
1

Total Quality of Service Provisioning in Middleware and Applications
Nanbor Wang�, Douglas C. Schmidt�, Aniruddha Gokhale�, Christopher D. Gill�, Balachandran Natarajan�,
Craig Rodrigues�, Joseph P. Loyall�, and Richard E. Schantz�

�Dept. of Computer Science and Engineering, Washington University
One Brookings Drive, St. Louis, MO 63130, USA

�Dept. of Electrical and Computer Engineering, University of California
616E Engineering Tower, Irvine, CA 92697, USA

�Institute for Software Integrated Systems, Vanderbilt University
Box 1829, Station B, Nashville, TN 37235, USA

�BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA

Commercial off-the-shelf (COTS) distribution middleware is gaining acceptance in the distributed real-time and embedded
(DRE) community. Existing COTS specifications, however, do not effectively separate quality of service (QoS) policy con-
figurations and adaptations from application functionality. DRE application developers therefore often intersperse code that
provisions resources for QoS guarantees and program adaptation mechanisms throughout DRE applications, making it hard to
configure, validate, modify, and evolve complex DRE applications. This paper illustrates (1) how standard component-based
middleware can be enhanced to flexibly compose static QoS provisioning policies with application logic, (2) how adaptive
middleware capabilities enable developers to abstract and encapsulate reusable dynamic QoS provisioning and adaptive behav-
iors, and (3) how component-based middleware and adaptive middleware capabilities can be integrated to provide a total QoS
provisioning solution for DRE applications.

Keywords:
QoS Provisioning, QoS Adaptation, Middleware,

CORBA Component Model

1. Introduction

Commercial-off-the-shelf (COTS) distribution
middleware technologies, such as the OMG’s
CORBA and Microsoft’s COM+/SOAP/.NET, have
matured considerably in recent years. They are in-
creasingly used to reduce the time and effort required
to develop applications in a broad range of domains.
These middleware technologies have historically been
applied to enterprise applications. More recently,
middleware has been applied to distributed real-time
and embedded (DRE) applications with stringent
quality of service (QoS) requirements for predictabil-
ity, latency, efficiency, scalability, dependability, and
security. There are many types of DRE applications,
but they have one thing in common: the right an-
swer delivered too late becomes the wrong answer.
Examples of DRE applications include industrial pro-

cess control systems and avionics mission computing
systems.

Regardless of the domain in which middleware is
applied, it helps expedite the application develop-
ment process by shielding programmers from many
accidental and inherent complexities, such as plat-
form and language heterogeneity, resource location,
and fault tolerance. Component middleware is a ma-
turing class of middleware that enables reusable ser-
vices to be composed, configured, and installed to
create applications rapidly and robustly. Examples
of COTS component middleware include the CORBA
Component Model (CCM) [1], Java 2 Enterprise Edi-
tion (J2EE) [2], and the Component Object Model
(COM) [3], which use different APIs, different pro-
tocols, and different component models.

Most DRE applications have stringent QoS require-
ments that must be satisfied simultaneously in real-
time. Examples of these QoS requirements include
processing resource allocation and network latency,
jitter, and bandwidth. To ensure DRE applications can



2

achieve their QoS requirements, various types of QoS
provisioning must be performed to allocate and man-
age system computing and communication resources
end-to-end. QoS provisioning can be performed in
the following ways:

� Statically, where the amount of resources re-
quired to support a particular degree of QoS is
pre-configured into an application. Section 4.1
describes the range of QoS resources that can
be provisioned statically.

� Dynamically, where the amount of resources
required are determined and adjusted based on
the runtime system status. Section 5.1 de-
scribes the range of QoS resources that can be
provisioned dynamically.

QoS provisioning in large-scale DRE systems
cross-cuts multiple system layers and requires end-
to-end enforcement. Existing component middle-
ware technologies, such as CCM, J2EE, and .NET,
were designed largely for applications with conven-
tional business-oriented QoS requirements, such as
data persistence, encryption, and transactional sup-
port. They therefore do not enforce the stringent QoS
requirements of DRE applications effectively. What
is needed is a QoS-enabled component middleware
that preserves existing support for heterogeneity in
standard component middleware, yet also provides
multiple dimensions of QoS provisioning and en-
forcement to meet the end-to-end QoS requirements
of DRE applications.

