.recvTime, and LF2.sendTime
from the dataflow model and then define a preposition
where the context checks the value captured in the variable

LF1.instName. If the specified context is valid, i.e., Cv

is true, then the expected value of the context is evaluated,
i.e., Ev is tested. The execution state is ignored if the context
is invalid.

B. Specifying Execution Correctness Tests

Section III-A discussed how TE Score defines a single ex-
ecution state for validating execution correctness. In practice,
however, there can be many execution states that must be
evaluated to determine execution correctness for a QoS test.
For example, a DRE system tester may need to validate that
response-time of a single component is less than 30 msec,
the arrival rate of events into the system is 10 Hz, and the
end-to-end response time for a critical path of execution is
less than 100 msec because under those conditions do their
experiments produce meaningful workload for validating
QoS properties. Likewise, it may be necessary to ensure the
test execution does not reach an invalid state because it may
be easier to express QoS test execution states in terms of its
invalid states, as opposed to its valid states.

It is often hard, however, to validate all execution states
of a QoS tests because of its large state space. Using the
previous example, for instance, it can be hard to ensure
response time of a single component is less than 30 msec
and end-to-end response time is less than 100 msec because
QoS properties traditionally conflict with each other. Due
to conflicting interests when specifying execution states,
it may be necessary to conduct trade-off analysis for the
different execution states. For example, DRE system testers
may want to specify that ensuring end-to-end response time
is more important than ensuring the response time of a single
component, as described in Challenge 2.

Defining execution correctness test specifications. Since
an execution state can be either invalid or valid—and trade-
off capabilities are needed to validate correctness of QoS test
execution—we must extend the definition of an execution
state such that s′ = (s, t, p, min, max) where:
• s is the original QoS test execution state ;
• t is the QoS execution test state type (i.e., either invalid

or valid); and
• p is the priority (or importance) of the QoS test exe-

cution state, such that lower priorities are considered
more important. This priority model is used because it
does not put a predefined upper bound on priorities and
offers a more flexible approach to assigning priorities;

• min is the minimum number of occurrences the spec-
ified state s can occur throughout the execution of the
QoS test; and

• max is the maximum number of occurrences that the
specified state s can occur throughout the execution of
the QoS test.

Using the new definition of a QoS test execution state s′,
it is possible to define a correctness test CT as a set S of
QoS execution test states where s′ ∈ S.

Implementing execution correctness test specifications
in TE Score. To realize execution correctness test specifi-
cations in TE Score, QED testers specify a set of states that
determine the execution correctness for a QoS test. Each
state is defined as either valid (i.e., an allowable state) or
invalid (i.e., a state that is not allowed). Likewise, each state
in the correctness test is given a priority that determines
its level of importance when conducting trade-off analysis
between different execution states.

s′
1 : LF3.instName = Receiver →
LF4.eventCount/(LF5.stopT ime− LF6.startT ime) > 5
t = valid
p = 2
min = 1
max = 1

s′
2 : LF1.instName = ConfigOp→
(LF2.sendTime− LF1.recvT ime) > 30
t = invalid
p = 4
min = 1
max = unbounded

Listing 2. Example Correctness Test Specification in the TE Score

Listing 2 shows an example of a correctness test that
validates the correctness of QoS test execution. This example
contains the following different QoS execution states:

1) A state validating the arrival rate of events into a
component named Receiver is 5 Hz, which should
only occur once;

2) A state validating that response time for a component
named ConfigOp is never greater than 30 msec; and

C. Evaluating Execution Correctness Specifications

After defining an execution correctness specification test
(see Section III-B), the final step in the process is evaluating
it. The main goal of the evaluation process is to provide a
metric that quantifies the degree to which a QoS test executes
correctly based on its specified states. This metric serves two
purposes: (1) it helps DRE system testers determine how
well their test meet expectations; and (2) it identifies areas
where tests may need improvement.

