
Load-aware Adaptive Failover for Middleware
Systems with Passive Replication

Jaiganesh Balasubramanian1, Sumant Tambe1, Chenyang Lu2, Aniruddha
Gokhale1, Christopher Gill2, and Douglas C. Schmidt1

1 Department of EECS, Vanderbilt University, Nashville, TN 37203, USA
2 Department of CSE, Washington University in St. Louis, MO 63130, USA

Abstract. Supporting uninterrupted services for performance-sensitive
distributed applications operating in resource-constrained environments
is hard. It is even harder when the operating environment is dynamic
and processor or process failures and system workload changes are com-
mon. Fault-tolerant middleware for these applications must assure high
service availability and satisfactory response times for clients. Although
passive replication is a promising fault tolerance strategy for resource-
constrained systems, conventional passive replication solutions are non-
adaptive and load-agnostic, which can cause post-recovery system over-
loads and significantly increase response times. This paper presents Fault-
tolerant Load-aware and Adaptive middlewaRe (FLARe), which enhances
conventional passive replication schemes in three ways. First, its client
failover strategy is load-aware, i.e., failover targets are selected at run-
time based on current CPU utilizations to maintain satisfactory response
times and alleviate CPU overload after failure recovery, and adaptive,
i.e., failover targets are proactively adjusted in response to failures, sys-
tem load fluctuations, and resource availability. Second, its client redirec-
tion strategy handles resource overloads that stem from multiple failures
and workload fluctuations. Third, FLARe enables effective dissemina-
tion of failover decisions and manages CPU utilizations transparently to
clients. Empirical evaluations on a distributed testbed demonstrate how
FLARe efficiently uses available system resources and maintains satis-
factory response times for clients when recovering from failures.

1 Introduction

Emerging trends and challenges. Middleware, such as CORBA, J2EE, and
.NET, are widely used to develop performance-sensitive distributed applications,
ranging from enterprise computing applications such as online stock trading sys-
tems to soft real-time systems such as sensor data acquisition applications in
supervisory control and data acquisition (SCADA) systems. Such applications
operate in resource-constrained environments where system loads and resource
availabilities fluctuate because of dynamic changes; new applications are added,
existing applications are stopped, and processors and/or processes fail. Even
when operating in such unpredictable environments, it is important to maintain
both system availability and satisfactory response times for clients. For exam-
ple, in a online stock trading system, stock prices from an external database



must be processed and timely updates must be posted even when dynamic load
fluctuations and failures occur.

active and passive replication [9] are two common approaches for building
fault-tolerant distributed applications that provide high availability and satisfac-
tory response times for performance-sensitive distributed applications operating
in dynamic environments. In active replication [21], client requests are multi-
cast and executed at all replicas. Failure recovery is fast because if any replicas
fail, the remaining replicas can continue to provide the service to the clients.
active replication, however, imposes high communication and processing over-
heads, which may not be viable in resource-constrained environments.

In passive replication [3] only one replica—called the primary—handles all
client requests, and backup replicas do not incur runtime overhead, except (in
stateful applications) for receiving state updates from the primary. If the primary
fails, a failover is triggered and one of the backups becomes the new primary.
Due to its low runtime overhead, passive replication is appealing for applications
that cannot afford the cost of maintaining active replicas.

Although passive replication is desirable in a resource-constrained envi-
ronment, it is particularly challenging to support performance-sensitive dis-
tributed applications based on passive replication. Specifically, conventional
client failover solutions in passive replication are non-adaptive and load-agnostic,
which can cause post-recovery system overloads and significantly increase re-
sponse times for clients. Furthermore, the middleware system must dynamically
handle overload conditions caused by workload fluctuations and multiple fail-
ures. Finally, we need a lightweight middleware architecture that can handle
failures transparently from the applications.
Solution approach → Fault-tolerant, Load-aware and Adaptive Mid-
dleware. To address the unresolved challenges with prior work, we developed the
Fault-tolerant, Load-aware and Adaptive middlewaRe (FLARe) which maintains
service availability and satisfactory response times in dynamic environments.
Specifically, this paper makes the following key contributions to developing fault-
tolerant middleware systems:
• Load-aware Adaptive Failover (LAAF) strategy, which is an adaptive
and load-aware client failover strategy that uses up-to-date CPU utilization esti-
mates to determine client failover targets that can maintain satisfactory response
times in response to dynamic workload fluctuations and processor or process fail-
ures.
• Resource Overload Management rEdirector (ROME) strategy, which
proactively redirects clients to resolve system overloads caused by simultaneous
processor failures and workload fluctuations.
• Lightweight adaptive middleware, which is a lightweight middleware ar-
chitecture that uses interceptors [2,24] to provide transparent fault-tolerance for
distributed applications using passive replication. A key feature of the FLARe
architecture is its support for push- and pull-based strategies to update the
client-side middleware with failover and redirection targets so clients can be
transparently redirected during failures and overloads.



FLARe has been implemented within the TAO Real-time CORBA middle-
ware (www.dre.vanderbilt.edu/TAO). This paper reports the results of exper-
iments that systematically evaluate FLARe on the ISISlab testbed (www.dre.
vanderbilt.edu/ISISlab).

The remainder of this paper is organized as follows: Section 2 describes the
system and fault model; Section 3 describes the design and implementation of
FLARe focusing on the LAAF and ROME strategies; Section 4 provides an
extensive experimental evaluation of our system; Section 5 compares FLARe
with related research; and Section 6 provides concluding remarks.

2 System and Fault Models

System model. FLARe supports performance-sensitive applications that re-
quire satisfactory response times and overload protection despite workload fluc-
tuations and processor failures3. Our failover strategy assumes services are state-
less, which is characteristic of many three-tier architecture applications, such as
online stock quoters or sensor data acquisition applications. In three-tier archi-
tectures, clients residing in the first-tier communicate with middle-tier applica-
tion servers via remote operation requests. The middle-tier application servers
execute the application business logic (e.g., displaying stock prices or processing
sensor data) while the database server tier maintains the state required by the
applications (e.g., price of a stock to display or sensory data). This paper presents
our solution in the context of TAO CORBA Object Request Broker (ORB) since
it is optimized for performance, though our techniques can generalize to other
middleware, such as J2EE and .NET.