This paper provides the following three contribu-
tions toward the study of QoS-enabled component
middleware that is essential to the development of
large-scale DRE applications: First, we illustrate
how enhancements to standard component middle-
ware can simplify the development of DRE applica-
tions by composing QoS provisioning policies stati-
cally with applications. Our discussion focuses on a
QoS-enabled enhancement of the standard CORBA
Component Model (CCM) [1] called the Component-
Integrated ACE ORB (CIAO), which is being devel-
oped at Washington University, St. Louis. Second, we
describe how dynamic QoS provisioning and adapta-
tion can be addressed using middleware capabilities
called Qoskets, which are collections of reusable soft-
ware modules of the Quality Objects (QuO) [4] mid-
dleware developed by BBN Technologies. The dis-
cussion concentrates on how major elements in QuO

are defined, developed, and used to implement dy-
namic QoS provision and adaptive behaviors. Finally,
we discuss how we integrate CIAO and Qoskets to
enable composition of both static QoS provisioning
and dynamic adaptive QoS assurance in DRE appli-
cations. In particular, we focus on how CIAO uses
Qoskets to weave in the software elements to create
an integrated QoS-enabled component model that of-
fers a total QoS provisioning solution for DRE appli-
cations.

2. Component Middleware: A Powerful Ap-
proach to Building DRE Applications

This section presents an overview of component
middleware and discusses why conventional compo-
nent middleware fails to support key QoS provision-
ing needs of DRE applications.

2.1. Overview of Middleware Capabilities
Middleware is reusable software that resides be-

tween applications and underlying operating systems,
network protocol stacks, and hardware [5]. Mid-
dleware’s primary role is to bridge the gap between
application programs and the lower-level hardware
and software infrastructure, to coordinate how parts
of applications are connected and how they inter-
operate. When implemented properly, middleware
helps to shield application developers from low-level
platform details, provides standard interfaces with
higher level of abstractions to manage system re-
sources, and amortizes development costs through
reusable frameworks. By decoupling application-
specific functionality and logic from the acciden-
tal complexities inherent in the infrastructure, mid-
dleware enables application developers to concen-
trate on programming application-specific functional-
ity, rather than wrestling repeatedly with lower-level
infrastructure challenges.

2.2. Limitations with Object-oriented Middleware
The Object Management Architecture (OMA) in

the CORBA 2.x specification [6] defines an object-
oriented middleware standard for building portable
distributed applications. The CORBA 2.x specifica-
tion focuses on interfaces, which are contracts be-
tween clients and servers that define how clients
view and access object services provided by a server.
CORBA is the only COTS middleware that supports



3

multiple languages and has made substantial progress
in satisfying the QoS requirements of DRE systems.
CORBA has the following limitations however:

Lack of functional boundaries. The CORBA 2.x
object model treats all interfaces as client/server con-
tracts. This object model does not, however, pro-
vide sufficient mechanisms to decouple depencencies
among collaborating object implementations. For ex-
ample, object implementations that depend on other
objects need to discover and connect to those ob-
jects explicitly. To build complex distributed applica-
tions, therefore, application developers need to pro-
gram the connections among interdependent services.
The rather primitive nature of these methods can yield
brittle and non-reusable implementations.

Lack of generic component servers. CORBA 2.x
does not specify a generic component server frame-
work to perform common “bookkeeping” work, in-
cluding initializing the server and its QoS policies,
providing common services such as an event service,
and managing the runtime environment of each com-
ponent. The lack of a generic component server stan-
dard has led to tightly coupled, ad-hoc server imple-
mentations, which increase the complexity of soft-
ware upgrades and reduce the reusability and flexi-
bility of CORBA-based applications.

2.3. Promising Solution: Component Middleware
In recent years, component middleware [7] has

emerged to address the limitations with object-
oriented middleware outlined above. Component
middleware addresses these issues by (1) creating a
virtual boundary around application components that
interact with each others only through well-defined
interfaces and (2) defining the standard mechanisms
to compose and execute components in generic com-
ponent servers. We base our work on the CCM to take
advantage of the DRE-related CORBA specifications,
such as CORBA Messaging and Real-time CORBA,
that enforce and support QoS requirements of DRE
systems.