Given Section III-B’s definition of an execution correct-
ness specification for QoS tests, evaluating these tests must
account for both the QoS execution state’s type (i.e., invalid
or valid) and priority. Failure to account for these two
properties can yield false negative results that do not provide
meaningful information to DRE system testers. For example,
higher priority states (i.e., states with a lower priority num-
ber) should have a greater weight on the overall evaluation
of an execution correctness specification. Likewise, overall
evaluation should be negatively impacted whenever a valid
execution state is not reached, or an invalid execution state
is reached.

It is therefore possible to use the priorities (or weights)
and state types to derive a weighted grading system. Equa-
tion 1 calculates the weight of a given state s′ in a correct-

ness specification:

weight(s′) = maxprio(S)− prio(s′) + 1 (1)

As shown in Equation 1, maxprio(S) determines the high-
est priority number for a QoS execution state (i.e., the QoS
execution state with the least priority) and prio(s′) is the
priority value of the specified QoS execution state.

Since a weighted grading system is used to validate the
correctness of QoS tests execution, QoS execution states
of greater importance will have more influence on the
overall grade than QoS execution states of less importance.
In particular, obtaining valid states increases the QoS test
execution correctness grade and reaching invalid states de-
creases the grade. Likewise, if a valid state is not reached,
then the grade is decreased, whereas and if an invalid state is
not reached the the execution correctness grade is increased.

Equations 2 and 3 determine the number of points rep-
resenting valid QoS execution states that can be reached or
invalid QoS execution states that cannot be reached for a
given dataset DS.

points(DS, s′) =

{
evaluate(DS, s′) = true weight(s′)
evaluate(DS, s′) = false 0

(2)

points(DS, S) =
∑
s′∈S

points(DS, s′) (3)

Finally, Equation 4 and Equation 5 determine the final grade
for an execution correctness specification.

maxpoints(S) =
∑
s′∈S

weight(s′) (4)

G(DS,S) =
points(DS, S)
maxpoints(S)

× 100 (5)

As highlighted in the equations, the final grade for execution
correctness for a given dataset is determined by number of
points award for each test execution state, i.e., number of
valid states reached and invalid states not reached, divided
by the number of total possible points.

Implementing correctness test evaluation in TE Score.
To achieve test evaluation correctness, TE Score leverages
UNITE’s capabilities for data mining system execution
traces and constructing a dataset that represents the given
dataflow model. Once the dataset is constructed, TE Score
processes each state in the correctness test to calculate a
grade. Algorithm 1 shows the algorithm TE Score uses
when grading the execution correctness of a QoS test using
Equations 2– 5.

As shown in Algorithm 1, given the dataset DS con-
structed by UNITE and the execution state s′, its correspond-
ing SQL statement is constructed (line 6). After constructing
the SQL statement, it is applied to the dataset and the number
of rows in the result set is stored. If state s′ is a valid state—
and the number of rows is less than the min occurrences or

Algorithm 1 TE Score’s Algorithm for Evaluating Execu-
tion Correctness State

1: procedure EVALUATE(DS, s′, P)
2: DS: dataset from UNITE
3: s′: execution state
4: P : max points
5:
6: sqlstr ← sqlstmt(s′)
7: n ← get count(DS, sqlstr)
8:
9: if is valid(s′) then

10: if n ≤ min(s′) ∨ n ≥ max(s′) then
11: return 0
12: end if
13: else
14: if n ≥ min(s′) ∧ ≤ max(s′) then
15: return 0
16: end if
17: end if
18:
19: if is unbounded(s′) ∧ has false negs(DS, s′) then
20: return 0
21: end if
22:
23: return points(s′, P)
24: end procedure

greater than the max occurrences—then 0 points is returned
(line 11). Likewise, if the state s′ is an invalid state and
the count falls within the specified range [min, max], then
0 points is returned (line 15).

Handling false negatives. There can be cases when
querying the dataset for the specified state may yield false
negatives. For example, if the expected value Ev of context
Cv is true, that does not necessarily mean that Ev is
never false because the query’s result only returns data that
matches the specified query. The query does not validate if
the dataset contains data that invalidates the expected value,
which can occur when the max value is unbounded (i.e., the
state can be reached infinite number of times).