FLARe is designed to handle dynamic workloads in which applications may
arrive and depart anytime. For example, in an online stock quoter, a new service
might be introduced when a client wants to monitor a new stock index, or in
a sensor acquisition system, new sensors start sensing and sending information.
Similarly, existing services might be dynamically stopped, new clients could ar-
rive, and failures and subsequent recoveries could cause system reconfigurations.
Services typically run for a long time after being deployed and clients invoke
remote invocations periodically (e.g., to update the price of a stock index or pe-
riodic sensing and dissemination of data). Due to these dynamic fluctuations, an
offline fault-tolerance scheme that determines a static list of failover targets for a
client will not account for dynamic load conditions. FLARe solves this problem
using adaptive and load-aware fault-tolerance.
Fault model and replication scheme. We assume that processors and pro-
cesses are fail-stop [21]. Multiple faults in multiple processors can occur, and
faults in distinct processors are assumed to be independent. Considering unpre-
dictable behavior of processes or processors after a fault is beyond the scope
of this paper. We also assume that networks provide bounded communication
latencies and do not fail or partition. This assumption is reasonable for many

3 Due to its low and predictable failover latency, active replication [11,19] is preferred
for hard real-time systems, where meeting every deadline—irrespective of failures—is
important. Hence, our work does not focus on hard real-time systems.



performance-sensitive systems, such as the online stock quoters or SCADA sys-
tems, where nodes are connected by highly redundant high-speed networks and
network QoS can be provided by mechanisms such as Differentiated Services
(DiffServ). Relaxing this assumption through integration of our middleware with
network level fault tolerance techniques is an area of future work. FLARe em-
ploys passive replication [3] to provide fault-tolerance.

3 Design and Implementation of FLARe

This section describes the design and implementation of the FLARe middle-
ware. The key design goals of FLARe include (1) masking clients from processor
and process failures through transparent client failover, (2) maintaining satisfac-
tory response times and alleviating post recovery overload through load-aware
failover target selection, and (3) adapting to load fluctuations caused by dynamic
workload and processor failures through overload management techniques.

3.1 Overview of FLARe Architecture
FLARe’s architecture shown in Figure 1 has three main components: the Mid-
dleware Replication Manager, the Client Failover Manager for each client, and
the Monitor on each processor hosting servers. FLARe achieves fault-tolerance

Fig. 1: FLARe Middleware Architecture
through passive replication of CORBA objects, where the primary and backup
replicas are deployed across different processors in the distributed system.

FLARe’s middleware replication manager provides interfaces that server ob-
jects use to provide information about (1) the processors and the specific process
where their primaries and backups are hosted, (2) the CPU utilization that they
will contribute to when they become a primary replica to serve client requests,
and (3) their interoperable object reference (IOR) so that clients can invoke re-
mote operations on them when the server objects are added to the system. To
manage the primary and their backup replicas–and to make adaptive failover
target decisions—FLARe’s middleware replication manager uses a monitor on
each processor to track failures and CPU utilization of all the processors hosting
the primary and backup replicas of each server object.



FLARe’s middleware replication manager employs the Load-Aware and Adap-
tive Failover (LAAF) target selection algorithm to prepare a list of failover tar-
gets for each primary object operating in the system. Multiple failover targets are
prepared to handle multiple failures of the same type of server object. Section 3.2
describes and analyzes this algorithm in detail.

There are situations when the selected failover targets are not appropriate
for clients due to sudden workload fluctuations and multiple failures. FLARe’s
middleware replication manager employs the Resource Overload Management
rEdirector (ROME) algorithm to detect these overloads and system resource im-
balances, determine alternate replica targets, and redirect clients transparently
to those targets. Section 3.3 describes and analyzes this algorithm in detail.

FLARe’s client failover manager comprises a redirection agent, which is up-
dated with the failover and redirection targets so that clients can transparently
recover from failures and overloads, respectively. To handle failures, FLARE’s
client request interceptor catches failure exceptions and modifies the exception
handling behavior. Instead of propagating the exception to the client application,
the client request interceptor redirects the client invocation to an appropriate
failover target, provided by the redirection agent. To handle overloads, the client
request interceptor alters the execution of an invocation by changing targets at
the start of an invocation.

3.2 Load-aware and Adaptive Failover Target Selection

As described in Section 3.1, FLARe’s replication manager collects updates from
monitors about the CPU utilizations and liveness of processors/processes. Algo-
rithm 1 depicts FLARe’s load-aware, adaptive failover (LAAF) target selection
algorithm that uses the measurements to select per-object failover targets.

The LAAF algorithm uses the following inputs: (1) the list of processors and
the list of processes in each processor, (2) the list of primary object replicas
operating in each process, (3) the list of backup replicas for each primary object
replica and the processors hosting those replicas, and (4) the current CPU uti-
lization of all processors in the system. This algorithm is run whenever there is a
change in the CPU utilization by a threshold (e.g., ± 10) in any of the processors
in the system, as FLARe needs to react to such dynamic environment changes.

The output of the LAAF target selection algorithm is a ranked list of failover
targets for each primary object replica in the system. FLARe maintains an or-
dered list of failover targets instead of only the first one to deal with concurrent
failures. When both the primary replica and some of its backup replicas fail
concurrently, the client can failover to the first backup replica in the list that is
still alive.

The LAAF target selection algorithm estimates the post-failover CPU uti-
lizations of processors hosting backup replicas for a primary object, assuming
the primary object fails. The backup replicas are then ordered based on the esti-
mated CPU utilizations of the processors hosting them, and the backup replica
whose host has the lowest estimated CPU utilization is the first failover target of
the replica. To balance the load after a processor failure, morever, the LAAF tar-
get selection algorithm redirects the clients of different primary objects located



on a same processor to replicas on different processors. Finally, the references
(IORs) to those replicas are collected in a list and provided to the redirection
agents for use during a failure recovery process.

