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Abstract—A cyber-attack detection system issues alerts when
an attacker attempts to coerce a trusted software application
to perform unsafe actions on the attacker’s behalf. One way of
issuing such alerts is to create an application-agnostic cyber-
attack detection system that responds to prevalent software
vulnerabilities. The creation of such an autonomic alert system,
however, is impeded by the disparity between implementation
language, function, quality-of-service (QoS) requirements, and
architectural patterns present in applications, all of which
contribute to the rapidly changing threat landscape presented
by modern heterogeneous software systems.

This paper evaluates the feasibility of creating an autonomic
cyber-attack detection system and applying it to several exem-
plar web-based applications using program transformation and
machine learning techniques. Specifically, we examine whether
it is possible to detect cyber-attacks (1) online, i.e., as they
occur using lightweight structures derived from a call graph
and (2) offline, i.e., using machine learning techniques trained
with features extracted from a trace of application execution.
In both cases, we first characterize normal application behavior
using supervised training with the test suites created for
an application as part of the software development process.
We then intentionally perturb our test applications so they
are vulnerable to common attack vectors and then evaluate
the effectiveness of various feature extraction and learning
strategies on the perturbed applications. Our results show
that both lightweight on-line models based on control flow
of execution path and application specific off-line models
can successfully and efficiently detect in-process cyber-attacks
against web applications.

Keywords-cyber security; machine learning; application in-
strumentation; unit test;

I. INTRODUCTION

Emerging trends and challenges. Cyber-attacks continue
to grow in frequency and severity, e.g., from 2014 to 2015
the average annualized loss from cyber-attacks increased
$8.96 million in financial services companies, $6.08 million
in technology companies, and $6.44 in retail companies [1].
Various techniques have been developed to help prevent
and defend against cyber-attacks. Manual approaches [2],
[31, [4], such as defensive programming and code reviews,
are widely applied to limit and correct mistakes made by
software developers. Dynamic taint analysis techniques [5],
[6] aid in detecting code vulnerabilities. Likewise, machine
learning techniques [7], [8], [9] have been applied to detect
cyber-attacks and identify vulnerabilities.
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Although advances in information security enable more
effective monitoring and threat detection, cybersecurity re-
mains largely an art rather than a science or engineering
discipline since it often requires domain-specific knowledge,
i.e., the capabilities of human analysts and decision makers
remain indispensable [10]. For example, cybersecurity tech-
niques often require highly proficient web security knowl-
edge and skills from developers and network operators.

Open problem — Efficiently and accurately detecting
in-process cyber-attacks in web applications. Due to the
diversity of programming languages, functionality, quality-
of-service (QoS) requirements, and architectural patterns, no
single security approach can find and assess all security risks
in heterogeneous production systems. An open challenge is
therefore determining how to build a scalable and resilient
cyber infrastructure that can autonomically detect in-process
cyber-attacks and adapt efficiently and securely to thwart
these attacks without requiring application developers to
possess in-depth expertise in cybersecurity tactics, tech-
niques, and procedures.

Contributions. This paper evaluates the feasibility of
autonomically detecting in-process cyber-attacks against het-
erogeneous web-based applications running on a Java Virtual
Machine (JVM) [11] using program transformation and
machine learning. In particular, we explore the efficacy of
program transformation techniques to extract execution fea-
tures from applications and machine learning-based detec-
tion techniques that operate on these features. The paper also
addresses whether test suites can be leveraged effectively
to supervise training of machine learning models to detect
attacks. The technical underpinning of this study is the
Robust Software Modeling Tool (RSMT), which is a novel
program transformation tool that can be attached to web-
based applications and use to automatically extract execution
features that detect in-process cyber-attacks without requir-
ing obtrusive code modifications.

