
Infrastructure for Component-Based
DDS Application Development ∗

William R. Otte, Aniruddha Gokhale, and
Douglas C. Schmidt

Dept of EECS, Vanderbilt University
{wotte,gokhale,schmidt}@dre.vanderbilt.edu

Johnny Willemsen
Remedy IT

jwillemsen@remedy.nl

Abstract
Enterprise distributed real-time and embedded (DRE) systems are
increasingly being developed with the use of component-based
software techniques. Unfortunately, commonly used component
middleware platforms provide limited support for event-based pub-
lish/subscribe (pub/sub) mechanisms that meet both quality-of-
service (QoS) and configurability requirements of DRE systems.
On the other hand, although pub/sub technologies, such as OMG
Data Distribution Service (DDS), support a wide range of QoS set-
tings, the level of abstraction they provide make it hard to con-
figure them due to the significant source-level configuration that
must be hard-coded at compile time or tailored at run-time us-
ing proprietary, ad hoc configuration logic. Moreover, developers
of applications using native pub/sub technologies must write large
amounts of boilerplate “glue” code to support run-time configura-
tion of QoS properties, which is tedious and error-prone. This paper
describes a novel, generative approach that combines the strengths
of QoS-enabled pub/sub middleware with component-based mid-
dleware technologies. In particular, this paper describes the design
and implementation of DDS4CIAO which addresses a number of
inherent and accidental complexities in the DDS4CCM standard.
DDS4CIAO simplifies the development, deployment, and configu-
ration of component-based DRE systems that leverage DDS’s pow-
erful QoS capabilities by provisioning DDS QoS policy settings
and simplifying the development of DDS applications.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization]: Performance of Systems—performance attributes;
C.2.4 [Software Engineering]: Distributed Systems—components,
deployment; D.2.11 [Software Engineering]: Software Architect-
ures—domain-specific architectures

General Terms Software, Components, Deployment, Optimiza-
tions

∗ This work was supported in part by NSF CAREER 0845789 and CNS
0915976, and a contract from Northrop Grumman and AFRL GUTS. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation, AFRL, or NGC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

Keywords component-based real-time systems, predictable de-
ployment

1. Introduction
The trend towards realizing enterprise distributed real-time and
embedded (DRE) systems motivates the use of component-based
middleware, such as the OMG’s Lightweight CORBA Component
Model (LwCCM) [11]. Component-based middleware offers DRE
system developers significant flexibility in modularizing their sys-
tem functionalities into reusable units, simplifies the deployment
and configuration of the systems, and supports dynamic adaptation
of system capabilities. Deployment and configuration standards,
such as the OMG’s Deployment and Configuration (D&C) speci-
fication [14], play a major role in realizing these capabilities.
Existing and planned enterprise DRE systems must increasingly

support large data spaces generated by thousands of collaborating
nodes, sensors, and actuators that must exchange information to
detect changes in the operational environment, make sense of that
information, and effect changes. These capabilities require scalable
publish/subscribe (pub/sub) semantics [6] that support a range of
QoS properties, that control properties, such as liveliness, latency,
deadlines, timing, and reliability. Unfortunately, the conventional
component technologies used to develop enterprise DRE systems
either do not provide first class support for pub/sub semantics or do
so in an ineffective manner that is not scalable and does not support
real-time QoS properties.
A standardized, QoS-enabled pub/sub technology called the

OMG Data Distribution Service (DDS) [12] has emerged as a
promising pub/sub technology to support the requirements of enter-
prise DRE systems. DDS includes standard QoS policies and mech-
anisms to handle data (de)marshaling, node discovery and connec-
tion, and configuration. Middleware based on the DDS standard
has been applied successfully in mission-critical domains, such as
air traffic management systems [5] and tactical information sys-
tems [7].
While the DDS specification simplifies key implementation as-

pects of pub/sub application, these benefits come at price of in-
creased complexity of configuration glue code that must be writ-
ten and maintained. Moreover, this configuration boilerplate code
tightly couples the QoS configuration of a DDS application at
compile-time, unless application developers create ad hoc meth-
ods of specifying the middleware configuration at run-time. Anal-
ysis [1] has shown that as 80% percent of DDS-related code in a
typical applications is associated with configuring the middleware.
Likewise, over half of the DDS API that developers must learn is
configuration-related.
Addressing these deployment and configuration requirements of

modern DRE systems calls for component-based middleware, such

as LwCCM, to provide first-class support for QoS-enabled, pub/-
sub technologies, such as DDS. This need has been recognized and
documented through the efforts of industry and academic collabo-
rators in the OMG DDS for Lightweight CCM (DDS4CCM) [13]
specification. Implementing this specification is hard, however, due
to inherent and accidental complexities in integrating LwCCM and
DDS. The inherent complexities stem from (1) differences in the
language bindings and memory management strategies of the two
middleware technologies, (2) incompatibilities between the vari-
ous specifications, (3) deployment and configuration challenges to
recognize DDS abstractions within LwCCM, and supporting vari-
ants of DDS in a single LwCCM implementation. The accidental
complexities stem from (1) manual approaches to creating the de-
ployment and configuration metadata for DDS elements within Lw-
CCM, and (2) the need to minimize run-time overhead imposed by
both the deployment and configuration metadata, and the additional
abstraction atop native DDS.
This paper describes how we have integrated LwCCM and DDS

to address the inherent and accidental complexities described above
as follows:

1. We make systematic use of the extensible interface pattern
in the form of mixins to extend existing interfaces as well
as the deployment and configuration metadata to bridge the
incompatibilities between the two technologies.

2. We describe a template-driven code generation approach that
maximizes the potential for portability between various DDS
implementations and maximizes maintainability.

3. We provide options to customize the integration, which ensures
that the runtime footprint of the resulting system does not pay
unwanted memory footprint penalties.