Algorithm 1 LAAF Target Selection Algorithm
1: Pi : Set of processes on processor i
2: Oj : Set of primary replica objects in process j
3: Rk : list of processors hosting backup replicas for a primary object k
4: cui : current utilization of processor i
5: eui : expected utilization of processor i after failovers
6: lk : CPU utilization attributed to primary object k
7: for every processor i do
8: eui = cui // reset expected utilization
9: for every process j in Pi do

10: for every primary object k in Oj do
11: sort Rk in increasing order of expected CPU utilization
12: eux += lk, where processor x is the head of the sorted list Rk

13: end for
14: end for
15: end for

The LAAF algorithm works as follows: For every processor in the system (line
7), the algorithm iterates through all hosted processes (line 9), and the primary
replicas that are hosted in those processes (line 10). For every such primary
replica, the algorithm determines the processors hosting its backup replicas and
the least loaded of those processors (line 11). The algorithm then adds the load
of the primary object replica (known to the middleware replication manager
because of the registration process as explained in Section 3.1) to the load of least
loaded processor and defines that as the expected utilization of that processor
(line 12) were such a failover to occur.

When the algorithm repeats the process described above for every other
primary replica object hosted in the same process (Lines 10–12), the least loaded
fail over processor is determined while taking into consideration the expected
utilizations of the processors (line 11). This decision allows the algorithm to
consider the failover of co-located primary replica objects within a processor
while determining the failover targets of other primary replica objects hosted
in the same processor. The failover target selection algorithm therefore makes
failover target decisions not only based on the dynamic load conditions in the
system (which are determined by the monitors), but also based on load additions
that may be caused by the client failovers of co-located primary objects (which
are estimated by the algorithm). The computed failover target decisions are then
used for redirecting a client if any failure occurs before the next time the LAAF
target selection algorithm is run.

The LAAF algorithm is optimized for process failures on same processor or
single processor failures. It may result in suboptimal failover targets, however,



when multiple processors fail concurrently. In this case, clients of objects lo-
cated on different failed processors may failover to a same processor, thereby
overloading it. Similarly, the LAAF algorithm may also result in suboptimal
failover targets when process/processor failures and workload fluctuation occur
concurrently, i.e., before FLARe’s middleware replication manager receives the
updated CPU utilization from the monitors. To handle such overload situations
FLARe employs the ROME strategy (described in Section 3.3) to proactively
redirect clients of overloaded processors to less loaded processors.

3.3 Resource Overload Management and Redirection

FLARe’s middleware replication manager employs the Resource Overload Man-
agement and rEdirection (ROME) algorithm to handle overloads and load im-
balance in the system. FLARe allows users to specify a per-processor overload
threshold. A processor whose CPU utilization exceeds the overload threshold is
considered overloaded.

It is important to resolve processor overload as CPU saturation may cause
system failure due to kernel starvation [14]. For soft real-time applications users
may specify the overload threshold based on the suitable schedulable utilization
bounds [23] to achieve satisfactory response times. Similarly, FLARe also allows
users to specify a per-object migration threshold to migrate primary objects
from current heavily loaded (but not overloaded) processor to the least loaded
processor hosting a replica of that object. Balancing processor CPU utilization
helps reduce the response times and avoid overload on a subset of processors
in the system. Through the ROME algorithm, FLARe effectively handles CPU
overload and load imbalance as special cases of failures for performance-sensitive
applications.

In the case of failures, the clients are redirected to appropriate failover targets
based on decisions made by the LAAF algorithm, as described in Section 3.2.
In the case of overloads, clients of the current primary replicas are redirected
automatically to the chosen new backup replicas. We refer to this load redistri-
bution mechanism as lightweight migration since we migrate loads of objects as
opposed to objects. Our approach is thus more efficient and less time consuming
than physically moving the object itself to a lightly loaded processor. Moreover,
our approach leverages existing replicas and effectively utilizes them for main-
taining satisfactory response times for clients. We now describe how the ROME
algorithm handles CPU overload and load imbalance, respectively.
Handling overloads. When the CPU utilization at any of the processor crosses
the overload threshold, the middleware replication triggers the ROME algorithm
to react to the overloads. FLARe determines the primary objects whose clients
need to be redirected and their target hosts using ROME’s overload management
algorithm. Given an overloaded processor, i.e., whose CPU utilization exceeds
the overload threshold, the algorithm (shown in Algorithm 2) considers the pri-
mary objects on the processor in the decreasing order of CPU utilization (line 9),
and attempts to migrate the load generated by those objects to the least-loaded
processor hosting their backup replicas (lines 11, 12, 13, 14, and 15). The at-
tempt fails if the least-loaded processor of the backup replicas would exceed the



Algorithm 2 Determine Load-redistributing Targets
1: Oi : list of primary objects in an overloaded processor i
2: Rj : list of processors hosting object j’s replicas
3: cui : current utilization of processor i
4: eui : expected utilization of processor i after migrations
5: lj : CPU utilization of primary object j
6: ti : upper bound threshold for processor i’s CPU utilization
7: eui = cui, for every processor i
8: for every overloaded processor i do
9: sort Oi in decreasing order of their CPU utilizations

10: for every object j in the sorted list Oi do
11: min : processor i in Rj with lowest CPU utilization
12: if (lj + eumin) < tmin then
13: migrate the load of object j to j’s replica in min
14: eumin += lj
15: eui -= lj
16: end if
17: if eui < ti then
18: processor i is no longer overloaded; stop
19: else
20: migrate another primary object j in the processor i
21: end if
22: end for
23: end for

overload threshold if the migration occurs. The algorithm attempts migrations
until (1) the processor is no longer overloaded or (2) all primary objects in the
overloaded processor have been considered for migration.

Similar to the failover target selection algorithm, the ROME algorithm also
uses the expected CPU utilization to spread the load of multiple objects on an
overloaded processor to different hosts. The expected CPU utilization accounts
for the load change due to the migration decisions on other objects on the same
processor. After new reconfigurations are identified, redirection agents are up-
dated to redirect existing clients from the current primary replica to the selected
backup replica at the start of the next remote invocation. Clients are thus redi-
rected to new targets with minimal perturbations.