To prevent false negatives from occurring in an evaluation,
TE Score negates the expected value Ev and applies it to
the dataset. If the number of rows in the new result set is
greater than the min(s′), then the state has a false negative.
For example, assume the bounds of occurrence for s′ is [0,
unbounded], which means that state should always occur.
When evaluating the negation of the expected value Ev ,
therefore, the result set should be empty.

Determining the final score. Once all points for the
correctness tests are accumulated, the final step is assigning
a grade to the test. This grade helps DRE system testers
determine how well their tests are executing. Moreover, it
helps identify what QoS execution states are candidates for

resolving and improving results in QoS assurance. TE Score
therefore uses Equation 5 to assign a final grade to the
correctness test by dividing the accumulated points by the
total number of points possible, then multiplying that result
by 100 to get a percentage.

IV. APPLYING THE TE SCORE TO THE QED PROJECT

This section analyzes the results of applying the TE Score
to the QED case study introduced in Section II to evaluate
the test correctness of various experiments performed on the
QED middleware.

A. Experiment Setup

As discussed in Section II, QED’s aim is to enhance QoS
concerns of GIG middleware by adding adaptive information
management capabilities to it. To ensure the QED project
does in fact improve the QoS capabilities of GIG middle-
ware, QED testers have constructed several experiments to
evaluate the QED enhancements. In particular, QED testers
wanted to evaluate the following QED capabilities:
• Prioritized services for high priority users. Experi-

ments were designed to verify higher importance sub-
scribers received prioritized services when compared to
lower importance subscribers.

• Adaptive resource management capabilities to en-
sure subscriber QoS requirements. Experiments were
designed to simulate resource constrained environ-
ments, e.g., limited dissemination bandwidth, to vali-
date the adaptive capabilities of QED middleware and
ensure subscriber QoS properties were not degraded
when compared to lower importance subscribers.

• QoS performance measurement for higher impor-
tance versus lower importance subscribers. Exper-
iments were designed to measure QoS properties of
higher importance versus lower importance subscribers
and validate that the QED/GIG middleware met its
minimum QoS requirements for all subscribers.

QED testers used CUTS and UNITE to design several
experiments that evaluated these concerns empirically. The
experiments contained software components (up to 40 in
some cases) running on hardware components communicat-
ing via a shared network. The application components for
their experiments were first modeled using CUTS’s behavior
and workload modeling languages [8]. As shown in Figure 2,
each software component has behavior that would exercise
some aspect of the QED/GIG middleware, e.g., sending high
payloads, changing application event prioritization at run-
time, occupying CPU time to influence resource contention.

Although QED testers used CUTS and UNITE to reduce
complexities (such as experiment design/implementation,
data collection, and data analysis) associated with validating
QED’s enhancements to the GIG middleware, QED testers
were still faced with the challenge of ensuring that their

Figure 2. QED Clients Modeled Using CUTS

experiments executed correctly, e.g., setting experiment con-
figurations and ensuring that none of the publishers, sub-
scribers, and QED server fail at runtime. If any configuration
errors or runtime failures occur on an experiment nodes or
the experiment fails to show expected system behavior, QED
testers originally had to troubleshoot the issue manually by
mining dense system execution traces for the appropriate
error messages.

QED testers therefore used TE Score to evaluate different
execution states of QED experiments (see Section III-A
and Section III-B) and grade the quality of each individual
experiment based on its execution states (see Section III-C).
Listing 3 highlights example log formats used to mine the
generated system execution trace and example states for
validating and grading the execution correctness of several
QED experiments using the TE Score.
Log Formats

LF1 : {STRING c l i e n t } s t a r t e d wi th
e n v i r o n m e n t {STRING env}

LF2 : {STRING c l i e n t } s t a r t e d a t {LONG
s t a r t T i m e} wi th p u b l i s h r a t e = {INT r a t e }Hz