Paper organization. Section II describes the open issues
investigated in this paper; Section III describes RSMT’s
online, instrumentation-derived model based upon appli-
cation control flow; Section IV analyzes RSMT’s offline
machine learning detection model; Section V empirically
evaluates the performance overhead of RSMT’s JVM agent
on applications when detecting a range of cyber-attacks;



Section VI compares our work with related cyber-attack
detection techniques; and Section VII presents concluding
remarks.

II. OPEN ISSUES FOR IN-PROCESS CYBER-ATTACK
DETECTION

To motivate more effective in-process cyber-attack detec-
tion techniques, this section summarizes the following open
issues associated with capturing execution behaviors from
web-based applications via program transformations and
detecting potential cyber-attacks at runtime using machine
learning.

Issue 1: Capturing features representative of applica-
tion behavior without creating a significant burden on devel-
opers: To augment human cybersecurity experts, automated
mechanisms are needed to capture and analyze application
execution information. A promising approach uses machine
learning to build models of expected application execution
behavior. We define execution behavior as the invocation
of methods, the ordering of method invocation, and the
inputs/outputs of method invocations. Key open issues facing
researchers are (1) how to instrument an application unobtru-
sively and (2) how much knowledge of the underlying code
base and access to the code is required to collect execution
features and train accurate machine learning attack detection
models.

To answer these questions, we conducted a study that
compared the following application instrumentation ap-
proaches: (1) A bytecode transformation system for tracking
control flow within a running application. Due to the per-
formance penalty incurred when tracking control flow, we
developed an instrumentation system using a JVM agent,
which is a JAR file that utilizes Java’s Instrumentation API
to intercept classload events and invisibly transform classes
before they are loaded by the JVM at run time. (2) Aspect] is
a general-purpose “out-of-the-box” instrumentation tool. We
use Aspect]’s pointcut and join point capabilities to weave
application-specific feature extraction behaviors into a small
number of compiled classes for runtime data monitoring,
permission checks, action interruption and resource man-
agement, among others. Results from our work comparing
these two approaches are provided in Section III and III.

Issue 2: Determining the performance overhead of
execution feature vector collection.: Monitoring instructions
executed along the critical path of a program can degrade
its performance. To evaluate this degradation, Section V-A
describes the results of experiments that evaluated the aver-
age and worst-case performance overhead of RSMT program
transformation in web-based applications. In particular, we
identified trade-offs between lightweight online detection
techniques that identify obviously dangerous behaviors ver-
sus fine-grained offline detection techniques that identify
subtler adverse behaviors.

Issue 3: Characterizing the performance of various
machine learning approaches for detecting cyber-attacks:
Different machine learning algorithms have different prob-
lem domains, average predictive accuracy, training and val-
idation speeds, and data requirements. A key issue facing
researchers is how these different algorithms perform with
respect to detecting different types of cyber-attacks. To
address this issue, we employed three machine learning tech-
niques using implementations from the Weka library [12]
(naive Bayes, support vector machine, and random forest)
on three common cyber-attacks (SQL injection, directory
traversal, and cross-site scripting) from the OWASP “’top
ten” list [13]. We then compared the results of accuracy,
precision, recall, and f-score [14]. Section V-B presents our
results, which indicate that no single classifier is best at
detecting all attack types, thereby motivating our further
investigation of hybrid ensemble-style approaches.

Issue 4: Characterizing feature vector abilities to re-
flect application behaviors: Web-based applications produce
copious amounts of data corresponding to their execution
behaviors. This runtime data stream must be represented
and stored in a manner that enables its effective utilization
in analytics and classification models. A key open issue
facing researchers is how to construct the data at runtime
and how to store the data online and offline. To address
this issue, we implemented and compared three feature
representations in RSMT: (1) A call graph that is used to
determine whether a transition is abnormal, (2) A call tree
that is used to determine whether a sequence of transitions is
abnormal, and (3) Feature attributes (e.g., method execution
time, whether parameter contains special characters, etc.)
that are used to represent the features that cannot be reflected
in a call graph/tree. Detailed analyzes of our comparisons
are presented in Section IV-B and III-3.