Figure 1 shows an overview of the runtime archi-
tecture of the CCM model. Components are imple-
mentation entities that export a set of interfaces to
clients. Components can also express their intent to
collaborate with other components by defining ports
that specify how components interact.

The CCM also defines a container mechanism that

Container

Container

Component
Front Panelhud info

overheat

radar engine

safe modethrottle pos.

thrust

F
acets

R
ec

ep
ta

cl
es

refresh
rate

A
tt

ri
bu

te

Component
Engine Mgnt.air temp

em stop

N1

curr thrust

output

F
acets

E
vents

type

A
tt

ri
bu

te

uses

uses

Notification Service

Event Channel
Price Changes

Event Channel
Offer Prices

consumespublishes
consumes publishes

E
vents

Transaction
Security

Persistent

ORB

Figure 1. Overview of the CCM Run-time Archi-
tecture

provides a component runtime environment via pre-
defined hooks to control systemic strategies, such as
event notification, transaction, and security. Equally
important are the standardized component implemen-
tation, packaging and deployment tools and mecha-
nisms that abstract and automate component imple-
mentations, application compositions, and system de-
ployment. The CCM programming paradigm sep-
arates many common concerns of composing and
provisioning reusable software components to build
an application. This separation of concerns yields
the following software development roles: Compo-
nent designers, who define the component features
by defining the component interfaces, Component
implementors, who develop component implemen-
tations, Component packagers, who package com-
ponent implementations with their default properties,
Component assemblers, who select component im-
plementations and compose them into applications,
and, System deployers, who deploy component as-
semblies into component servers.

2.4. Limitations with Component Middleware for
DRE Systems

Large-scale DRE applications require seamless in-
tegration of many hardware and software systems.
They also require complicated application provision-
ing where developers must connect numerous dis-
tributed or collocated subsystems together and de-



4

fine the functionality of each subsystem. Component
middleware can reduce the software development ef-
fort for these types of systems by enabling applica-
tion development through composition. Conventional
component middleware frameworks, however, fail to
support abstractions for QoS provisioning required
by DRE applications and, therefore, force developers
to control QoS ensuring mechanisms imperatively in
component implementations.

Moreover, many QoS capabilities cannot be imple-
mented solely within a component due to the follow-
ing limitations:

� QoS provisioning must be done end-to-end,
i.e., it needs to be applied to all interacting com-
ponents. Implementing QoS provisioning logic
internally in a component hampers its reusabil-
ity.

� Certain resources, such as thread pools in Real-
time CORBA, can only be provisioned within
an execution unit, i.e., a component server.
Since component developers often have no a
priori knowledge about which other compo-
nents a component implementation will collab-
orate, the component implementation is not the
right level at which to perform QoS provision-
ing.

� Certain QoS assurance mechanisms, such as
configuration of non-multiplexed connections
between components, affect component inter-
connections. Since a reusable component im-
plementation may not know how it will be com-
posed with other components, it is not gener-
ally possible for component implementations to
perform these types of QoS provisioning in iso-
lation.

� Many QoS provisioning policies and mecha-
nisms require the installation of customized
ORB modules to work correctly. However,
some of these policies and mechanisms, such
as high throughput and low latency, may be in-
herently incompatible. It is hard for QoS provi-
sioning mechanisms implemented within com-
ponents to foresee these incompatibilities with-
out knowing the end-to-end QoS requirements
a priori.

In general, forcing QoS provisioning functional-
ity into a component prematurely commits each im-
plementation to a specific QoS provisioning scenario

in a system’s lifecycle. This tight coupling defeats
one of the key benefits of component models: sepa-
rating component functionality from system manage-
ment. By creating dependencies between application
components and the underlying component frame-
work, component implementations become hard to
reuse, particularly in DRE applications with stringent
QoS requirements.