4. We support improvements to the D&C approach mandated by
the DDS4CCM specification.

Our contributions enable the realization of a product-line of
DDS4CCM systems where it is possible to vary the implementa-
tions of the DDS technology used as well as support a wide range of
port types for the LwCCM component technology. Empirical eval-
uations of our approach demonstrate that our implementation of the
DDS4CCM specification, which we call DDS4CIAO, substantially
eases the development of DDS-based applications while providing
performance almost identical to native DDS applications.
The remainder of this paper is organized as follows. Section 2

summarizes key challenges encountered when integrating DDS
within LwCCM; Section 3 describes the design of DDS4CIAO
that resolves the challenges described in Section 2.3; Section 4
examines the code generation of DDS4CIAO and analyzes the
results of experiments that evaluate the performance of DDS4-
CIAO; Section 5 compares DDS4CIAO with related work, and
Section 6 presents concluding remarks.

2. Impediments to Integrating LwCCM and DDS
In this section we present both the inherent and accidental chal-
lenges in providing first class support for Data Distribution Service
(DDS) within the Lightweight CORBA Component Model (Lw-
CCM).1 To better appreciate these challenges, we first provide an
overview of LwCCM and DDS, and the deployment and configu-
ration standard. Subsequently we elaborate on the challenges.

1 The LwCCM is a subset of the OMG CORBA Component Model. In the
rest of this paper we refer to LwCCM because of our focus on DRE systems
but the issues apply equally well to CCM.

2.1 Overview of Relevant Middleware Technologies

This section provides an overview of OMG LwCCM and OMG
DDS.

2.1.1 The Lightweight CORBA Component Model
(LwCCM)

The OMG Lightweight CCM (LwCCM) [11] specification stan-
dardizes the development, configuration, and deployment of com-
ponent-based applications. LwCCM uses CORBA’s distributed ob-
ject computing model as its underlying architecture, so applications
are not tied to any particular language or platform for their imple-
mentations. Components in LwCCM are the implementation enti-
ties that export a set of interfaces usable by conventional middle-
ware clients as well as other components. Components can also
express their intent to collaborate with other components by defin-
ing ports, including (1) facets, which define an interface that ac-
cepts point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-point
method interface provided by another component, and (3) event
sources/sinks, which indicate a willingness to exchange typed mes-
sages with one or more components.

Homes are factories that shield clients from the details of com-
ponent creation strategies and subsequent queries to locate com-
ponent instances. A container in LwCCM provides an operating
environment that can be configured and shared by components re-
quiring a common set of QoS policies and functional support.

2.1.2 The OMG Deployment and Configuration

The OMGDeployment and Configuration (D&C) specification [14]
provides standard interchange formats for metadata used through-
out the component application development lifecycle, as well as
runtime interfaces used for packaging and planning. Figure 1 de-
picts an architectural overview of the OMG D&C model.

Deployer

Deploy an
application Domain

Application
Manager

Deploy components
to node B

Execution manager

Node
Application

Manager

Node
Application

Install
components

Create
containers

create
Node Manager

Deployment Target Host A

CCM
Component

POA

Container

create

ORBCIAO

CCM
Component

Node
Application

Manager

Node
Application

Install
components

Create
containers

create
Node Manager

Deployment Target Host B

CCM
Component

POA

Container

create

ORBCIAO

Deploy components
to node A

Set up
component
connections

Figure 1. An Overview of OMG Deployment and Configuration
Model

The runtime interfaces defined by the OMG D&C specification
for deployment and configuration consists of the two-tier architec-
ture comprising a set of global entities used to coordinate deploy-
ment and a set of node-level entities used to instantiate component
instances and configure their connections and QoS properties. In
addition to the runtime entities described above, the D&C specifi-
cation also contains an extensive data model that is used to describe
component applications throughout their deployment lifecycle. The
D&C metadata defined by the data model contains a section where
arbitrary configuration information may be included in the form of
a sequence of name/value pairs, where the value may be an arbi-
trary data type. This configuration information is used to describe
everything from basic configuration information (such as shared li-
brary entrypoints and component/container associations) to more

complex configuration information (such as QoS properties or ini-
tialization of component attributes with user-defined data types).

2.1.3 Overview of the OMG Data Distribution Service (DDS)

The OMG DDS specification [12] defines a standard architecture
for exchanging data in pub/sub systems. DDS provides a global
data store in which publishers and subscribers write and read data,
respectively. DDS provides flexibility and modular structure by de-
coupling: (1) location, via anonymous publish/subscribe, (2) redun-
dancy, by allowing any numbers of readers and writers, (3) time, by
providing asynchronous, time-independent data distribution, and
(4) platform, by supporting a platform-independent model that can
be mapped to different platform-specific models, such as C++ run-
ning on VxWorks or Java running on Real-time Linux.
DDS entities include topics, which describe the type of data to

be written or read, data readers, which subscribe to the values or
instances of particular topics, and data writers, which publish val-
ues or instances for particular topics. Moreover, publishersmanage
groups of data writers and subscribersmanage groups of data read-
ers.
Properties of these entities can be configured using combina-

tions of DDS-supported QoS policies. Each QoS policy has∼2 pa-
rameters, with the bulk of the parameters having a large number of
possible values, e.g., a parameter of type long or character string.
DDS provides a wide range of QoS capabilities that can be con-
figured to meet the needs of topic-based distributed systems with
diverse QoS requirements. DDS’ flexible configurability, however,
requires careful management of interactions between various QoS
policies so that the system behaves as expected. It is incumbent
upon the developer to use the QoS policies appropriately and judi-
ciously.

2.2 Addressing Limitations in the LwCCM Port System via
DDS4CCM

The OMG’s DDS4CCM [13] specification was developed to over-
come the following limitations in LwCCM and DDS while still pre-
serving the inherent advantages of each technology.
Limitation 1: Support for event-based pub/sub communica-

tion in LwCCM is extremely limited. LwCCM does not specify a
particular distribution middleware that must be used inside the con-
tainer for communicating events. While this approach allows a sub-
stantial amount of flexibility on the part of implementation authors,
allowing them to choose to implement this support using, for ex-
ample, the CORBA Event Service or CORBA Notification Service,
has two important drawbacks. First, the integration of new pub/sub
middleware requires modification of not only the core container
implementation, but potentially also the deployment and configu-
ration infrastructure in order to properly operate. As a result, this
is an extremely complex task, often requiring that the integrator
be an expert in both the LwCCM implementation and the desired
distribution middleware.
Second, in order to remain completely generic, the interface