LF3 : {STRING c l i e n t } ended a t {LONG endTime}
LF4 : {STRING c l i e n t } r e c e i v e d {LONG e v i d}

wi th p a y l o a d of s i z e {INT s i z e } b y t e s

QoS Test Execution States

(a) Environment initialization state
s1 : LF1.env = “qed”
t1 : v a l i d
p1 : 1

(b) Publisher initialization state
s2 : LF2.client = “pub1”and LF2.rate = 6
t2 : valid
p2 : 1

c). Publisher runtime execution states

s3 : LF2.client = LF3.client and
LF3.endTime - LF2.startTime=360000

t3 : valid
p3 : 1

(d) Subscriber runtime execution states
s4 : LF4.size = 1024
t4 : valid
p4 : 1

s5 : LF4.client = “sub1”and LF4.evid > 5400

and LF4.evid < 6480
and LF4.size = 1024

t5 : valid
p5 : 2

s6 : LF4.client = “sub3” and
(LF4.evid > 150 or LF4.evid < 50)
and LF4.size = 1024

t6 : not valid
p6 : 4

Listing 3. Examples of the TE Score States

As shown in Listing 3, LF1,. . . , LF4 define log messages
used to capture clients’ states from the beginning to the end
of the experiment, and s1, . . . , s6 define test execution states
that occur during the experiment. The LF1 and LF2 log
formats capture messages used to validate the client’s startup
configuration, LF3 captures the clients end-time, and LF4
captures subscriber client runtime behavior. Likewise, s1 and
s2 are used to validate QED server and client node startup
configuration, whereas s3, s4, s5 and s6 are used validate
runtime behavior of the subscriber and publisher clients. In
total, over 10 different log formats and validation states were
used in the experiments.

B. Experiment Configuration

Each experiment was executed in ISISlab (www.isislab.
vanderbilt.edu), which is powered by Emulab (www.emulab.
net) software. Emulab enables QED testers to configure
network topologies and operating systems to produce a
realistic target environment for integration testing. Each
node in ISISlab is an IBM BladeType L20, dual-CPU 2.8
GHz Xeon processor with 1 GB RAM. Each node used in
the QED experiments was configured to run Fedora Core
6 and implemented network bandwidth management, which
was done by modifying Linux kernel settings.

Each experiment was run for 6 minutes using the base-
line GIG middleware implementation and the enhanced
QED/GIG middleware [15] implementation that added adap-
tive QoS management capabilities to the baseline imple-
mentation. We ran the experiments for 6 minutes so their
results could be easily compared in terms of throughput (i.e.,
the total number of information objects received by each
client). Our goal was to highlight QED implementation’s
QoS management capabilities that were not present in the
baseline GIG middleware implementation.

To evaluate execution correctness, QED testers divided
their test execution steps into the following groups: initial-
ization and runtime. This decomposition provided finer grain
evaluation for evaluating their test execution correctness. The
initialization group consisted of the following categories:

1) ENV INIT (EI), which are environment states used to
validate that the proper environment variables are set
on each publisher and subscriber node. The example
state s1 in Listing 3 validates that the environment file
used for the given experiment sets the environment
variables listed for QED/GIG middleware;

2) PUB INIT (PI), which are publisher initialization
states that validate the number of publishers running
on the experiment node and their publish rates. The
example state s2 in the Listing 3 validates that for
publisher id pub1, publish rate is set to 6 Hz. States
similar to s2 were also defined for pub2 and pub3
in the experiment, respectively; and

3) SUB INIT (SI), which are subscriber initialization
states that validate the number of subscribers running
on the experiment node and their startup configura-
tion, e.g., the importance of each subscriber and the
predicates strings for filtering information objects.

Likewise, the runtime group consisted of the following
categories:

1) PUB RUNTIME (PR), which are publisher runtime
states for validating that each publisher maintains
the given publish rate and does not fail during the
experiment. The example state s3 in Listing 3 validates
that each publisher runs for the entire duration of the
experiment, i.e., 6 minutes; and

2) SUB RUNTIME (SR), which are subscriber runtime
states for validating that each subscriber receives the
expected minimum number of information objects
with complete payload. The states also check that
each subscribers runs for the entire duration of the
experiment, i.e., 6 minutes.