3. QoS Provisioning and Enforcement for DRE
applications

A key challenge in QoS provisioning is to decouple
the reusable, multi-purpose, off-the-shelf, resource
management aspects of the middleware from aspects
that need customization and tailoring to the specific
preferences of the application.

QoS
Systemic Path

Operating System

Middleware

Sys
Condition

Mechanism & Properties
Manager

Applications

Operating System

QoS
Descriptions

Interceptor

Middleware

Applications

Local
Resource
Manage-

ment

Interceptor
Sys

Condition
Sys

Condition
Sys

Condition

QoS
Descriptions

} {

Endsystem Endsystem

Local
Resource
Manage-

ment

Functional Path

Infrastructure Middleware

Distributed Middleware

Common Services

Domain-Specific Services

Infrastructure Middleware

Distributed Middleware

Common Services

Domain-Specific Services

Figure 2. Decoupling the Functional Path from the
Systemic QoS Path

Based on our experience developing dozens of re-
search and production DRE systems over the past two
decades, we have found that it is most effective to sep-
arate the programming of QoS concerns along the two
dimensions shown in Figure 2 and discussed below:

Functional paths, which are flows of information
between client and remote server applications. Dis-
tributed middleware is responsible to ensure that
this information is exchanged efficiently, predictably,
scalably, dependably, and securely between remote
nodes. The information itself is largely application-
specific and determined by the functionality being
provided (hence the term “functional path”).

QoS systemic paths, which are responsible for deter-
mining how well the functional interactions behave
end-to-end with respect to key DRE QoS properties,



5

such as (1) when, how, and what resources are com-
mitted to client/server interactions at multiple levels
of distributed systems, (2) the proper application and
system behavior if available resources are less than
expected, and (3) the failure detection and recovery
strategies necessary to meet end-to-end dependability
requirements.

In next-generation DRE systems, the middleware –
rather than operating systems or networks alone – will
be responsible for separating QoS systemic properties
from functional application properties and coordinat-
ing the QoS of various DRE system and application
resources end-to-end. The architecture shown in Fig-
ure 2 enables these properties and resources to change
independently, e.g., over different distributed system
configurations for the same application.

The architecture in Figure 2 assumes that QoS sys-
temic paths will be provisioned by a different set
of specialists (such as systems engineers, adminis-
trators, operators, and possibly automated comput-
ing agents) and tools than those customarily respon-
sible for programming functional paths in DRE sys-
tems. Beside the multiple software development roles
we previously identified in Section 2.3, QoS-enabled
component middleware identifies yet another devel-
opment role which we term qosketeer [4] that is
responsible for performing QoS provisioning, such
as preallocating CPU resources, reserving network
bandwidth/connections, and monitoring/enforcing the
proper use of system resources at runtime.

The next 3 sections describe middleware technolo-
gies based on the architecture in Figure 2 that we have
developed to

1. Statically provision QoS resources end-to-end
to meet key requirements. Some DRE systems,
such as avionics mission computing applica-
tions, require strict preallocation of critical re-
sources via static QoS provisioning.

2. Monitor and manage the QoS of the end-to-end
functional application interactions.

3. Enable the adaptive and reflective decision-
making needed to dynamically provision QoS
resources robustly and enforce the QoS require-
ments of applications in the face of rapidly
changing mission requirements and environ-
mental conditions.

4. Static Qos Provisioning and Enforcement

This section presents an overview of static QoS
provisioning and illustrates how static QoS provision-
ing can be composed into a component-based applica-
tion.

4.1. Overview of Static QoS Provisioning
Static QoS provisioning refers to pre-determining

the resources needed to satisfy certain QoS require-
ments and allocating the resources of a system before
or during start-up time. Certain applications use static
QoS provisioning because they anticipate unchanging
demands and require tightly bounded predictability
for certain functionality in the systems. In addition,
static QoS provisioning is often the simplest solution
available.

To address the limitations of existing middleware
outlined in Section 2.4, it is necessary to make QoS
provisioning policies an integral part of component
middleware to decouple QoS provisioning policies
from component functionality. This separation of
concerns relieves component developers from tan-
gling the code to manage QoS resources with the
component implementation. It simplifies QoS pro-
visioning that cross-cut multiple interacting compo-
nents to ensure proper end-to-end QoS behavior.