available to component developers for event-based communication
consists of only two operations: 1) a single method per port that
allows for a single event to be published at a time, and 2) a single
callback operation that provides an event to the component as it
arrives. This prevents the component from taking advantage of
many features of pub/sub messaging middleware that provide for
status notifications and per-message QoS adjustment.
Limitation 2: Grouping of related services must be done in

an ad-hoc manner. In many cases, services offered by a compo-
nent require more than one interface in order to provide correct
operation. As a simple example, consider a scenario in which two
components expect to cooperate via mutually connected interfaces.
In this scenario, one component provides an interface “A” and re-

quires an interface “B”, while another component provides com-
plementary ports (i.e., provides “B” but requires “A”). In order for
semantically correct operation, the connections for both “A” and
“B” must go to the same component, but there exists no way in
LwCCM to indicate this constraint on an interface level. To accom-
plish this goal, developers must rely on ad-hoc naming conventions
and documentation. This approach has the unfortunate side effect
of complicating the planning process and potentially causing subtle
and pernicious run-time errors if connections are mis-configured.
The DDS4CCM specification addresses these limitations by en-

abling LwCCM to leverage the powerful pub/sub mechanisms of
DDS. First, it provides a substantially simplified API to the appli-
cation developer that completely removes the configuration of the
DDS middleware from the scope of the application developer. Sec-
ond, it provides a set of ready-to-use ports that hide the complexity
and groups data writing/access API with the appropriate callback
and status interfaces. Third, by providing integration with the Lw-
CCM container, DDS applications are now able to take advantage
of robust and mature deployment and configuration technologies
that obviates the need to write boilerplate application startup code,
run-time configuration of QoS policies, and coordinated startup and
teardown of applications across multiple nodes.
In particular, DDS4CCM proposes two new constructs — ex-

tended ports, which allow for the grouping of related services, and
connectors, which allow for flexible integration of new distribu-
tion middleware. These new entities are defined using an exten-
sion of the IDL language for components (IDL3) called IDL3+. It
is possible to map each of these new IDL3+ language constructs
back to basic IDL3 using simple mapping rules to enable insepara-
bility with older CCM implementations. Next, we provide a brief
overview of these enhancements.
Extended Ports: Extended ports provide a mechanism whereby

component designers can group semantically related ports to create
coherent services offered by a component. These extended ports,
defined using a new IDL keyword porttype, are defined outside
the scope of components. Extended ports are allowed to contain
any number of standard LwCCM ports in either direction. While
these ports are allowed in terms of the specification to contain
standard LwCCM event ports, in practice this is highly unlikely due
to the limitations outlined earlier. Moreover, in combination with
connectors (described next), these extended port definitions could
be used to recreate the behavior of the existing standard CCM event
infrastructure.
Listing 1 shows IDL for an example extended port. In this ex-

ample, we create a service whereby one component may notify an-
other of data that is ready to be sent, and the destination component
may optionally choose to pull that data from the source compo-
nent. Since each of the interfaces Data_Source and Notifier are
semantically linked, i.e., operation of the component application
would be fundamentally broken if these ports are not pairwise con-
nected, they are grouped into a single porttype. This is an indica-
tion to both high level modeling tools and the component run-time
that these ports must be connected as a pair, and can generate ap-
propriate deployment plan meta-data to connect them at run-time.
Extended ports are assigned to components using two new IDL3+
keywords. The port keyword indicates that the component sup-
ports the extended port as described. The mirrorport keyword
indicates that the component inverts the direction of the extended
port, i.e., facets become receptacles.

Listing 1. Extended Port IDL

i n t e r f a c e Da ta_Source {
Data p u l l (i n long uu id) ;

} ;

i n t e r f a c e N o t i f i e r {
vo id d a t a _ r e a d y (i n long uu id) ;

} ;
p o r t t y p e No t i f i e dDa t a {
p r o v i d e s Da ta_Source d a t a _ s o u r c e ;
u s e s N o t i f i e r d a t a _ r e a d y ;

} ;
component Sender {
p o r t No t i f i e dDa t a d a t a _ o u t ;

} ;
component Rec e i v e r {
m i r r o r p o r t No t i f i e dD a t a d a t a _ i n ;

} ;

Some extended ports may vary only in the data type used as pa-
rameters. In order to avoid the necessity of re-defining an extended
port for each new data type, IDL3+ offers a new template syntax
that may be used to define services that are generic with respect to
data type.
Connectors: While the extended port feature described above

is quite useful, their power is most suited to providing novel com-
munications mechanisms to components that provide/use those in-
terfaces. In order for the extended ports to provide a coherent inter-
face to a new distribution middleware, such as DDS or the CORBA
Event Service, the business logic that supports that abstraction must
be contained in some entity. This unit of business logic is called
a connector. Connectors combine one or more extended ports to
provide well-defined interfaces to new distribution middleware or
communication techniques between components. In many cases, a
single connector will support at least two extended ports, one in-
tended for each “side” of the communications channel. By sepa-
rating the core communications business logic, these connectors
can then be used as COTS components across several applications
without requiring modification of the core container code.
Connectors are defined similar to a component, using the new

IDL3+ keyword connector. Connectors may contain, of course,
one or more extended ports. In addition, they may also support
attributes which are intended to be used to assist in runtime con-
figuration, i.e. topic names, port numbers, QoS parameters, etc..
Finally, connectors also support inheritance which can be used to
extend existing connectors with new capabilities. At runtime, in-
stead of creating a new IDL type structure for the connector infras-
tructure, they are defined as components, deriving their interface
from the same CCMObject used by regular components. Indeed,
in the IDL3+ to IDL3 mapping, the connector keyword becomes
component. This approach is much desirable in that no additional
work is necessary in the D&C toolchain to support the deployment
and configuration of connectors. Moreover, connector implementa-
tions can take advantage of the same Component Implementation
Framework that is available to standard LwCCM components and
thus can take advantage of advances in services offered by the con-
tainer.