FLARe also adopts a similar approach to handle load imbalance among pro-
cessors. Its middleware replication manager triggers redirection, when it detects
that the difference in load between the processor hosting the current primary
object, and a processor hosting one of the backup replicas is above a migration
threshold. The middleware replication manager monitors the difference between
the CPU utilization of the processor hosting the primary replica and the least
loaded processor hosting the backup replica, and migrates the clients of the pri-
mary replica to the selected backup replica, if the difference is above the migra-
tion threshold. To prevent a large number of objects from migrating to the same



processor, FLARe’s middleware replication manager uses the expected utilization
of processors when making decisions based on the migration threshold.

3.4 FLARe Middleware Implementation

We now describe how different components of the FLARe middleware are im-
plemented atop the TAO Real-time CORBA middleware.

Monitoring CPU utilization and processor failures. On Linux, FLARe’s
monitor process uses the /proc/stat file to estimate the CPU utilization (the
fraction of time when the CPU is not idle) in each sampling period. The moni-
tors can be configured to periodically sample and report the CPU utilization of a
processor or can be queried on-demand by the middleware replication manager,
particularly in the cases where there are overloads in the system.

To detect the failure of a process quickly, each application process on a pro-
cessor opens up a passive POSIX local socket (also known as a UNIX domain
socket) and registers the port number with the monitor. The monitor connects
to the socket and performs a blocking read. If an application process crashes,
the socket and the opened port will be invalidated, in which case the monitor re-
ceives an invalid read error on the socket that indicates the process crash. Fault
tolerance of the monitor processes is also achieved through passive replication.
If the primary monitor replica fails to respond to the middleware replication
manager within a timeout period, the middleware replication manager suspects
that the processor has crashed.

Middleware replication manager. The middleware replication manager
is designed using the Active Object pattern [22] to decouple the reporting of a
load change or a failure from the process. This decoupling allows several monitors
to register with the middleware replication manager while allowing synchronized
access to its internal data structures. Moreover, it is strategized with the LAAF
and ROME algorithms. The middleware replication manager is replicated using
semi active replication [8] (provided by TAO middleware) with regular state
updates to the backup replicas.

Client failover manager. As shown in Figure 1, the client’s failover man-
ager comprises a CORBA portable interceptor-based client request intercep-
tor [24] and a redirection agent, which together coordinate to handle failures
transparently from client application logic. Whenever a primary fails, the inter-
ceptor catches the CORBA comm failure exception. At this point in time, the
interceptor consults the redirection agent for the failover target from the rank
list it maintains. The interceptor will then reissue the request to the new target.

A rank list is necessary to determine the failover target. The redirection agent
is therefore a CORBA object that runs in a separate thread from the interceptor
thread. Since portable interceptors are not remotely invocable objects, it was not
feasible for an external entity (such as a middleware replication manager) to send
the rank list information to the interceptor.

The rank list can be propagate to the redirection agent via one of two ap-
proaches supported by FLARe. The first approach is called proactive propaga-
tion, where each redirection agent registers with a middleware replication man-
ager that is responsible for pushing the newly computed ranked lists to the



redirection agents. An advantage of this scheme is that the redirection agent
need not be concerned with the failure and recovery semantics of the replication
manager. The second approach is called reactive propagation. In this approach
the interceptor consults the redirection agent for a ranked list when a failure
occurs. The redirection agent in turn pulls a ranked list from the middleware
replication manager.

Client redirection during overloads. To redirect clients during overloads,
FLARe requires that each server object know whether they are a primary or a
backup. Each server object implements a not primary(bool) operation. During
overloads, the middleware replication manager uses this operation to inform
the server object if their primary status has changed. The primary replica starts
rejecting client invocations after completing currently pending invocation if there
is one by throwing a location forward exception back to the clients. FLARe’s
client request interceptor catches the exception and queries the redirection agent
for the next target. The redirection agent redirects clients to chosen backups
during overloads using the same failure management framework described above.

4 Empirical Evaluation of FLARe

The experiments were conducted at ISISlab (www.dre.vanderbilt.edu/ISISlab)
on a testbed of 14 blades. Each blade has two 2.8 GHz CPUs, 1GB memory, a 40
GB disk, and runs the Fedora Core 4 Linux distribution. Our experiments used
one CPU per blade and the blades were connected via a CISCO 3750G switch
into a 1 Gbps LAN. 12 of the blades ran RT-CORBA client/server applications
developed using FLARe, which is based on TAO 1.5.8. FLARe’s middleware
replication manager and its backup replicas ran in the other 2 blades. Monitors,
along with their replicas, are deployed on each of the server hosting processors,
and client failover managers (including the client request interceptor and the
redirection agent) are hosted in each of the processors hosting the clients.

To emulate dynamic soft real-time applications, such as distributed sensor
data acquisition systems, the clients in these experiments used threads running
in the Linux real-time scheduling class to invoke operations on server objects at
periodic intervals. For the experiments presented in this paper, client applica-
tions invoked operations on server objects using one of the following rates: 10
hz, 5 hz, 2 hz, or 1 hz.

We measured the CPU utilization and per-invocation roundtrip response
time a client experienced, both in the presence and absence of failures. The
client-perceived end-to-end response time depends on the following factors: (1)
client request delay, which is the time taken for the request to traverse the
client orb, the network, and the server orb, (2) server delay, which is the
response time of the server object, and (3) server reply delay, which is the
time taken for the reply to traverse the server orb, the network, and the client
orb. The clients also experience additional delays for fault-detection and failover
after failures. fault detection delay is the time taken for the client to receive
a comm failure exception after the server object failure. failover delay is



the time taken for the client to find the next replica address to contact after the
comm failure exception is received in the case of a failure.

4.1 Evaluating LAAF
This experiment evaluates how FLARe’s LAAF strategies select failover targets
based on current CPU utilizations, maintains satisfactory response times for
clients, and alleviates processor overloads. We compared FLARe’s proactive and
reactive load-aware client failover strategy (Section 3.4) with the optimal static
client failover strategy. In the static client failover strategy, the client middleware
is initialized with a static list of IORs of the backup replicas, ranked based on the
CPU utilization of their processors at deployment time. The list is not updated
at run-time based on the current CPU utilizations in the system. In contrast,
using the LAAF algorithm, FLARe’s proactive and reactive load-aware client
failover strategies recompute failover targets whenever the CPU utilizations in
the system change.