More specifically, to provision end-to-end QoS
throughout a component middleware system robustly
and improve component reusability, the static QoS
provisioning specifications should be decoupled from
component implementations and specified instead in
component composition metadata. For QoS resources
that must be allocated globally in an application, com-
ponent assembly metadata must be expanded to allo-
cate and configure these resources and associate them
with component instances or component connections.
Moreover, to ensure a component server is equipped
with the mechanisms needed to support the provi-
sioned QoS requirements, component assembly meta-
data should include middleware modules that enable
the control and configuration of these resources.

4.2. Static QoS Provisioning with CIAO
Figure 3 shows the key elements of the

Component-Integrated ACE ORB (CIAO), which is
a QoS-enabled implementation of CCM being devel-
oped at Washington University, St. Louis by extend-
ing the TAO ORB [8]. TAO is an open-source, high-



6

Client Component Server

Deployment
&

Configuration
Mechanism

Component Assembly

RT-ORB

in args

out args + return value

Operation ()

QoS
Mechanism

Plug-ins

QoS
Mechanism

Plug-ins

Client
Configuration

Aggregate

QoS
Adaptation

Container

CORBA
Component

Component
Home

Real-Time POA

QoS Property
Adaptor

QoS Policies

R
ef

le
ct

QoS
Adaptation

QoS
Adaptation

QoS
Mechanism

Plug-ins

Named
Policy

Aggregate

Named
Policy

Aggregate

Object
Reference

QoS
Adaptation

QoS
Mechanism

Plug-ins

QoS Policies

Component Connection
Specifications

Component & Home Impls

Figure 3. Key Elements in CIAO

performance, highly configurable Real-time CORBA
ORB that implements key patterns [9] to meet the
demanding QoS requirements of distributed systems.
CIAO enhances TAO to simplify the development of
DRE applications by enabling developers to statically
provision QoS policies end-to-end declaratively when
assembling a system.

To support the role of the qosketeer, CIAO makes
the following extensions to the CCM to support static
QoS provisioning:

Component assembly. A component assembly de-
scribes how components are composed into a system.
We extend the notion of component assembly to in-
clude server-level QoS provisioning and implementa-
tions for required QoS supporting mechanisms. We
also extend the assembly descriptor format to allow
QoS provisioning at the component-connection level.

Client configuration aggregates. We define client-
side configuration specifications to configure the
client-side ORB for support of various QoS provi-
sioning policies. Clients can then associate with
named QoS provisioning policies defined in an ag-
gregate, interact with servers, and provide end-to-end
QoS assurance. Client configuration aggregates can
be installed into a client ORB transparently in CIAO.

QoS-aware containers. They provide the centralized
interface for managing provisioned component QoS
policies and interacting with QoS assurance mecha-
nisms required by the QoS policies.

QoS adaptations. CIAO also supports installation of
meta-programming hooks which can be used to per-
form dynamic QoS provisioning.

To support these capabilities, CIAO extends the
CCM packaging and deployment framework so that
system developers can specify the necessary features
in component assembly descriptors as various poli-
cies. These capabilities enable CIAO to statically pro-
vision the types of QoS resources outlined in Sec-
tion 4.1 as follows:

CPU resources – These policies specify how to allo-
cate CPU resources when running certain tasks, e.g.,
priority model of a component instance;

Communication resources – These policies spec-
ify ways to reserve and allocate communication re-
sources for component connections, e.g., an assembly
can request a private connection between two critical
components in the system, and reserve bandwidth for
the connection using the RSVP protocol;

Distributed middleware configuration – These
policies specify the required software modules that
control the QoS mechanisms for:

� ORB configurations: The ORB needs to know
how to support the functionality required to en-
able higher level policies, e.g., installing and
configuring customized communication proto-
col.

� Meta-programming mechanisms: Software
modules, such as those developed with the QuO
Qosket middleware framework, which imple-
ment dynamic QoS provisioning and adaptation
can be installed statically at system composi-
tion time via meta-programming mechanisms,
such as smart proxies and interceptors [10].