2.3 Challenges in Integrating LwCCM and DDS

Although the DDS4CCM specification attempts to address the lim-
itations of individual technologies, realizing an implementation of
the DDS4CCM specification is fraught with multiple inherent and
accidental complexities explained below:
Challenge 1: Indicating that a connector implementation

has been fully configured, and should be made ready for execu-
tion. After a connector implementation has received all necessary
configuration information, it must proceed to create the underlying
low-level DDS entities (e.g., DomainParticipant, DataWriter
and/or DataReader) that are necessary for correct operation. To
accomplish this task, the specification mandates the use of an oper-

ation called configuration_complete on the external connector
interface. This operation, however, is not delegated to the connector
business logic and thus is insufficient to fully inform the connector
implementation of completed configuration. Section 3.1 discusses
our approach to resolve this challenge.
Challenge 2: Reducing D&C-related runtime memory foot-

print. The DDS4CCM specification mandates the use of LwCCM
Homes (which nominally act as factories for component instances)
as the primary vehicle for passing configuration information from
the deployment plan to individual connector implementation during
deployment. While this approach is certainly functional and sound
(and in keeping with the spirit of the LwCCM specification), our
experience developing component applications with LwCCM re-
veals that the home entity often adds very little value to the con-
figuration of individual component, or in this case connector, in-
stances. In most cases, the home implementation is little more than
a simple factory that directly instantiates the component and noth-
ing else. Meanwhile, the home instance carries a non-negligible
amount of runtime footprint due to the CORBA interface and ac-
companying home-specific generated container code that is neces-
sary. Section 3.2 discusses our approach to resolve this challenge.
Challenge 3: Reducing Connector-related runtime memory

footprint. The decision to treat connectors for all intents and pur-
poses as full LwCCM components greatly simplifies the implemen-
tation by substantially reducing the number of changes in the core
container necessary to support the specification. A consequence of
this decision, however, is that the runtime footprint of a LwCCM
application using connectors could substantially increase. For ex-
ample, assuming a deployment where each component instance has
an associated connector instance, the number of actual “compo-
nents” in the deployment is doubled. In memory-constrained DRE
systems, this can be a significant impediment. Section 3.3 discusses
our approach to resolve this challenge.
Challenge 4: Supporting Local Interfaces as Facets All of

the extended ports contained in the DDS4CCM specification are
defined as “local interfaces”. Local interfaces are significantly dif-
ferent from standard CORBA interfaces due to the fact that they are
not generated with any of the infrastructure necessary to support
remote invocation. As a result, any invocation on these interfaces
does not travel through the CORBA internal infrastructure and as
such only incurs overhead nominally involved in a virtual method
invocation. The problem this strategy causes with the deployment
and configuration aspect of LwCCM is very subtle: since these lo-
cal interfaces lack the necessary remoting code, it is impossible to
pass references to these local objects through a standard CORBA
interface. Indeed, this behavior is undefined; any attempt to do so
will fail and cause an exception to be propagated to the caller. Un-
fortunately, all of the standard-defined connection methods, includ-
ing the Component Navigation interfaces used by the D&C tooling
to make connections between components rely on being able to
retrieve object references to Facets over a standard CORBA inter-
face and pass these references to the receptacle component over a
similar interface. Not having an object reference for the extended
port implies that the existing D&C tooling cannot be leveraged in a
straightforward manner. Section 3.4 discusses our approach to re-
solve this challenge.
Challenge 5: Supporting Multiple DDS Implementations

One significant benefit of writing DDS applications using the DDS-
4CCM API is that it potentially makes it substantially easier to
switch between various DDS implementations. Prior work [16] has
shown that differences in the architecture between these different
implementations cause them to have different strengths depending
on the architecture of the application and hardware environment.
Moreover, due to the proprietary nature of most DDS implemen-
tations and the different licensing requirements of each implemen-

tation, the ability to quickly and easily switch the targeted imple-
mentation would greatly facilitate the development of COTS DDS
components. While it is currently possible to target multiple DDS
implementations at compile time due to the presence of a standard
API, subtle differences in the implementations of these APIs can
make this difficult to accomplish. Ideally, any implementation of
the DDS4CCM specification would be architected in such a way
that the core business logic of the connector is shielded from the
differences between DDS implementations. In addition, the con-
nector architecture could make it possible to delay the choice of
DDS implementation from compile time to deployment time. Sec-
tion 3.5 discusses our approach to resolve this challenge.
Challenge 6: Making it easy for users to define their own

connectors The DDS4CCM specification provides for two con-
nector types that correspond to common DDS usage patterns. The
first provides for a state transfer pattern, and is intended to connect
“Observable” components that publish state to other “Observer”
components that consume that state. The second provides for event
transfer connecting supplier components to consumer components.
These two connectors, however, are not intended to be the only
ones that are supported in the context of the specification. To that
end, two “base” connectors are provided that collect the various
configuration meta-data as attributes. It is intended that users be
able to define their own connectors that are better suited to their
usage cases. To support this capability, the code generation tech-
niques should be extensible such that it is easy for users to create
their own connectors without having to modify the code generators.
Section 3.6 discusses our approach to resolve this challenge.

3. Resolving LwCCM and DDS Integration
Challenges in DDS4CIAO

This section describes how we resolved the challenges in integrat-
ing LwCCM with DDS described in Section 2.3 by presenting the
architectural and design choices made for DDS4CIAO, which is
our implementation of the DDS for Lightweight CCM specifica-
tion outlined in Section 2.2.

3.1 Accurate Indication of Successful Connector
Configuration

The central difficulty outlined in Challenge 1 from Section 2.3 re-
volves around the final configuration stage of the D&C process.
In this case, there lies a crucial phase before the application is
“activated”, but after it is fully configured. In this portion of the
D&C process, the connector business logic must make themselves
ready for execution by, for example, instantiating various DDS en-
tities. In Figure 2, which shows the lifecycle stages that connectors
and components go through, this is represented by the “Passive”
state. Unfortunately, the LwCCM specification currently provides
no mechanism to communicate to the connector that it has entered
this state; the only notification that is received when the componen-
t/connector becomes passive is when the prior state was “Active”.
To understand the reason for this, it is best to have a grasp of the
layout of connectors and components at runtime.
Instantiated connectors consist of two primary pieces. First,

there is a “Servant”, which consists of the external CORBA in-
terface and connector-specific container code. The Servant has two
primary parts to its interface: (1) operations common to all con-
nectors which come from the LwCCM specification (called the
CCMObject interface), and (2) operations that result from the ports
specified in the IDL declaration of the connector. Second is the
“Executor”, which contains the actual business logic that imple-
ments the connector. Operations on this interface result from two
sources: (1) specification-defined lifecycle operations (called the