Fig. 2: Load-aware Failover Experiment Setup

Experiment setup. Figure 2 and Table 1 illustrate our experimental setup
to evaluate LAAF. To evaluate FLARe in the presence of resource contention
created by dynamic workload changes, such as dynamic service deployments, at
50 seconds after the experiment was started, we introduced dynamic deployment
of two server objects dy-1 and dy-2, and their client objects, cl-5, and cl-6,
respectively. The experiment ran for 300 seconds, and as described above all
the clients made their respective invocations on different server objects unless a
failure happened to cause clients to continue their invocations on chosen backup
server objects.

With the static failover strategy, failover decisions are made at deployment
time, as follows: if a-1 fails, contact a-3 followed by a-2; if b-1 fails, contact b-3
followed by b-2. We would like to note that at deployment time, this is an optimal
failover strategy for the clients. With our LAAF-driven proactive and reactive
load-aware failover strategies, those failover decisions are updated dynamically
when and if failures occur, as the processors’ utilization levels and sets of live
processes change.



Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

cl-1 a-1 10 40%

cl-2 b-1 5 30%

cl-3 c-1 2 20%

cl-4 d-1 1 10%

(a)

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

Dynamic Loads

cl-5 dy-1 5 50%

cl-6 dy-2 10 50%

(b)

Table 1: Experiment setup for LAAF

Failure scenario. To evaluate the performance of the different failover
strategies, we emulated a failure 150 seconds after the experiment started. We
used a fault injection mechanism, where when clients cl-1 or cl-2 make invoca-
tions on server objects a-1 or b-1 respectively, the server object calls the exit (1)
command, crashing the process hosting server objects a-1 and b-1 on processor
tango. The clients receive comm failure exceptions, and then make continued
invocations on replicas chosen by the failover strategy.

Analysis of results. Figure 3a shows the end-to-end response times per-
ceived by all the clients, and Figure 3b shows the CPU utilizations at all pro-
cessors, both when clients used the static client failover strategy. At 50 seconds,
servers dy-1 and dy-2 were dynamically deployed to the system on the proces-
sors lambada and charlie. As shown and highlighted by label a in Figure 3b,
at 50 seconds, the CPU utilizations at processors lambada and charlie in-
creases from 0% to 50%. As shown and highlighted by the label b in Figure 3a,
at 150 seconds when a-1 fails (along with the process in which it is hosted,
thereby failing b-1 as well) at processor tango, client cl-1 experiences an in-
crease of 17.2 milliseconds in its end-to-end response time, which is the com-
bined fault detection delay and failover delay. After the failure at 150
seconds, clients cl-1 and cl-2 failover to the statically configured replicas a-3 at
processor lambada and b-3 at processor charlie respectively. As indicated by
the label b in Figure 3b, after the failover at 150 seconds, the CPU utilizations
at processors lambada and charlie increase to 90% and 80% respectively. As
a result of the overload, the response times of clients cl-5 and cl-2 increased
(significantly for cl-5) after 150 seconds (as shown in Figure 3a), because their
servers had the lowest priorities on lambada and charlie respectively.

Figure 3c shows the response times perceived by all the clients and Figure 3d
shows the CPU utilizations at all the processors when clients were configured to
use the proactive client failover strategy. The middleware replication manager
triggers the LAAF algorithm to recompute the failover targets for all the server
objects in response to change in CPU utilizations in the system. At 150 seconds,
client failovers cause cl-1 to invoke remote operations on a-2 and cl-2 to invoke
remote operations on b-2. This is because, the LAAF algorithm changed the
failover targets from a-3 to a-2 and from b-3 to b-2 because of the load changes
in the processors lambada and charlie respectively. As highlighted by the
label b in Figure 3d, none of the processor utilizations are greater than 60%
after the failover of clients cl-1 and cl-2. This shows that the LAAF algorithm



200

150

100

50

30025020015010050

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

Static Strategy With Dynamic Load

(CL-5)

(CL-2)

(CL-3 and 4)

(CL-6)

(CL-1)

(CL-2, 3, 4, and 5)

(A)

(B)

(a) Response times with static strategy

 0

 20

 40

 60

 80

 100

25020015010050

Pr
oc

es
so

r 
U

til
iz

at
io

n 
(%

)

Time (sec)

Static Strategy With Dynamic Load

(TANGO)

(LAMBADA, CHARLIE)

(LAMBADA)

(CHARLIE)

(ALPHA)

(BETA)

(A)

(B)

(b) Utilization with static strategy

200

150

100

50

30025020015010050

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

Proactive Strategy With Dynamic Load

(CL-3)

(CL-4)

(CL-2)

(CL-5)

(CL-6)

(CL-1)

(CL-2, 3, 4, and 5)

(A)

(B)

(c) Response times with proactive strategy

 0

 20

 40

 60

 80

 100

30025020015010050

Pr
oc

es
so

r 
U

til
iz

at
io

n 
(%

)

Time (sec)

Proactive Strategy With Dynamic Load

(TANGO)

(LAMBADA, CHARLIE)

(BETA)

(ALPHA)

(ALPHA)

(BETA)

(A)

(B)

(d) Utilization with proactive strategy

200

150

100

50

30025020015010050

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

Reactive Strategy With Dynamic Load

(CL-3)

(CL-4)

(CL-2)

(CL-5)

(CL-6)

(CL-1)

(CL-2, 3, 4, and 5)

(A)

(B)

(e) Response times with reactive strategy

 0

 20

 40

 60

 80

 100

25020015010050

Pr
oc

es
so

r 
U

til
iz

at
io

n 
(%

)

Time (sec)

Reactive Strategy With Dynamic Load

(TANGO)

(LAMBADA, CHARLIE)

(BETA)

(ALPHA)

(ALPHA)

(BETA)

(A)

(B)

(f) Utilization with reactive strategy

Fig. 3: End-to-end response times and utilizations with different
failover strategies
makes failover target decisions in a load-aware manner and alleviates processor
overloads. Consequently, as highlighted by label b in Figure 3c, the response
times of cl-2 and cl-5 did not increase after the failover of clients cl-1 and
cl-2, which was the case when the clients used the static client failover strategy.