III. MONITORING PROGRAM BEHAVIORS WITH JAVA
INSTRUMENTATION AND ONLINE DETECTION USING
CALL GRAPHS AND TREES

This section describes the online (i.e., in the critical path
of execution) mechanism that RSMT employs to capture and
validate program behaviors. Behavior capture and validation
is achieved through a custom instrumentation system that
enables the extraction of call graphs and call traces at
runtime.

The functional components of this architecture are shown
in Figure 1 and include: (1) a class transformation system
that passes loaded Java class files to various class transfor-
mation components that are managed by a class transformer
registry, (2) a runtime API that is invoked by instrumented
code, (3) a filter that enables dynamic software probing, (4)
a model builder that listens to runtime events and builds a
model of system behavior, and (5) a model enforcer that
compares a model representing correct system behavior to a
snapshot of the currently observed behavior.
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Figure 1. The Architecture of the RSMT Online Monitoring and Detection
Model

1) Addressing issue 1 via class transformation and byte-
code instrumentation: To address issue 1 in Section II
(i.e., how to capture features representative of application
behavior without burdening developers), we developed a
class transformation system in RSMT that creates events
to generalize and characterize program behavior at runtime.
The transformation system is plugin-based and thus exten-
sible. In particular, it includes a range of transformation
plugins providing instrumentation support for extracting
timing, coarse-grained (method) control flow, fine-grained
(branch) control flow, exception flow, and annotation-driven
information capture.

For example, a profiling transformer could inject ultra-
lightweight instructions to store the timestamps when meth-
ods are invoked. A trace transformer could add method-
Enter() and methodExit() calls to construct a control flow
model. Each transformation plugin conforms to a common
API. This common API can be used to determine whether
the plugin can transform a given class, whether it can
transform individual methods in that class, and whether it
should actually perform those transformations if it is able.

We leverage RSMT’s publish-subscribe (pub/sub) mecha-
nism, which allows (1) the rapid dissemintation of events by
instrumented code and (2) the subsequent capture by event
listeners that can be registered dynamically at runtime. This
pub-sub mechanism is exposed to instrumented bytecode via
a proxy class that contains various static methods.! In turn,
this proxy class is responsible for calling various listeners
that have been registered to it. The following event types are
routed to event listeners:

o Registration events are typically executed once per
method in each class as its < clinit > (class initial-
izer) method is executed. These events are typically
consumed (not propagated) by the listener proxy.

e Control flow events are issued just before or just after
a program encounters various control flow structures.
These events typically propagate through the entire
listener delegation tree.

'We use static methods since calling a Java static method is up to 2x
faster than calling a Java instance method.

o Annotation-driven events are issued when annotated
methods are executed. These events propagate to the
offline event processing listener children.

The root listener proxy is called directly from instru-
mented bytecode and delegates event notifications to an error
handler, which gracefully handles exceptions generated in
child nodes. Specifically, the error handler ensures that all
child nodes receive a notification regardless of whether that
notification results in the generation of an exception (as is
the case when a model validator detects unsafe behavior).
The error handler delegates to the following model construc-
tion/validation subtrees:

o The online model construction/validation subtree per-
forms model construction and verification in the current
thread of execution (i.e., on the critical path).

o The offline model construction/validation subtree con-
verts events into a form can be stored asynchronously
with a (possibly remote) instance of Elasticsearch [15],
which is an open-source search and analytics engine
that provides a distributed real-time document store.

2) Addressing issue 2 by improving performance via
dynamic probes: To address issue 2 in Section II (i.e., reduce
the performance overhead of execution feature vector col-
lection), we analyzed the method call patterns and observed
that the majority of method calls are typically lightweight
and occur in a small subset of nodes in the call graph.
By identifying a method as being called frequently and
having a significantly larger performance impact, we can
disable events issued from it entirely or reduce the num-
ber of events it produces (and therefore achieve improved
performance). These observations, along with a desire for
improved performance, yielded the creation of a dynamic
filtering mechanism in RSMT.