Installed

Configurable

Passive

Active

Removed

Unloaded

Figure 2. LwCCM Component and Connector Lifecycle Stages

SessionComponent interface), and (2) operations that result from
the ports defined for the connector.
The configuration_complete operation mentioned in Sec-

tion 2.3 is part of the CCMObject interface but is not, however,
present on the SessionComponent interface so it cannot be di-
rectly delegated.2 Unfortunately, the first lifecycle operation that
is invoked on the Executor interface after its construction as de-
fined by the LwCCM specification is ccm_activate. This lifecy-
cle operation, however, must be disjoint from and occur later than
configuration_complete.
One approach to work around this problem is to delay the cre-

ation of the DDS entities until the activation phase of the applica-
tion lifecycle. This is problematic, however, because there exists
no guarantee that a connector fragment will be activated before its
connected component. If a component is activated before its con-
nector and attempts to initiate outbound communication, that com-
munication would naturally fail, potentially causing pernicious and
difficult to reproduce errors. The ability for component business
logic to receive a notification upon configuration completion but
before activation has proven to be useful for components as well as
connectors because connectors are anyway treated as components.
As a result, we have created a new interface that may be

optionally used to extend the behavior of component executors
to be able to receive these notifications. This interface, which
we call ConfigurableComponent, uses a variation of the ex-
tension interface pattern to avoid changing the standard-defined
SessionComponent interface. This new interface is intended to
act as a mixin so that the component implementations wishing
to receive configuration_complete will inherit from this in
addition to the standard SessionComponent interface. The con-
tainer, then, when it receives configuration_complete from the
D&C tooling, will attempt a dynamic cast on the component im-
plementation to determine if the operation should be delegated on
a per-component basis.

3.2 Avoiding D&C-related Memory Footprint

Challenge 2, described in Section 2.3, deals with eliminating un-
necessary footprint from the specification-defined deployment and
configuration requirements of connectors. DDS4CCM connectors
are configured via attributes present in the IDL interfaces defined
by the specification, which allow for the fragment to be associated
with a particular DDS domain and topic as well as the QoS policies.
Many hardware platforms commonly used for DRE systems

remain extremely memory-constrained, so the additional run-time
memory footprint imposed by the CCM home is at best undesirable.
To avoid this additional overhead, DDS4CIAO provides the capa-
bility to install “un-homed” components and connectors. These un-
homed components are allocated from simple factory functions ex-
ported from their implementation libraries in much the same man-
ner that Homes are already constructed. Component-specific con-

2 This artifact results from the standards specification.

tainer code, which is generated automatically from IDL, is then
able to interpret the D&C plan meta-data and individually invoke
the attribute setter methods on the component.

3.3 Reducing Connector-Related Memory Footprint

The solution Challenge 3, described in Section 2.3, attempts to
reduce the runtime footprint of connector implementations. In order
to accomplish this goal, we must determine which, if any services
that a component requires that are not necessary for connector
implementations. Given the limitations of the standard LwCCM
event ports described in Section 2.2, it is highly unlikely that these
inflexible port types would be used in the context of a connector —
indeed, the extended port/connector infrastructure could be used
to fabricate replacement infrastructure. Moreover, the DDS4CCM
specification makes no use of the existing event infrastructure,
making it an apt candidate for removal.
As a result, we sought to remove the event infrastructure from

the connector infrastructure in such a way that it would still be
present for standard components that may need to interface with
legacy systems. In this case, there are two pieces to the event
support in DDS4CIAO: (1) the base classes that provide support
to the component-specific generated container code, and (2) the
component-specific generated container code itself, which includes
a component-specific context that provides services to the compo-
nent business logic. The first portion of the event support — the
base classes described above were split into two pieces — a con-
nector base and a component base. The container base contains all
necessary functionality for component and connectors minus the
LwCCM event support. The necessary plumbing LwCCM event
support is contained in the component base, which derives from
the connector base. This way the code generation infrastructure can
choose to omit support for the event infrastructure if desired by se-
lecting a different base class for the generated code. Our approach
makes this artifact configurable.

3.4 Supporting Local Facets

The solution to Challenge 4 outlined in Section 2.3 is threefold.
First, and most obviously, the Navigation and Introspection imple-
mentations generated for components with local facets and recep-
tacles had to be modified to suppress any knowledge of these local
ports. While this approach solves the issue of undefined behavior
from trying to marshal one of these local object references, it also
completely removes any standards-based mechanism by which a
connection can be made by either the D&C tooling or any user at-
tempting to use the Navigation interfaces. To address this undesired
effect, a new connection API was created in the private interface to
the CIAO container (which is our LwCCM implementation) that is
used directly by the D&C tooling. This API accepts as arguments
the string identifiers of two component endpoints as well as port
names, and is able to use these to obtain references to the local Ex-
ecutor objects directly and create a connection without needing to
marshal any local references over standard interfaces.
In order to make use of this new API, however, the D&C tooling

needs an annotation on the connection meta-data so that it can be
made aware that it should not attempt to use the standard Naviga-
tion API to make the connection. The data structure in the deploy-
ment plan that contains connection information encodes the type
of connection (e.g., Facet vs. Receptacle) as an enumerated value.
While this enumeration could be extended to identify a new con-
nection type (i.e., LocalFacet), we endeavored to minimize changes
to specification-defined types. The connection data structure does
contain a section where requirements for deployments can be de-
scribed using name/value pairs. This section would ordinarily be
used to enumerate hardware capabilities or resources required by
the connection. In this case, we require that any local facet con-

nected be annotated with a requirement on the container, namely
that it provide support for local facets — when the D&C tooling
encounters this annotation it assumes the connection to be local.