System developers can use CIAO to decouple QoS
provisioning functionality from component imple-
mentation and compose these static QoS provisioning
requirements via the component assembly into a sys-
tem at some later point of the development cycle.



7

5. Dynamic QoS Provisioning and Enforcement

This section presents an overviews of dynamic QoS
provisions and describes how middleware modules
are being used to manage dynamic QoS provisioning
for applications.

5.1. Overview of Dynamic QoS Provisioning
Dynamic QoS provisioning involves the allocation

and management of resources at run-time to satisfy
application QoS requirements. Certain events, such
as fluctuations in resource availability or changes in
QoS requirements, can trigger reevaluation and re-
allocation of resources. Middleware supporting dy-
namic QoS provisioning needs to detect changes in
available resources and either reallocate resources, or
notify the application to adapt to the change.

As described in Section 1, conventional middle-
ware tries to isolate an application’s functionality be-
havioral aspects, such as operation invocations, by
abstracting these behavioral aspects behind interface
interaction semantics. Although it is possible to im-
plement dynamic QoS provisioning functionality in
existing applications which use conventional middle-
ware, it requires working around the current struc-
tures intended to simplify the development of dis-
tributed systems and of often becomes counter pro-
ductive. Ad hoc approaches lead to non-portable code
that depends on specific OS features, tangled imple-
mentations that are tightly coupled with the applica-
tion software, and other problems that make it hard
to adapt the application to changing requirements. It
is therefore essential to separate the functionality of
dynamic QoS provisioning from both lower level dis-
tribution middleware and application functionality.

Figure 4 illustrates the kinds of dynamic QoS pro-
visioning abstractions and mechanisms that are nec-
essary in large-scale DRE applications:

1. A design time formalism to specify the level of
service desired by a client, the level of service
an object expects to provide, operating regions
indicating possible measured QoS, and actions
to take when the level of QoS changes.

2. A runtime capability to adapt application be-
havior based upon the current state of QoS in
the system.

3. A set of interfaces to resources and mechanisms
in the protocol infrastructure that need to be

Protocol Infrastructure

Design Time

Client Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Object Adapter

operation ()

ORB Core

in args

out args + return
value

OBJ
REF

Contract
Delegate Delegate

SysCond

Network

Mechanism/property
Manager

IIOP IIOP

SysCond
SysCond

SysCond

Contract

Code
Generator

Adaptation Specification
Language (ASL)

Contract Description
Language (CDL)

CORBA IDL

Runtime

Delegate Contracts

IIOP
Glue

IIOP
Glue

Group Replication (AQuA)

Bandwidth Reservation (DIRM)

IIOP over TCP/IP (default)C
li

en
t-

S
id

e 
O

R
B

Se
rv

er
-S

id
e 

O
R

BControl Control

IIOPIIOP

Runtime

1

2

3

Callback Callback

Figure 4. Examples of Dynamic QoS Provisioning

measured and controlled dynamically.

5.2. Overview of QuO
Quality Objects (QuO) [4] is an adaptive middle-

ware framework developed by BBN Technologies
that allows the DRE developer to use aspect-oriented
software development [11] techniques to separate the
concerns of QoS programming from application logic
in DRE applications. The QuO framework allows
DRE developers to specify (1) their QoS require-
ments, (2) the system elements that must be moni-
tored and controlled to measure and provide QoS, and
(3) the behavior for adapting to QoS variations that
occur at runtime.

Figure 4 also illustrates how the elements in QuO
support the following dynamic QoS provisioning
needs: Contracts specify the level of service desired
by a client, the level of service an object expects to
provide, operating regions indicating possible mea-
sured QoS, and actions to take when the level of QoS
changes; Delegates act as local proxies for remote ob-
jects. Each delegate provides an interface similar to
that of the remote object stub, but adds locally adap-
tive behavior based upon the current state of QoS in
the system, as measured by the contract, and; System
Condition objects provide interfaces to resources,
mechanisms, and ORBs in the system that need to be
measured and controlled by QuO contracts.