To enable filtering, each method in each class is associated
with a new static field added to that class during the
instrumentation process. The value of the field is an object
used to filter methods before they make calls to the runtime
trace API. This field is initialized in the constructor and is
checked just before any event would normally be issued to
determine if the event should actually occur.

3) Addressing issue 4 via an online model builder and
model validator: To address issue 4 in Section II (character-
izing feature vector abilities to reflect application behaviors),
we developed an online model builder and model validator.
The model builder is responsible for constructing two views
of software behavior: a call graph (used to quickly determine
whether a transition is valid) and a call tree (used to
determine whether a sequence of transitions is valid). The
model validator is a closely related component that compares
current system behavior to an instance of a model assumed
to represent correct behavior. Figures 3 and 4 demonstrate
the complexity of the graphs we have seen. Each directed
edge in a call graph connects a parent method (source) to a
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Figure 2. Call Graph (L) and Call Tree (R) Constructed for a Simple
Series of Call Stack Traces

method called by the parent (destination). Call graph edges
are not restricted wrt forming cycles. Suppose the graph in
Figure 2 represented correct behavior. If we observed a call
sequence e,a,x at runtime, we could easily tell that this was
not a valid execution path because no a,x edge is present in
the call graph.

Figure 3. Call Tree Generated for a Simple SQL Statement Parse
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Figure 4. Call Tree Generated for a Simple SQL Statement Parse (zoomed
in on heavily visited nodes)
Although the call graph is fast and simple to construct,

it has shortcomings. For example, suppose we observed a
transition sequence e,a,d,c,a. Using the call graph, none
of these transition edges violated expected behavior. If we
account for past behavior, however, there is no c,a transition
occurring after e,a,d. To handle these more complex cases,
a more robust structure is needed. We call such a structure
the call tree, as shown in the right-hand side of Figure 2.
Whereas the call graph falsely represents it as a valid
sequence, there is no path along sequence e,a,d,c,a in the
call tree (this requires two backtracking operations), so we
determine that this behavior is incorrect. The call tree is not
a tree in the structural sense. Rather, it is a tree in that each
branch represents a possible execution path. If we follow

the current execution trace to any node in the call tree, the
current behavior matches the expectation.

Unlike a pure tree, the call tree does have self-referential
edges (e.g., the c,a edge in Figure 2) if recursion is observed.
Using this structure is obviously more processor intensive
than tracking behavior using a call graph.

IV. MONITORING WITH AOP AND OFFLINE DETECTION
USING MACHINE LEARNING TECHNIQUES

To explore the feasibility of using execution traces, ma-
chine learning, and unit tests for cyber-attack detection, we
created an offline monitoring and detection framework for
Java web applications (its structure is shown in Figure 5).
This section first presents our design of annotations and
aspect-oriented programming techniques to capture the run-
time data. It then describes how we create different feature
vectors and employ machine learning algorithms for attack
detection. The experimental results and analysis of detection
performance are presented in Section V.

Annotation
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Figure 5. The Design of Aspect] Real-time Web Application Monitoring

A. Addressing issue 1 via capturing the runtime data using
Aspect] and collecting and storing the data in a reliable
data store

To address issue 1 in Section II (i.e., capturing application
behavior at runtime and transferring the data to detection
models), we employ Aspect] [16], which provide aspect-
oriented extensions to Java. When a web application is under
attack, function parameters or return values may become ab-
normal and thus can be utilized to identify malicious behav-
iors. To monitor runtime behaviors of Java web applications
without modifying the source code or altering its original
functional behavior, we employed Aspect]’s annotations. In
particular, to access the method arguments and return value
at runtime, we defined the following annotation types to use
in the source code of web applications:

e @Input (arguments). This annotation type can be
used to acquire the arguments of the annotated method
and other necessary data.

e @Output (return values). This annotation
type can be used to obtain the return value of the
annotated method.