3.5 Ensuring Portability of DDS4CIAO Implementation

As described in Challenge 5 from Section 2.3, we would like to
ensure that the design of the infrastructure is maximally portable in
order to easily support implementations from multiple DDS ven-
dors. This goal is complicated by the fact that despite the presence
of a standard C++ language mapping, there are subtle and perni-
cious differences between the actual implementations of these map-
pings. Moreover, there exist also subtle behavioral differences be-
tween implementations that complicate source-level compatibility,
i.e., generated type-specific constructs such as DataWriters and
DataReadersmay have different namespaces and naming conven-
tions, and indeed the same may be true of the entire API.
We addressed this challenge by using three approaches. The first

approach targets the API that we wrote the implementations of the
DDS4CCM basic ports against. The DDS specification, in addi-
tion to the widely supported C/C++ language binding, also has a
language binding that maps the API into IDL interface definitions.
This language binding is not widely implemented, but provides a
promising vehicle for implementing portable DDS business logic
in the context of the DDS4CCM basic ports. Since we are using the
same IDL code generator as with the rest of the CIAO infrastruc-
ture, we can ensure that the APIs we are using to implement these
ports are consistent.
Much of the work for supporting different DDS implementa-

tions then can be accomplished by providing an implementation of
this IDL language binding. At first glance, this may seem a daunt-
ing proposition — however, this binding consists of only about
36 interfaces, many of whose functions may be directly delegated
to the native implementation. The remaining problem with using
this IDL-based approach is reconciling the differences between the
CORBA types that are part of the IDL language mapping and the
data types used natively by the DDS implementation. While this
conversion could be handled inside the vendor-specific implemen-
tation of the IDL language binding, this approach would incur po-
tentially expensive data copies. Fortunately, many DDS implemen-
tations provide a CORBA compatibility layer that allows them to
directly use types generated by the IDL compiler.

3.6 Connector Code Generation

Generating code for user-defined connectors is the focus of Chal-
lenge 6 from Section 2.3. Our experience developing code genera-
tors for our CORBA and LwCCM implementations has shown us
that it is eminently undesirable to embed large amounts of busi-
ness logic in generated code. This is largely due to the difficulty of
maintaining and extending the code generators themselves. If there
is a bug, modification, or extension to be made, this effort often in-
volves at least two engineers — one who is familiar with the mid-
dleware or problem at hand, and another who is familiar with the
process of extending and modifying the code generator. In addition
to the extra personnel requirements, it often substantially increases
the amount of time to test these changes, as not only does the initial
proposed modification needs to be be tested (typically supplied to
the code generation engineer as a handcrafted generated file), but
also the final changes to the code generator and resulting modified
output. For the same reason, this accidental complexity of the code
generation process impedes the ability of users to create their own
DDS4CCM connectors.
In order to avoid these accidental complexities, we designed the

code generation infrastructure from the outset to contain zero DDS-
4CCM business logic and to be extensiblewithout the need to mod-
ify the code generator to add new connector implementations. The

first, and most obvious step given the presence of parameterized
modules from Section 2.2, was to leverage C++ templates for the
implementations of the basic and extended DDS4CCM port types.
Using C++ templates in this case allowed us to make generic two
very important parts of the implementation — first, the core DDS-
4CCM business logic contained in the basic and extended DDS-
4CCM ports, but also the IDL wrapper (described in Section 3.5)
around our target DDS implementation. These IDL wrappers re-
quire access to type-specific DDS entities (e.g. DataWriters and
Data Readers) that are created by the code generation infrastruc-
ture that is part of the DDS implementation itself.
Connector implementations, then, are really a collection of tem-

plate instantiations for the various basic and extended ports that are
contained in their interface definition along with some configura-
tion glue code. While we could certainly generate the source code
for these connector implementations, that would still represent an
obstacle to novel connector creation. Connectors themselves may
contain a nontrivial amount of configuration business logic that in-
terprets the values of attributes on the connector interface. As a
result, if a user were to define a new connector with new configura-
tion attributes, they would be required to modify the code generator
to be able to use their new connector.
To address this concern, we elected to make connector imple-

mentations template classes as well. This allows the code generator
for DDS4CCM to be extremely simple. In effect, the result of the
code generation process is a header file that contains a set of C++
traits [10] which specify the properties necessary to use a particu-
lar IDL data type. These properties largely consist of the names of
type-specific entities that are generated from the DDS infrastruc-
ture. These traits are then used to create concrete template instan-
tiations of any required connector implementations. By default, we
generate instantiations of the standard DDS4CCM connectors —
the State and Event connectors described in Section 2.3. If a user
defines their own connector in IDL, the code generator emits an
include of a header file whose name derives from the name of the
connector in IDL, and a concrete instantiation of a template class
whose name is similarly derived. While the user must then provide
an implementation of this template class, this is substantially less
effort than would be required to modify the code generator.

4. Experimental Results
This section outlines two key empirical observations of the DDS4-
CIAO implementation described in Section 3 which cover two im-
portant goals outlined in Section 1. First, in Section 4.2, we quan-
tify the impact that the code generation capabilities of DDS4CIAO
have on the development and maintenance of DDS-enabled appli-
cations. Second, in Section 4.3, we characterize the overhead that
DDS-enabled applications must pay in terms of latency when using
the DDS4CIAO abstraction versus using the DDS API directly.

4.1 Experimental Scenario

All results described below were obtained using a simple “ping-
pong” application. We chose a simple example since the business
logic of the application is not important to evaluate the qualities of
DDS4CIAO. Rather we are interested in understanding the over-
head, if any, of the integration of LwCCM with DDS. In this appli-
cation, an instance struct containing an octet sequence of a config-
ured length and a sequence number would be written to the DDS
data space by a “Sender”. The instance would arrive at a “Receiver”
entity, after which a new instance of the struct would be published
on a separate topic with an identical sequence number but a zero
length octet sequence. The “Sender”, upon receipt of the second
message, repeats the process with a new sequence number up to a
specified number of iterations.

Two versions of this application were produced. The first uses
the native C++ DDS API, with all customary error checking in-
cluded. In the second version, the “Sender” and “Receiver” were
each implemented as CIAO components and used DDS4CIAO to
interface with the DDS middleware.