The example states in Listing 3 validate that the size
of received payloads match the size of payloads sent by
the publisher clients. The example states also validate that
subscriber clients with id sub1 and sub3 receive the min-
imum number of information objects as per their expected
QoS levels. Subscriber client sub1 is a high importance
subscriber and therefore should receive the highest QoS,
which is measured it terms of the number of information
objects received by a subscriber. Subscriber sub3 is a low
importance subscriber and therefore should receive lower
QoS. The minimum number of information objects defined
for sub3 in s6 is an estimated minimum value to ensure
that the lower importance subscriber client is running.

Experiment initialization and environment validation
states (i.e., s1 and s2) were given highest priority because
correct configuration is critical for correct runtime behavior
of the experiment. Likewise, runtime states (i.e., s3 and s4)
were also given equivalent high priority because QED testers
considered them as equally important as the initialization
states when ensuring correct runtime behavior. State s3

ensures that all publisher clients run for complete duration
of the experiment i.e., 6 minutes and state s4 ensures that
no corrupt or incomplete payloads are received by the
subscriber clients.

The runtime states (i.e., s5 and s6) are given lower
priority because they only measure runtime behavior of
the system. Since the QED/GIG middleware is priority-

based, QoS requirements of high importance clients are
given higher preference. It is therefore acceptable if the low-
importance subscriber clients do not meet the estimated min-
imum number of information objects, while high-importance
subscriber clients receive their estimated minimum number
of information objects. As a result, QED testers selected
different relative priorities for states s5 and s6.

C. Experiment Results

The following four test cases showcase how QED testers
used TE Score to identify correct and incorrect executions
in experiments.

Case 1: Validating execution correctness of per-
formance evaluation experiment. As explained in Sec-
tion IV-B, QED testers performed experiments that com-
pared the performance of the baseline GIG middleware to the
QED/GIG middleware under normal conditions. The experi-
ments measured throughput (i.e., the number of information
objects received by each subscriber) for subscribers of low-,
medium-, and high-importance subscribers. The experiments
also demonstrated that the baseline GIG middleware did not
provide differentiated QoS of services to subscribers with
varying importance, whereas the QED/GIGbmiddleware pro-
vided such services.

Table I
RESULTS FOR QOS PERFORMANCE EVALUATION USING TE SCORE

EI PI SI PR SR
gig 100% 100% 100% 100% 50%
qed-gig 100% 100% 100% 100% 100%

Table I presents the execution correctness score calculated
by TE Score for one execution of this particular experiment.
As shown in this table, the initialization states succeed. QED
testers were therefore confident the experiment initialized
correctly on all nodes. The table, however, shows that the
runtime states for the subscriber (i.e., SUB RUNTIME
SCORE) was different for the baseline GIG middleware and
GIG/QED middleware. For the baseline GIG middleware,
the execution correctness score was 50%, whereas the exe-
cution correctness score for the GIG/QED middleware was
100%. Since the baseline GIG middleware does not provide
differentiated services to clients with varying importance,
all subscribers receive the same number of information
objects—resulting in only 50% execution correctness.

When the same experiment was run using QED/GIG
middleware, however, 100% execution correctness was ob-
served. The score for subscriber runtime states thus high-
lights the difference between the baseline GIG middleware
and QED/GIG middleware capabilities.

Case 2: Validating execution correctness for client
configuration. As explained in Section IV-B and Case 1,
QED testers ran the same experiments using QED/GIG
middleware. When switching the middleware, in some cases,

publishers failed to start due to low memory availability from
the previous experiment. Due to this failure, few information
objects were published and received by publishers and
subscribers, respectively. Moreover, the experiment neither
executed correctly nor to completion.

Table II presents the correctness score calculated by TE
Score for one execution of this particular case. As shown
in this table, the baseline QED middleware experiment exe-
cuted as expected since it has the same results from Table I
in Case 1. The execution correctness for the GIG/QED
middleware experiment, however, did not score well.