To process the annotations demonstrated above, we used
Aspect] to implement a lightweight annotation processing
engine that creates pointcuts around the executed method,
captures and the data-like parameters, returns value as log



messages, and then outputs the data as log messages via
log4;.

To create a reliable mechanism to store and transfer
the data captured by Aspect] to the detection models,
Logstash and Elasticsearch were used to collect and manage
the runtime data captured from multiple web applications.
Logstash is a tool that collects and parses events and logs.
We customized a simple Logstash plug-in that uses a grok
filter [17] (a default way to filter and parse log messages
for Logstash) to open and read each logging message from
log4j, parses the log lines into required format, and then
stores the processed data in Elasticsearch.

Elasticsearch is an open-source search and analytics en-
gine built on top of Apache Lucene that provides a dis-
tributed real-time document store where all fields can be
indexed and full text of unstructured data are search-able. We
configured Elasticsearch to store and manage the captured
runtime data from web applications. These data is later
queried by our machine learning back end presented in
Section IV via the APIs provided naively by Elasticsearch.

B. Addressing issue 4 via machine learning cyber-attack
detection techniques

To address issue 4 in Section II (i.e., using proper feature
vectors to represent runtime data stream), we developed
two types of feature vectors and utilized three machine
learning techniques to analyze and identify the possible
cyber-attacks. Each of these techniques is described below.
Feature vectors Datasets and feature vectors are crucial
for cyber-attack detection systems. Incorrect selection of
properties to measure from a running system can yield
both (1) unnecessary noise that reduces the performance of
machine learning algorithms and (2) false positive and false
negative predictions about system execution correctness.
To study the feature vector abilities to reflect application
behaviors, we designed and created the following feature
attributes:

1) Method execution time. Attack behaviors can result in
abnormal method execution times, e.g., SQL injection
attack might require less time to execute than normal
database queries.

2) User principle name (UPN). UPN is the name
of a system user in an e-mail format, such as
my_name@my_domain_name. When attackers log
into the test application using fake user principal
names, the machine learning system can use this
feature to detect it.

3) Argument length, which represents
of characters of an argument, e.g.,

the number
XSS

attacks might input some abnormal arguments
that cause the overall argument length
to be much larger than normal, such as:

http://www.msn.es/usuario/guias123/default.asp?sec=-

&quot; &gt; &lt;/script&gt; &lt;script& gt;alert(&quot;Da-
iMon&quot;)&lt;/script&gt;

4) Number of domains, which is the number of domains
found in the arguments. The arguments can be inserted
with malicious URLSs by attackers to redirect the client
“victim” to access malicious web sources.

5) Duplicate special characters. Since many web
browsers automatically ignore and correct duplicated
characters, attackers can insert duplicated characters
into requests to fool validators.

Our second feature vector was built using the n-gram
[14] model. The original contents of the arguments and
return values are filtered by Weka’s StringToWordVector
tool (which converts plain word into a set of attributes
representing word occurrence) and the results are used to
make the feature vectors.

Machine learning detection models. We use machine
learning algorithms from the Weka workbench, which pro-
vides a complete environment for classification, regression,
and clustering. In the training stage, the machine learning
system first queries the Elasticsearch engine and generates
datasets in the Attribute-Relation File Format (ARFF) that
are required by the Weka library. We used three original
machine learning classifiers and two additional classifiers
that utilize the results of three original classifiers, as follows:

1) Naive Bayes, which makes classification decisions
by calculating the probabilities and costs for each
decision. Bayes network classifiers are widely used
in cyber-attack detection [18].

2) Random forests, which is an ensemble learning method
for classification. Random forests train decision trees
on sub-samples of the dataset and then use averaging
to improve classification accuracy.

3) Support vector machine (SVM), which is a supervised
learning model that draws an optimal hyperplane in the
feature space and divides separate categories as wide
as possible. SVM is very efficient in classification
problems. In our machine learning system, we use the
Sequential Minimal Optimization (SMO) algorithm
provided by Weka to train the SVM.