4.2 Evaluation of Code Generation

To evaluate the effectiveness of the code generation techniques
described in Section 3.6, the implementation source files from the
experimental scenario outlined in Section 4.1 were analyzed with
the SLOCCount [15] tool. This is a program which counts physical
Source Lines of Code (SLOC), and uses a number of heuristics to
discard any whitespace and commenting present. For the purposes
of this evaluation, only implementation source files were counted,
discarding header files containing only class definitions. The reason
for this is that header files for the DDS4CIAO implementation are
largely generated automatically based on the class interfaces.
The results from this tool are summarized in Table 1. If only

the total SLOC for the native programs and the component imple-
mentations are compared, DDS4CIAO shows only a nominal im-
provement over that of the native implementation. It is important to
consider, however, that the DDS4CIAO implementation contains a
large amount of generated class skeletons which are created from
the IDL interface descriptions from the component automatically
(SLOC for which is shown in the “DDS4CIAO Generated” column
of the table). When these lines of code are subtracted from the to-
tal for the DDS4CIAO implementation, the improvement becomes
substantially more dramatic. In the case of the Sender component,
the improvement is on the order of 50%, and for the receiver the dif-
ference is an order of magnitude. The reason for this discrepancy
is the Sender programs — both native and DDS4CIAO— contains
a substantial amount of code in common to measure latencies and
calculate/display results.

Table 1. Comparison of Source Lines of Code

Compo-
nent

Native
Lines

DDS4CIAO
Total

DDS4CIAO
Generated

DDS4CIAO
Actual

Sender 643 560 211 349
Receiver 293 128 118 10

4.3 Evaluation of the Overhead of DDS4CIAO

To evaluate the overhead due to abstraction over the native DDS
API introduced by the DDS4CIAO implementation, the experimen-
tal scenario described earlier in Section 4.1 was used to evaluate the
latency performance using a recent commercial DDS implementa-
tion and DDS4CIAO 0.8.3. Each configuration was executed for
1,000 iterations each with payload sizes along powers 2, from 16 to
8192 bytes. Each experimental run was executed in two transport
configurations: once using UDP and again using Shared Memory
transport. The experimental testbed consisted of Dell Optiplex 755
computers, with an Intel E4400 CPU, 2GB of RAM, and gigabit
network connections.
The results for the experimental runs with the UDP transport

protocol are shown in Figure 3, which compares the average la-
tency for each payload size, and Figure 4, which compares the min-
imum latency results for each payload size. These results show that
for this transport protocol, the average latencies are nearly identi-
cal. Figure 5 shows the results from the experimental runs config-
ured with the shared memory transport. This average latency result
shows that the DDS4CIAO abstraction introduces approximately a
four percent overhead over the native implementation for the shared
memory transport. The best case results for the shared memory ex-
periment are shown in Figure 6.

Figure 3. Ping Latency Average with UDP

Figure 4. Ping Latency Minimum with UDP

Figure 5. Ping Latency Average with Shared Memory

Table 2 summarizes the standard deviation of the experimental
runs for both UDP and shared memory. These results show that the
DDS4CIAO abstraction does not introduce additional jitter over the
native implementation.

5. Related Work
This section compares our research on component-based DDS with
related work.
PocoCapsule [8] is an Inversion of Control container based

on the Dependency Injection (DI) design pattern. This compo-
nent framework allows developers to use “Plain Old C++ Objects”
(POCO) that have been decorated with PocoCapsule macros that al-
low the loading of these C++ classes into a PocoCapsule container.
DDS4CCM and DDS4CIAO differ in several important aspects
from PocoCapsule. First, DDS4CCM—and LwCCM in general—
are industry standards that have language bindings defined for
many programming languages. Second, PocoCapsule still requires
some amount of low-level glue code in the component business

Figure 6. Ping Latency Minimum with Shared Memory

Table 2. Standard Deviation For All Experiments
Size UDP CIAO UDP Shared CIAO Shared

16 11.3 12.4 17.7 18.4
32 12.4 9.4 15 14.2
64 12.5 12.6 15.5 9.9
128 13.3 9.3 16 10.4
256 6.2 13.1 15.9 12.6
512 12.3 11.2 11.6 8.8
1024 14.7 8.1 15.7 12.1
2048 12.7 4.3 15.5 14.8
4096 7.1 13.7 15.3 10.8
8192 12.1 17.7 15.1 14.4

logic. Third, the DDS for PocoCapsule implementation currently
only uses CORBA local interfaces to simulate small parts of the
DDS API, and hence is not operable with standard-compliant DDS
implementations.
Simple API for DDS (SimD) [2] uses C++ templates and tem-

plate meta-programming to provide a simpler API for DDS that re-
duces the amount of infrastructure-related code required for DDS
applications by an order of magnitude. Using SimD, a simple DDS
application can be written in only 4 source hand-written lines of
code, instead of dozens lines of code using the native API. While
SimD reduces the complexity of the boilerplate code required for
DDS applications, it differs substantially from DDS4CIAO in that
it does not address run-time deployment and configuration capabil-
ities provided by DDS4CIAO. Moreover, it has not yet been pro-
posed as a standard.
Researchers at Real-Time Innovations, Inc [1] propose exten-

sions to the DDS API to allow declarative configuration of DDS
entities via an XML file that is interpreted at run-time. The ap-
plication then queries the DDS middleware to obtain a particular
DataReader or DataWriter that has been configured already with
a domain and topic binding and QoS settings. While their work im-
proves the state-of-the-practice in standards-based DDS application
configuration, its capabilities are not as extensive as DDS4CCM
and DDS4CIAO. First, our existing D&C tooling provides coordi-
nated installation of application implementations and startup across
multiple nodes. Second, the connector infrastructure developed for
DDS4CIAO allows integration with other distribution middleware,
such as CORBA, TENA, JMS, or even socket based network pro-
grams. Third, the decoupling provided by the DDS4CIAO imple-
mentation enables the selection of DDS implementation at deploy-
ment time.
SOFA [3, 4] is a component model with an integrated D&C

framework that provides remote communication capabilities via a
connector infrastructure similar in spirit to that which is part of the

DDS4CCM specification. SOFA, however, only provides connec-
tors for CORBA and RMI distribution middleware. Our approach
differs from that taken by SOFA in that the connectors implemented
by DDS4CIAO are themselves lightweight components. The ad-
vantage of our approach is that any improvements to the QoS ca-
pabilities of the CIAO container can be automatically applied not
only to all components deployed, but also connectors as well.