Figure 3e shows the response times perceived by all the clients and Figure 3f
shows the CPU utilizations at all the processors when clients were configured
to use the reactive client failover strategy. From the figures, it is clear that the



performance of the clients and the processor utilizations are similar to those
received by the clients when they were configured to use the proactive client
failover strategy. This is not surprising as the proactive and reactive strategies
both use the same LAAF algorithm to decide failover targets. However, the
reactive client failover strategy incurs higher failover delay as the redirection
agent communicates with the middleware replication manager to receive the
failover target list after a failure exception is intercepted (see Section 4.3 for a
detailed study on failover delays)

4.2 Evaluating ROME

This experiment evaluates the effectiveness of ROME in handling different over-
load scenarios. We stress-test ROME under overload and load imbalance caused
by dynamic workload changes and multiple failures. In our experiment, we set
70% as the maximum load allowed on any node beyond which we treat it as an
overload condition. We set the migration threshold of each object to be 120% of
its utilization.

Fig. 4: Overload Redirection Experiment Setup
Experiment setup. Figure 4 and Table 2 illustrate the experimental setup

for ROME. For the service objects that are started at deployment time, the
LAAF algorithm can compute the rank lists for all the clients using the CPU
utilizations known prior to the dynamic deployment of service h-1. The failover
target lists are as follows: (1) for a-1, it is 〈a-2,a-3,a-4〉 (2) for b-1, it is
〈b-2,b-3〉 (3) for c-1, no replicas of c-1 are deployed in the system (4) for d-1,
it is 〈d-2〉 (5) for the dynamically deployed service h-1, no replicas of h-1 are de-
ployed in the system The experiment ran for 300 seconds with different overload
and dynamic reconfigurations in the system over the span of the experiment.

1. Overload due to dynamic deployment of services. We emulated
a failure of process a-1 on processor tango 50 seconds after the experiment
started. The client cl-1 receives a comm failure exception due to the failure
of a-1, and then consults its rank list to make a failover decision, which happens
to be a-2. At the same time a new service h-1 is deployed dynamically on
processor beta and a client cl-5 starts making requests on this new service.



Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

cl-1 a-1 10 40%

cl-2 b-1 5 30%

cl-3 c-1 2 30%

(a)

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

cl-4 d-1 1 10%

Dynamic Loads

cl-5 h-1 10 50%

(b)

Table 2: Experiment setup for ROME

As a result of the concurrent failure and workload change, the load on the
processor beta rises to 90% (shown by point a in the Figure 5b) and the ROME
algorithm is triggered. The ROME algorithm then performs a lightweight migra-
tion of the clients of a-2 and redirects all of its clients to a-3, which is hosted
in the least loaded of all the processors hosting a replica of the type a. Notice
how around 51 seconds, the utilization on processor beta goes down to 50%
since the clients of a-2 were redirected while the utilization of processor lam-
bada increases to 40% due to a-3 becoming the primary. At this stage, the CPU
utilizations of all processors were below 70%, while all clients receive satisfac-
tory response times. This result demonstrated that ROME can handle overload
effectively and efficiently.

250

200

150

100

50

30025020015010050

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

Overload Management

(CL-3)

(CL-2)(CL-2)

(CL-1)

(CL-4) (CL-4)

(A)

(B)

(CL-5)

(a) Client response times with overload man-
agement

 0

 20

 40

 60

 80

 100

30025020015010050

Pr
oc

es
so

r 
U

til
iz

at
io

n 
(%

)

Time (sec)

Overload Management

(TANGO)

(PRINCE, CHARLIE)

(CHARLIE = 0%)(TANGO = 0%)

(LAMBADA)(ALPHA)

(PRINCE)

(ALPHA)

(BETA)

(LAMBADA)

(B)

(A)

(C)

(b) Utilizations with overload management

Fig. 5: Evaluation of ROME

2. Overload due to multiple failures. We let the experiment continue
and stress-tested ROME further with concurrent failures. Since the CPU uti-
lizations in the system have changed dynamically, the middleware replication
also employs the LAAF algorithm to redetermine the failover targets for all the
primary objects in the system. The recomputed failover targets are as follows:
(1) for a-1, it is 〈a-4,a-2〉 (2) for b-1, it is 〈b-2,b-3〉, and (3) for d-1, it is 〈d-2〉

At time t = 150 seconds, the processes on processors lambada and charlie
fail. Clients cl-1 and cl-2 must now failover. Using the rank lists, client cl-1
fails over to a-4 while client cl-2 fails over to b-2, both of which end up starting
on the same processor alpha. Moreover, another primary d-1 is already running
on alpha taking its utilization to 80%. This is shown by point b in Figure 5b.
Similarly the clients cl-1, cl-2 and cl-4 see an increase in response times. The



ROME algorithm is triggered once again to resolve the overload. It starts with
the heaviest service, which is a-4. But clients of a-4 cannot be moved, as that
would again overload the processor beta. Hence, ROME redirects all clients of
b-2 (which is the next heaviest object) to its replica b-3 on processor prince.
As a result, the CPU utilizations of all the processors settle below 70% as shown
by point b in Figure 5b.

3. Load imbalance. After redirecting clients of b-2 to b-3, the middleware
replication manager notes that the migration threshold for object d-1 is reached.
This is because, d-1 is operating in processor alpha whose CPU utilization is 50
%, while d-2 is operating in processor lambada whose CPU utilization is 0. The
difference in CPU utilization between the processors hosting the primary replica
d-1 and backup replica d-2 is greater than 120% of the primary object d-1’s
load (which is 10%). ROME detects this imbalance and redirects clients of d-1
to d-2 to take advantage of a less utilized processor. As a result, the difference
in CPU utilization between the processors hosting the new primary replica d-2
and backup replica d-1 has reduced from 50% to -30%. Note that ROME will
not thrash because the processor hosting the current primary replica now has
lower utilization than that hosting its backup replica. ROME therefore effectively
alleviates the load imbalance in the system through lightweight migration.