4) Aggregate_vote, which is is an aggregate classifier. If
more than half of the classifiers claim to have detected
attacks this classifier return ATTACKSs, otherwise it
returns NOT_ATTACK.

5) Aggregate_any. If any one of the classifiers claims
to have detected attacks this classifier would return
ATTACK, otherwise it returns NOT_ATTACK.

In the detection stage, the machine learning system provides
a GET API for third-party applications to query the detection
result.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
RMST tool. We first evaluate the performance overhead of



RSMT’s JVM agent on applications when detecting a range
of cyber-attacks. We then describe the test environment
created to evaluate the attack detection performance of the
off-line machine learning models on three types of cyber-
attacks: cross-site scripting, SQL injection, and directory
traversal.

A. Overhead Observations

To address issue 2 in Section II (i.e., to examine the
performance overhead of execution feature vector collec-
tion), we conducted experiments that evaluated the runtime
overhead in average cases and worst cases, as well as
assess how “real-time” application execution monitoring and
abnormal detection could be. In applications that are not
computationally constrained, RSMT has low overhead. For
example, a Tomcat web server that starts up in 10 seconds
takes roughly 20 seconds to start up with RSMT enabled.
This startup delay is introduced since RSMT examines
and instruments every class loaded by the JVM. However,
this startup cost is amortized since class loading typically
happens just once per class.

In addition to the startup delay, RSMT incurs some
runtime performance overhead every time instrumented code
is invoked. We tested several web services and found that
RSMT had an overhead ranging from 5% to 20%. The
factors that most strongly impact the overhead are number of
methods called (more frequent invocation results in higher
overhead) and ratio of computation to communication (more
computation per invocation results in lower overhead).

To evaluate worst-case performance, we used RSMT to
monitor the execution of an application that uses Apaches
Commons-Compress library to bz2 compress randomly gen-
erated files of varying sizes ranging from 1x64B blocks to
1024x64B blocks, which is a control flow intensive task.
Moreover, the Apache Commons implementation of bz2 is
“method heavy” (e.g., there are a significant number of setter
and getter calls), which are typically optimized away by the
JVMs hotspot compiler and converted into direct variable
accesses. The instrumentation performed by RSMT prevents
this optimization from occurring, however, since lightweight
methods are wrapped in calls to the model construction and
validation logic. As a result, our bz2 benchmark represents
the worst case for RSMT performance.

Figure 6 shows that registration adds a negligible overhead
to performance (0.5 to 1%), which is expected since registra-
tion events only ever occur once per class, at class initial-
ization. Adding call graph tracking results in a significant
performance penalty, particularly the number of randomly
generated blocks increases. Call graph tracking ranges from
1.5x to over 10x slower than the original application. Call
tree tracking results in a 2-5x slowdown. Similarly, fine-
grained control flow tracking results in a 4-6x slowdown.

As a result, with full, fine-grained tracking enabled, an
application might run at 1% its original speed. By filtering
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getters and setters, however, it is possible to reduce this over-
head by several orders of magnitude. We are investigating
these types of optimization techniques and present the over-
head reported here as a baseline for future enhancements.

B. Detection Results

To address issue 3 in Section II (i.e., to examine the
effectiveness of various machine learning techniques), we
developed a Spring Boot [19] web application as the test
environment, created a different test, and demonstrated ex-
ploits of some common cyber-attacks on it, as described
below.

1) Setting Up the Test Environment: Figure 7 shows the
test web application provides several RESTful APIs: (1) user
authentication, where a GET API allows clients to send
username and password to the server and then check the
SQL database in the back-end for authentication, (2) video
creation, where a POST API allows clients to create or mod-
ify video meta data, and (3) video uploading/downloading,
where POST/GET APIs allow users to upload or download
videos from the server’s back-end file system using the
video’s ID.