6. Concluding Remarks
This paper presents a novel generative approach for developing
DDS-based component-oriented DRE systems. Our approach com-
bines key advantages of the DDS middleware, such as low la-
tency communication and extensive QoS policy support, with the
strengths of a mature component model, such as simplified applica-
tion composition and automatic deployment and configuration. We
have prototyped and evaluated our approach via the DDS4CIAO
middleware platform, which implements the Lightweight CCM
(DDS4CCM) specification, while addressing a number of inherent
and accidental complexities in integrating the DDS and LwCCM
technologies. In particular, we have made extensive use of variants
of the extensible interface pattern to extend the existing standard-
defined LwCCM interface and deployment metadata to overcome
incompatibilities between DDS and LwCCM and overcome over-
sights in the DDS4CCM specification. Additionally, we describe a
template driven code generation technique that maximizes portabil-
ity amongst DDS implementations while allowing users to extend
DDS4CCM by defining their own connector types without having
to modify the code generator.
Our experience developing applications with DDS4CIAO pro-

vided the basis for the following lessons learned:
Substantially reduced DDS application complexity. Tests and
example applications developed with DDS4CIAO have shown that
the simplified interface to the underlying DDS middleware, pro-
vided by the DDS4CCM specification, provides a platform that eas-
ier to write and develop DDS applications.
Automatic configuration of DDS middleware. By providing a
strict separation of concerns between configuration-based aspects
of DDS application development and configuration aspects, users
can automatically configure the underlying middleware at deploy-
ment time using standards-based deployment plan descriptors al-
ready available with LwCCM.
Deployment-time binding of DDS implementation may ease ap-
plication benchmarking. It is also possible that the DDS imple-
mentation used by the component application could be chosen at
deployment time, rather than compile time. This enhancement will
allow developers to evaluate the merits and performance character-
istics of different DDS implementations rapidly.
Increased reliance on tooling. A consequence of developing

with DDS4CIAO is the increased reliance on tooling, especially
modeling tools. While writing the IDL and business logic for DDS-
4CIAO components is straightforward, writing the deployment de-
scriptors by hand is a difficult task that requires expert knowledge
of the D&C specification. While the use of modeling tools — such
as our CoSMIC toolsuite [9] or commercial tools that have emerged
— can substantially ameliorate this concern, their use may not al-
ways be practical (CoSMIC, for example requires Windows while
the commercial tools may be costly). A domain specific language
(DSL) for describing deployments, configuration, and component
packaging would substantially reduce the modeling requirement.
Applying connectors to the CCM CORBA infrastructure. The
connector-based approach to integrating the DDS distribution mid-
dleware into CIAO has shown substantial promise. Unfortunately,
however, the CORBA infrastructure that underlies CIAO/CCM still
remains tightly integrated into the container implementation. A
similar connector based approach could be used to convert Lw-

CCM into a “Common Component Model”, which is completely
agnostic to the underlying communications middleware, by mov-
ing all of the extant CORBA communications functions to connec-
tors themselves. This approach has the advantage of not only being
able to remove the CORBA infrastructure currently used for syn-
chronous two-way communication, but also makes it possible to,
for example, swap in an alternative non-CORBA based connector
implementation, if desired.
CIAO, DAnCE, and DDS4CIAO are available in open-source

format from download.dre.vanderbilt.edu.

References
[1] Alejandro de Campos Ruiz and Gerardo Pardo-Castellote and Gi-

anPiero Napoli and Fernando Crespo-Sanchez and Javier Sanchez
Monedero. High-level Programming of DDS Systems. In Proceed-
ings of the OMG Annual Real-time and Embedded Systems Workshop
(RTWS), Arlington, VA, Mar. 2011.

[2] Angelo Corsaro. Simple API for DDS. http://code.google.com/
p/simd-cxx/.

[3] L. Bulej and T. Bures. A connector model suitable for automatic
generation of connectors. Technical report, 2003.

[4] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing advanced
features in a hierarchical component model. Software Engineering
Research, Management and Applications, ACIS International Confer-
ence on, 0:40–48, 2006.

[5] C. Esposito and D. Cotroneo. Resilient and timely event dissemination
in publish/subscribe middleware. International Journal of Adaptive,
Resilient and Autonomic Systems, 1:1 – 20, 2010.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Comput. Surv., 35(2):114–
131, 2003.

[7] J. Hill, D. C. Schmidt, J. Slaby, and A. Porter. CiCUTS: Combining
System Execution Modeling Tools with Continuous Integration En-
vironments. In Proceedings of the 15th Annual IEEE International
Conference and Workshops on the Engineering of Computer Based
Systems (ECBS), Belfast, Northern Ireland, Apr. 2008.

[8] Ke Jin. Component-Based CORBA+DDS Applications in PocoCap-
sule vs CCM. http://www.pocomatic.com/docs/whitepapers/
corba/.

[9] T. Lu, E. Turkay, A. Gokhale, and D. C. Schmidt. CoSMIC: An MDA
Tool suite for Application Deployment and Configuration. In Pro-
ceedings of the OOPSLA 2003 Workshop on Generative Techniques in
the Context of Model Driven Architecture, Anaheim, CA, Oct. 2003.
ACM.

[10] N. C. Myers. Traits: a new and useful template technique. C++
Report, June 1995.

[11] Object Management Group. Lightweight CORBA Component Model
RFP, realtime/02-11-27 edition, Nov. 2002.

[12] Object Management Group. Data Distribution Service for Real-time
Systems Specification, 1.2 edition, Jan. 2007.

[13] Object Management Group. DDS for Lightweight CCM Version 1.0
Beta 2. Object Management Group, OMG Document ptc/2009-10-25
edition, Oct. 2009.

[14] OMG. Deployment and Configuration of Component-based Dis-
tributed Applications, v4.0, Document formal/2006-04-02 edition,
Apr. 2006.

[15] D. A. Wheeler. Sloccount, a set of tools for counting physical source
lines of code, 2009.

[16] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. C. Schmidt.
Evaluating Technologies for Tactical InformationManagement in Net-
Centric Systems. In Proceedings of the Defense Transformation and
Net-Centric Systems conference, Orlando, Florida, Apr. 2007.