4.3 Failover Delay

The reactive load-aware strategy incurs higher failover delays than the proactive
load-aware and static failover strategies. The higher failover delay stems from the
need for the client redirection agent to perform a remote invocation of FLARe’s
middleware replication manager to get the failover target list after receiving the
comm failure exception due to a server object failure. To evaluate the failover
delays under different failover strategies empirically, we ran a set of experiments
with client cl-1 invoking operations on server object a-1. No other processes
operate in the processor hosting a-1, so that the response time will equal the
execution time of the server. We ran the experiment for 10,000 iterations. A fault
is injected to kill the server while executing the 5, 001st request. The clients then
failover to backup server objects a-2, which execute the remaining 5,000 requests
(including the one experiencing the failure).

Figure 6a shows the different response times perceived by client c-1 in the
presence of server object failures. The failover delays for the static and proactive
load-aware strategies are similar because both strategies know the failover deci-
sion a priori and just use the next available address. In the reactive load-aware
strategy, however, the client redirection agent must invoke the middleware repli-
cation manager to acquire the next failover target, which result in a 16 ms of
increase in failover delay (see reactive-a in Figure 6a).

We repeated the experiment under two more scenarios: (1) multiple clients:
one more client c-2 invokes remote operations on the server a-1, and when the
server a-1 fails, redirection agents of both the clients c-1 and c-2 contacted
the middleware replication manager for the failover targets, and (2) middleware
replication manager failure: when the clients contacted the middleware repli-
cation manager, the replication manager failed. Note, neither scenario changes



the failover delays under the static strategy and proactive strategy because they
do not require clients invoke the middleware replication manager. As shown by
reactive-b in the Figure 6a, the failover delay does not change significantly
when multiple clients contact the middleware replication manager to obtain the
failover targets. This is because the middleware replication manager does not
compute the failover target list when the redirection agent initiates the commu-
nication; instead it provides the redirection agent with the list it already has in
its cache.

(a) Failover delay

Without interceptors
With interceptors

  39.2
  39.21
  39.22
  39.23
  39.24
  39.25
  39.26
  39.27
  39.28
  39.29
  39.3

Client
R

es
po

ns
e 

tim
e 

(m
ili

se
co

nd
s)

(b) Runtime overhead

Fig. 6: Failover delay and Runtime overhead of Failover Strategies

Failure of the middleware replication manager increases the failover delay as
shown by reactive-c in the Figure 6a. This is because of the failover required
for the redirection agent to be redirected to the backup replication manager
to obtain the failover target lists. This delay will increase further with more
failures of the replication manager. Overall, our results indicate that the proac-
tive failover strategy achieves fast failover comparable to the static strategy.
The reactive failover strategy incurs higher failover delay, especially when the
failover coincide with the failure of the replication manager. System users there-
fore need to consider the tradeoff between the lower failover delay of the proactive
strategy and the simplicity of the reactive strategy based on their application
requirements.

4.4 Overhead under Fault-Free Conditions

FLARe uses a CORBA client request interceptor to (1) catch comm failure
exceptions and transparently redirect clients to suitable failover targets, and (2)
catch location forward exceptions to transparently redirect clients during
overloads. To evaluate the runtime overhead of these per-request interceptions,
we ran a simple experiment with client cl-1 making invocations on server object
a-1 with and without client request interceptors.

We ran this experiment for 50,000 iterations and measured the average re-
sponse time perceived by cl-1. Figure 6b shows that the average response time
perceived by cl-1 increased by only 8 microseconds when using the client re-
quest interceptor. This result shows that interceptors add negligible overhead to
the normal operations of an application.



5 Related Work

CORBA-based fault-tolerant middleware systems. Prior research has fo-
cused on designing fault-tolerant middleware systems using CORBA. A survey of
the different architectures, approaches, and strategies using which fault-tolerance
capabilities can be provided to CORBA-based distributed applications is pre-
sented in [17]. [2] describes a CORBA portable interceptor-based fault-tolerant
distributed system using passive replication and extends the interceptors to redi-
rect clients with a static client failover strategy. MEAD [16], FTS [6] and IRL [1]
use CORBA portable interceptors to provide fault-tolerance for CORBA-based
systems using active replication. The key novel features of FLARe that distin-
guishes it from these systems are the adaptive load-aware failover target selection
and overload management capabilities based on a passive replication approach.
Adaptive passive replication systems. Prior research has focused on adap-
tive passive replication to reduce delays incurred by conventional passive repli-
cation during fault detection, client failover, and fault recovery. For example,
IFLOW [4] uses fault-prediction techniques to change the frequency of backup
replica state synchronizations to minimize state synchronization during failure
recovery. Similarly, MEAD [18] reduces fault detection and client failover time
by determining the possibility of a primary replica failure using simple failure
prediction mechanisms and redirects clients to alternate servers before failures
occur. Other research [12] uses simulation models to analyze multiple check-
pointing intervals and their effects on fault recovery in fault-tolerant distributed
systems. [7] focuses on an adaptive dependability approach by mediating inter-
actions between middleware and applications to resolve constraint consistencies
while improving availability of distributed systems. FLARe focuses on adaptive
failover strategies to alleviate overload after recovering from a failure , which is
particularly important to performance-sensitive applications and has not been
addressed by previous research. The LAAF and ROME strategies of FLARe are
therefore complimentary to the aforementioned adaptive fault tolerance tech-
niques.
Load-aware adaptations of fault-tolerance configurations. Prior research
has focused on run-time adaptations of fault-tolerance configurations [5]. For ex-
ample, the DARX framework [15] provides fault-tolerance for multi-agent soft-
ware platforms by focusing on dynamic adaptations of replication schemes as
well as replication degree. AQUA [13] dynamically adapts the number of repli-
cas receiving a client request in an active replication scheme so that slower
replicas do not affect the response times received by clients. Eternal [11] dynam-
ically changes the locations of active replicas by migrating soft real-time objects
from heavily loaded processors to lightly loaded processors, thereby providing
better response times for clients. Our work on FLARe differs from earlier work
by focusing on dynamic adaptations of failover targets in a passive replication
scheme, so that the middleware can provide both high availability and satisfac-
tory performance for distributed applications operating in resource-constrained
environments.