To evaluate the system’s attack detection performance, we
exploit three attacks from OWASP’s top ten cybersecurity
vulnerabilities list [13] into the test application: (1) SQL
injection, (2) directory traversal, and (3) cross-site scripting.
We then investigated the overall accuracy, precision, recall,
and f-score of the different machine learning models (naive
Bayes, random forests and support vector machine [18]) in
detecting and preventing attacks. We also use two additional
aggregate models: (A) Aggregate_vote, where if more than



half of the classifiers claim to have detected attacks this clas-
sifier return ATTACK, otherwise it returns NOT ATTACK
and (2) Aggregate_any, where if any one of the classifiers
claims to have detected attacks this classifier would return
ATTACK, otherwise it returns NOT ATTACK.

2) Detecting the Directory Traversal Attacks: For the
Directory Traversal Attacks, the training dataset contains
1,000 safe unit tests and 500 attack unit tests, while the
validation dataset contains 250 safe unit tests and 125 attack
unit tests (all attack samples are collected from OWASP
website). Table I shows that the random forest classifier
outperformed others, with highest accuracy, precision, recall,
and f-score.

accuracy | precision recall f-score

naive bayes 0.8044 0.7183 0.6800 | 0.6986

random forest 0.9333 0.8333 1.0000 | 0.9091

SVM 0.8400 0.6970 0.9200 | 0.7931

AGGREGATE_VOTE 0.8404 0.7019 0.9040 | 0.7902

AGGREGATE_ANY 0.8670 0.7193 0.9840 | 0.8311
Table I

MACHINE LEARNING MODELS’ EXPERIMENTAL RESULTS FOR
DIRECTORY TRAVERSAL ATTACKS

3) Detecting the XSS Attacks: The XSS training dataset
contains 1,000 safe unit tests and 500 attack unit tests, while
the validation dataset contains 150 safe unit tests and 75
attack unit tests (XSS attack samples are URLs obtained
www.xssed.com). All three classifiers show similar ef-
fectiveness in detecting XSS attacks.

accuracy | precision recall f-score

naive bayes 0.8711 0.0.7211 | 1.0000 | 0.8380

random forest 0.8711 0.0.7211 1.0000 | 0.8380

SVM 0.8756 0.7282 1.0000 | 0.8427

AGGREGATE_VOTE 0.8722 0.7238 1.0000 | 0.8398

AGGREGATE_ANY 0.8634 0.7102 1.0000 | 0.8306
Table II

MACHINE LEARNING MODELS’ EXPERIMENTAL RESULTS FOR
CROSS-SITE SCRIPTING ATTACKS

4) Detecting the SQL Injection Attacks: For the SQL
injection attacks, the training dataset contains 160 safe unit
tests and 80 attack unit tests, while the validation dataset
contains 40 safe unit tests and 20 attack unit tests. The
SQL injection attack samples are made specifically to bypass
the test applications user authentication, including the most
common SQL injection attack types.

accuracy | precision | recall f-score

naive bayes 0.9167 0.0.9412 | 0.8000 | 0.8649

random forest 0.9333 1.0000 0.8000 | 0.8889

SVM cell5 0.9333 1.0000 | 0.8889

AGGREGATE_VOTE 0.9333 1.0000 0.8000 | 0.8889

AGGREGATE_ANY 0.9167 0.9412 0.8000 | 0.8649
Table 11T

MACHINE LEARNING MODELS’ EXPERIMENTAL RESULTS FOR SQL
INJECTION ATTACKS

VI. RELATED WORK

This section compares our research on RSMT with related
work.