Table II
RESULTS FOR CLIENT CONFIGURATION EVALUATION USING TE SCORE

EI PI SI PR SR
gig 100% 100% 100% 100% 50%
qed-gig 100% 0% 100% 33% 80%

Table II also showed how the publishers failed to ini-
tialize. Due to this failure, subscribers did not receive the
correct number of events—thereby having a low score. Since
QED testers used TE Score, they could quickly learned
and troubleshooted that the problem was occurring when
switching between experiments.

Case 3: Validating execution correctness of envi-
ronment configuration. After running experiments with
baseline GIG middleware, QED testers had to update the
environment configuration on all nodes in the experiment
so they could execute the replicated experiment(s) using the
enhanced QED/GIG implementation. Due to configuration
errors (e.g., errors in the automation script and incorrect
parameters passed to the automation script) the environment
update did not always succeed on each node. As a result
of these errors, subscribers would run on their target node
with invalid configurations. Moreover, the subscribers failed
to receive any information objects from publishers.

Table III presents the correctness score calculated by TE
Score for one execution of this particular case. As shown in
this table, the experiments for the baseline GIG middleware
executed as expected. The experiments for the GIG/QED
middleware, however, did not execute as expected.

Table III
RESULTS FOR ENVIRONMENT CONFIGURATION EVALUATION USING TE

SCORE

EI PI SI PR SR
gig 100% 100% 100% 100% 50%
qed-gig 0% 100% 100% 100% 0%

Table III also shows that the environment initialization
states was 0%, meaning none of its execution states were
reached. Likewise, because the environment initialization
states failed in this case, the subscriber runtime states failed.
Since the QED testers used TE Score to validate execution

correctness, they quickly learned that the error was located
on the subscriber node in this case.

Case 4: Validating execution correctness when operat-
ing in resource constrained environments. As discussed in
Section IV-B, QED testers wanted to compare capabilities of
the baseline GIG middleware and the enhanced GIG/QED
middleware in resource constrained environments, such as
limited bandwidth for sending events (or information ob-
jects). The baseline GIG implementation does not support
any adaptation capabilities when operating in resource con-
strained environments. In contrast, the GIG/QED middle-
ware is designed to adapt to such conditions and ensure
clients meet their QoS requirements with respect to their
level of importance. If the GIG/QED middleware cannot
ensure all subscribers will meet their requirements, then the
GIG/QED middleware will ignore QoS requirements of low
importance subscribers so higher importance subscribers can
continue meeting their QoS requirements.

When the experiments were run with QED/GIG imple-
mentation, lower importance subscribers received fewer in-
formation objects than the minimum number of information
objects defined in state s6 in Listing 3. Thus, s6 failed for
this test during test validation.

Table IV presents the correctness score calculated by TE
Score for one execution of this particular case. As shown in

Table IV
RESULTS FOR QOS TRADE-OFF ANALYSIS USING TE SCORE

EI PI SI PR SR
gig 100% 100% 100% 100% 50%
qed-gig 100% 100% 100% 100% 87%

this table, SUB RUNTIME SCORE is of most importance
since execution states in the other categories were reached.
Since the experiment using GIG/QED middleware did not
receive the correct number of events, Table IV shows only
partial success for subscriber runtime validation states. This
test, however, is still be considered valid (and correct) since
the service to higher importance subscribers still received
events under resource constrained conditions. If a higher
importance subscriber had crashed at runtime or received
fewer events than expected, then SUB RUNTIME SCORE
would be much lower. This result occurs because the runtime
execution state for higher importance subscribers has a
higher priority when compared to runtime execution states
for medium and lower importance subscribers.

Synopsis. These test results show how TE Score simplifies
the evaluation and trade-off analysis of QoS performance
for experiments of the QED/GIG middleware. Without TE
Score, QED testers would have to identify configuration
and runtime failures in the experiments manually. More-
over, QED testers would have to perform trade-off analy-
sis manually between the different execution states of the
experiments. By leveraging TE Score to assist with their

efforts, QED testers focused more on defining and running
experiments to validate their enhancements to the GIG
middleware, as opposed to dealing with low-level testing
and evaluation concerns.