Quality of Service using generic interception frameworks. Other projects
have focused on interceptions above the middleware layer to add quality of ser-
vice (QoS) for applications. For example, QuO [25] weaves in QoS aspects into
applications at compile time by wrapping application stubs and skeletons with
specialized delegates that can be used for intercepting application requests and
replies. The ACT project [20] provides response to unanticipated behavior in
applications by weaving adaptive code into ORBs at runtime and provides fine-
grained adaptations by intercepting application requests and replies. CQoS [10]
provides platform-dependent interceptors based on stubs and skeletons, and
QoS-specific service components, that work with the interceptors to add QoS like
fault-tolerance to applications. Although, FLARe is based on CORBA portable
interceptors, its LAAF and ROME strategies could be used in conjunction with
any of the generic interceptors described in these research to provide fault-
tolerance and performance management for distributed applications.

6 Concluding Remarks

This paper described the Fault tolerant Load-aware and Adaptive middlewaRe
(FLARe) system specifically designed for performance-sensitive and dynamic
distributed applications. FLARe achieves these objectives through three novel
contributions. First, its Load-aware and Adaptive Failover (LAAF) algorithm
determines the appropriate failover targets for different services by considering
dynamic loads on different CPU resources of the system. Second, the Resource
Overload Management Redirector (ROME) algorithm manages CPU resource
overloads that may be caused due to multiple overloads by a lightweight migra-
tion scheme for heavily loaded services, and transparent redirection of clients.
Finally, a lightweight middleware architecture provides a low overhead solution
to realize FLARe’s capabilities. In the future, we plan to extend the FLARe ar-
chitecture to support stateful services by integrating state synchronization with
a resource management framework.

References

1. R. Baldoni and C. Marchetti. Three-tier replication for ft-corba infrastructures.
Softw. Pract. Exper., 33(8):767–797, 2003.

2. T. Bennani, L. Blain, L. Courtes, J. C. F. M. O. Killijian, E. Marsden, and F. Ta-
iani. Implementing Simple Replication Protocols using CORBA Portable Inter-
ceptors and Java Serialization. In Proc. of DSN. (2004).

3. N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The Primary-backup
Approach. In Distributed systems (2nd Ed.), pages 199–216. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1993.

4. Z. Cai, V. Kumar, B. F. Cooper, G. Eisenhauer, K. Schwan, and R. E. Strom.
Utility-Driven Proactive Management of Availability in Enterprise-Scale Informa-
tion Flows. In Proceedings of ACM/Usenix/IFIP Middleware, pages 382–403, 2006.

5. T. Dumitras and P. Narasimhan. Fault-Tolerant Middleware and the Magical 1%.
In: Proc. of Middleware (2005), 2005.

6. R. Friedman and E. Hadad. Fts: A high-performance corba fault-tolerance service.
In Proc. of WORDS.(2002).



7. L. Froihofer, K. M. Goeschka, and J. Osrael. Middleware support for adaptive
dependability. In Middleware, pages 308–327, 2007.

8. A. S. Gokhale, B. Natarajan, D. C. Schmidt, and J. K. Cross. Towards real-time
fault-tolerant corba middleware. Cluster Computing, 7(4):331–346, 2004.

9. R. Guerraoui and A. Schiper. Software-Based Replication for Fault Tolerance.
IEEE Computer, 30(4):68–74, Apr. 1997.

10. J. He, M. A. Hiltunen, M. Rajagopalan, and R. D. Schlichting. Providing qos
customization in distributed object systems. In Middleware, pages 351–372, 2001.

11. V. Kalogeraki, P. M. Melliar-Smith, L. E. Moser, and Y. Drougas. Resource Man-
agement Using Multiple Feedback Loops in Soft Real-time Distributed Systems.
Journal of Systems and Software, 2007.

12. P. Katsaros and C. Lazos. Optimal object state transfer - recovery policies for
fault tolerant distributed systems. In Proc. of DSN. (2004).

13. S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive quality of ser-
vice aware middleware for replicated services. IEEE Transactions on Parallel and
Distributed Systems, 14(11):1112–1125, 2003.

14. C. Lu, X. Wang, and C. Gill. Feedback Control Real-time Scheduling in ORB
Middleware. In Proc. of RTAS. (2003).

15. O. Marin, M. Bertier, and P. Sens. Darx: A framework for the fault-tolerant
support of agent software. In Proc. of ISSRE. (2003).

16. P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, C. Reverte, J. Slember, and
D. Srivastava. MEAD: Support for Real-time Fault-Tolerant CORBA. Concur-
rency and Computation: Practice and Experience, 17(12):1527–1545, 2005.

17. Pascal Felber and Priya Narasimhan. Experiences, Approaches and Challenges
in building Fault-tolerant CORBA Systems. Computers, IEEE Transactions on,
54(5):497–511, May 2004.

18. S. Pertet and P. Narasimhan. Proactive recovery in distributed corba applications.
In Proc. of DSN. (2004).

19. Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr, P. Rubel, C. Sabnis,
W. Sanders, R. Schantz, and M. Seri. AQuA: an adaptive architecture that provides
dependable distributed objects. Computers, IEEE Transactions on, 52(1):31–50,
2003.

20. S. M. Sadjadi and P. K. McKinley. Act: An adaptive corba template to support
unanticipated adaptation. In Proc. of ICDCS. (2004).

21. R. D. Schlichting and F. B. Schneider. Fail-stop Processors: An Approach to De-
signing Fault-tolerant Computing Systems. ACM Trans. Comput. Syst., 1(3):222–
238, 1983.

22. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

23. L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical
perspective. Real-Time Syst., 28(2-3):101–155, 2004.

24. N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran. Evaluating Meta-
Programming Mechanisms for ORB Middleware. IEEE Communication Magazine,
special issue on Evolving Communications Software: Techniques and Technologies,
39(10):102–113, Oct. 2001.

25. J. A. Zinky, D. E. Bakken, and R. Schantz. Architectural Support for Quality of
Service for CORBA Objects. Theory and Practice of Object Systems, 3(1):1–20,
1997.