Static analysis approaches read an application’s source
code and search for potential flaws in its construction and

expected execution that could lead to attacks. For exam-
ple, prior techniques have statically analyzed SQL queries
and built grammars representing expected parameterization.
These statically derived models are used at runtime to
detect parameterizations of the SQL queries that do not fit
the grammar and indicate possible attacks. Livshits et al.
[20] propose a static analysis technique for detecting SQL
injection, cross-site scripting, and HTTP splitting attacks.
Their system applies user-provided specifications of vulner-
abilities to analyze code statically without code execution.
Huang et al. [21] present the WAVES web application
security assessing tool and the NRE algorithm. Using web
crawlers, they first identify all possible data entry points
that are vulnerable for attacks. Then they attack the most
vulnerable points determined by several malicious patterns.
The resulting pages then would be analyzed using the NRE
algorithm. Halfond et al. [22] combine conservative static
analysis and runtime monitoring to detect SQL injection
attacks.

Manual modeling approaches rely on system designers
to annotate code or build auxiliary textual or graphical
models to describe expected system behavior. For example,
SysML is a language that allows users to define parametric
constraint relationships between different parameters of the
system to indicate how changes in one parameter should
propagate or affect other parameters. Kemalis et al. [23]
describe a prototype SQL injection detection system that
utilizes specifications that define the intended syntactic struc-
ture of SQL queires and monitor Java-based applications and
detect SQL injection attacks in real time. Kosuga et al. [24]
present a technique, Sania, to detect SQL injection in web
applications during development and debugging phases. The
parse tree of intended SQL query and the actual results are
compared to assess the spot safety. To detect and prevent
SQL Injection attacks on web applications, Dharam et al.
[25] evaluate a runtime monitoring framework that leverages
the knowledge gained from pre-deployment testing of web
applications to identify valid/legal execution paths.

Cyber-attack detection system based on machine
learning typically build models that learn normal behaviors
from the application and use the model to detect anomaly
activities. Unsupervised and supervised approaches are two
common types of methods. Valeur et al. [26] apply machine
learning techniques to learn the profiles of normal database
access and detect SQL injection attacks. Sharma et al. [27]
introduce a new K-means algorithm for anomaly detection.

While RSMT does perform some degree of static analysis,
its primary characterization of program behavior is derived
from monitoring software as it executes when driven by
real-world parameters. Unlike manual modeling approaches,
RSMT does not require the presence of a rigorous model
of all system behaviors. Programmers can provide hints
to RSMT about the nature of data being manipulated and
assumptions about that data.



VII. CONCLUDING REMARKS

This paper investigated the feasibility of creating an auto-
nomic cyber-attack detection system capable of detecting at-
tacks against modern applications running on a Java Virtual
Machine (JVM). We described the Robust Software Model-
ing Tool (RSMT), which we developed to detect attacks us-
ing both lightweight models based on control flow extracted
on the critical path of execution and application-specific
models of behavior that are validated offline. We showed
that unit tests can build useful models for characterizing
application behaviors observed at deploy time and that a va-
riety of useful features indicative of program behavior can be
readily extracted using existing instrumentation frameworks.
To validate our findings, we created several test applications
vulnerable to prevalent attack vectors. We then evaluated the
performance of RSMT in detecting attacks conducted against
these test applications. Our results indicate that RSMT is a
viable tool for detecting in-process cyber-attacks against web
applications. During the study we learned the following key
lessons:

« Advantages from dynamic probes. If every method of
every library during the application execution is instru-
mented, the number of events will be overwhelmed.
For example, we observed that Apache’s Commons
Compress library produces tens of millions of method
call events when compressing a 1MB file (an operation
that typically takes several milliseconds). The overhead
of simply making these calls and generating events
increases execution time by thirty percent or more.
RSMT’s dynamic and adaptive filtering strategy show
promise in reducing performance overhead.

o Limitations of existing machine learning ap-
proaches. The machine learning algorithms used by
RSMT are largely off-the-shelf (i.e., provided by
Weka). While their performance is acceptable for
carefully-crafted programmer-provided features, they
are not acceptable without these human-provided in-
puts. Since a goal of the RSMT project is to minimize
the invasiveness of developers, customized machine
learning algorithms are needed to improve the off-line
model’s performance.
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