V. RELATED WORK

This section compares TE Score with other related works.
System execution traces. Moe et al. [18] present a

technique for using system execution traces to understand
distributed system behavior and identify anomalies in be-
havior. Their technique uses intercepters, which is a form of
“black-box” testing, to monitor system events, such as send-
ing/receiving an event. TE Score differs from their technique
in that is uses a “white-box” approach to understanding
behavior because metrics used to validate test behavior
comes from data generated inside the actual component
(i.e., the log messages). TE Score’s approach offers a richer
set of data to perform analysis, understand DRE system
behavior, and detect anomalies in the behavior that may not
be detectable from “black-box” testing alone.

Chang et al. [3] show how system execution traces can be
used to validate software functional properties. For example,
their technique uses parameterized patterns [2] to data mine
system execution traces and validate functional correctness
to test execution. TE Score is similar in that is uses system
execution traces to capture and extract metrics of interest.
TE Score is different in that is focuses on validating correct-
ness of QoS test execution, which involves evaluating QoS
execution states of the system.

Correctness testing. Many conventional techniques are
used for correctness testing of DRE systems, such as
assertion-based testing [4], continuous integration [6], and
unit testing [17]. Irrespective of the correctness testing
approach, conventional techniques focus on the functional
concerns of DRE systems. TE Score differs from conven-
tional approaches in that it focuses on ensuring correctness
in QoS test execution. In addition, TE Score can also ensure
correctness in functional properties as do many existing
conventional techniques if the necessary data is captured in
system execution traces.

Tian et al. [24] present a reliability measurement for
providing reliability assessment for large-scale software sys-
tems. Their technique uses failure detections in collected
data to not only assess the overall reliability of the system,
but also track testing progress in addressing identified de-
fects in the software. TE Score is similar in that it provides
a measurement for assessing the correctness (or reliability)
of QoS test execution, and identifying where improvements
are needed. TE Score, however, differs in that it focuses
on assessing QoS test execution, which is based on QoS
properties that influence each other and cannot be assessed
as disjoint concerns like functional properties.

Trade-off analysis. Lee et al. [13] present an approach for
conducting trade-off analysis in requirements engineering

for complex systems. Their approach assists developers in
measuring how different requirements influence each other.
TE Score is similar in that its weighted grading system assist
developers in conducting trade-off analysis between different
QoS execution states. TE Score differs from Lee’s work
in that TE Score measures how conflicting concerns affect
the entire solution (i.e., correctness of QoS execution test)
whereas Lee’s work measures how different requirements
affect each other.

VI. CONCLUDING REMARKS

The ability to quantify the degree of correctness for QoS
tests helps increase confidence levels in QoS assurance since
DRE system testers need not rely on ad hoc techniques to
ensure correctness properties exist in their QoS tests. This
paper presented a method called the Test Execution (TE)
Score that quantifies the correctness of QoS test execution.
We showed how DRE system testers in the QED project used
the TE Score to define correctness tests that account for the
different QoS execution states of the system and consider
that different QoS execution states have different priorities.
DRE system testers therefore can perform trade-off analysis
within their correctness tests to ensure that important QoS
execution states have greater influence on the results.

Based on our experience applying TE Score to a repre-
sentative DRE system, we learned the following lessons:
• Manually specifying the execution states helped

reduce false negatives because TE Score was not
trying to deduce them automatically. More importantly,
it helped DRE system testers understand the test execu-
tion process better by identifying important states that
should influence overall correctness.

• Time-based correctness of QoS execution testing is
needed because QoS properties can change over time.
In some cases, DRE system testers many want to ensure
correctness of QoS test execution at different time
slices using different QoS execution states. Our future
work will therefore investigate techniques for leverage
temporal-logic [11] to facilitate time-based correctness
testing of QoS test execution.

• Execution state-based specification helped perform
trade-off analysis it allowed finer control over how
different states affect the final analysis. More impor-
tantly, assigning priorities to the different execution
states helped improve DRE system testers control how
much affect a given state had on the final analysis.

TE Score, CUTS, and UNITE are freely available in open-
source format for download from www.cs.iupui.edu/CUTS.

REFERENCES

[1] Global Information Grid. The National Security Agency,
www.nsa.gov/ia/industry/ gig.cfm?MenuID=10.3.2.2.

[2] B. S. Baker. Parameterized Pattern Matching by Boyer-Moore-type
Algorithms. In Proceedings of the sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 541–550, 1995.

[3] F. Chang and J. Ren. Validating system properties exhibited in
execution traces. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, pages 517–520, New York, NY, USA, 2007. ACM.

[4] Y. Cheon and G. T. Leavens. A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way. In Proceedings of the 16th
European Conference on Object-Oriented Programming, pages
231–255, London, UK, 2002. Springer-Verlag.

[5] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Reading,
Massachusetts, 2000.

[6] M. Fowler. Continuous Integration. www.martinfowler.com/articles/
continuousIntegration.html, May 2006.

[7] J. H. Hill and et al. Unit Testing Non-functional Concerns of
Component-based Distributed Systems. In Proceedings of the 2nd
International Conference on Software Testing, Verification, and
Validation, Denver, Colorado, Apr. 2009.

[8] J. H. Hill and A. Gokhale. Model-driven Engineering for Early QoS
Validation of Component-based Software Systems. Journal of
Software (JSW), 2(3):9–18, Sept. 2007.

[9] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Applying System
Execution Modeling Tools to Evaluate Enterprise Distributed
Real-time and Embedded System QoS. In Proceedings of the 12th
International Conference on Embedded and Real-Time Computing
Systems and Applications, Sydney, Australia, August 2006.

[10] S. E. Institute. Ultra-Large-Scale Systems: Software Challenge of
the Future. Technical report, Carnegie Mellon University, Pittsburgh,
PA, USA, June 2006.

[11] L. Lamport. The Temporal Logic of Actions. ACM Transactions of
Programming Languages and Systems, 16(3):872–923, 1994.

[12] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific Design
Environments. Computer, 34(11):44–51, 2001.

[13] J. Lee and J.-Y. Kuo. New Approach to Requirements Trade-Off
Analysis for Complex Systems. IEEE Transactions on Knowledge
and Data Engineering, 10(4):551–562, 1998.

[14] N. X. Liu and J. S. Baras. Modelling multi-dimensional qos: Some
fundamental constraints: Research articles. International Journal of
Communication Systems, 17(3):193–215, 2004.

[15] J. P. Loyall, M. Gillen, A. Paulos, L. Bunch, M. Carvalho,
J. Edmondson, P. Varshneya, D. C. Schmidt, and A. Martignoni.
Dynamic Policy-Driven Quality of Service in Service-Oriented
Systems. In Proceedings of the 13th International Symposium on
Object/Component/Service-oriented Real-time Distributed
Computing (ISORC ’10, Carmona, Spain, May 2010.

[16] J. Mann. The Role of Project Escalation in Explaining Runaway
Information Systems Development Projects: A Field Study. PhD
thesis, Georgia State University, Atlanta, GA, 1996.

[17] V. Massol and T. Husted. JUnit in Action. Manning Publications
Co., Greenwich, CT, USA, 2003.

[18] J. Moe and D. A. Carr. Understanding Distributed Systems via
Execution Trace Data. In International Workshop on Program
Comprehension, 2001.

[19] Rittel, H. and Webber, M. Dilemmas in a General Theory of
Planning. Policy Sciences, pages 155–169, 1973.

[20] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating
Systems. McGraw-Hill, Inc., New York, NY, USA, 1994.

[21] C. Smith and L. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley
Professional, Boston, MA, USA, September 2001.

[22] A. Snow and M. Keil. The Challenges of Accurate Project Status
Reporting. In Proceedings of the 34th Annual Hawaii International
Conference on System Sciences, Maui, Hawaii, 2001.

[23] I. M. Technical and I. Majzik. Software Monitoring and Debugging
Using Compressed Signature Sequences. In Proceedings of the
22nd EUROMICRO Conference, pages 311–318, September 1996.

[24] J. Tian, P. Lu, and J. Palma. Test-execution-based reliability
measurement and modeling for large commercial software. IEEE
Transactions on Software Engineering, 21(5):405–414, 1995.