8

QuO applications can also use resource or property
managers that manage given QoS resources, such as
CPU or bandwidth, or properties, such as availability
or security, for a set of QoS-enabled server objects on
behalf of the QuO clients using those server objects.
In some cases, managed properties require mecha-
nisms at lower levels in the protocol stack, such as
replication or access control. QuO provides a gateway
mechanism [12] that enables special-purpose trans-
port protocols and adaptation below the ORB.

For more information about the QuO adaptive mid-
dleware, see [4,12–14].

5.3. Qoskets: QuO Support for Reusing Systemic
Behavior

One goal of QuO is to separate the role of the sys-
temic QoS programmer from that of an application
programmer. A complementary goal of this separa-
tion of programming roles is that systemic behaviors
can be encapsulated into reusable units that are not
only developed separately from the applications that
use them, but that can be reused by selecting, cus-
tomizing, and binding them to an application pro-
gram. To support this goal, we have defined Qos-
kets[15] as a unit of encapsulation and reuse of sys-
temic behavior in QuO applications. Qoskets encap-
sulate the following systemic QoS aspects:

� Adaptation policies, as expressed in QuO con-
tracts

� Measurement and control, as defined by sys-
tem condition objects and callback objects

� Adaptive behaviors, as defined by Adaptation
Specification Language (ASL) specifications.

� QoS implementation, as defined by Qosket
methods.

As shown in Figure 5, a Qosket is a collection
of the interfaces, contracts, system condition objects,
callback objects, unspecialized adaptive behavior, and
implementation code associated with a reusable piece
of systemic behavior.

6. Total QoS provisioning via CIAO and Qoskets

As discussed in Section 5.3, Qoskets provide ab-
stractions for dynamic QoS provisioning and adap-
tive behaviors. However, the current implementation
of Qoskets in QuO requires application developers to
modify their application code manually to “plug in”

Oosket

Qosket
Implementation

Adapter
Interface

Callback
Objects

Delegate
Templates

System
Condition
Objects

Contracts

Delegate
Interface

Helper
Methods

Figure 5. Qoskets Encapsulate QuO Objects into
Reusable Behaviors

the behavior into existing applications. Instead of
retrofitting DRE applications to use Qosket specific
interfaces, it would be more desirable to use exist-
ing and emerging COTS component technologies and
standards to encapsulate QoS management.

Conversely, although CIAO allows system devel-
opers to compose static QoS provisioning, adaptation
behaviors, and middleware support for QoS resources
allocating and managing mechanisms into DRE appli-
cations transparently as depicted in Section 4.2, CIAO
does not provide an abstraction to model, define, and
specify dynamic QoS provisioning. We can take ad-
vantage of CIAO’s capability to transparently config-
ure Qoskets into component servers and provide an
integrated QoS provisioning solution, which enables
the composition of both static and dynamic QoS pro-
visioning into DRE applications.

The static QoS provisioning mechanisms of CIAO
enables the composition of Qoskets into applications
as part of component assemblies. As shown in Fig-

Component Assembly

QoS Mechanism
Plug-ins

QoS Policies

Component
Connection

Specifications

QuO Mechanism/
property
Manager

Qosket
Implementation

QuO Helper
Methods

Component & Home Impls

QoS Adaptation
(Smart Proxies/

Interceptors)

QuO DelegateQuO DelegateQuO Delegate

Comp. Impl.

QuO
Callback
Objects

SysCond

ContractContract

SysCondSysCond

Figure 6. Composing a Qosket using CIAO

ure 6, CIAO installs a Qosket using the following
mechanisms:



9

� QuO delegates can be implemented as smart
proxies or portable interceptors [10] and in-
jected into component servers using assembly
descriptors and the client-side configuration ag-
gregates described in Section 4.2;

� Developers can specify a Qosket specific ORB
configuration and assemble QoS mechanisms
into the component server or client ORB;

� Out-of-band provisioning and adaptation mod-
ules, such as contracts, system conditions, and
callback objects can be implemented and as-
sembled as CCM components into component
servers.

Although using CIAO to compose Qoskets into
component assemblies simplifies retrofitting, a sig-
nificant problem remains: component cross-cutting.
Qoskets are useful for separating concerns between
systemic QoS properties and application logic, as well
as implementing limited cross-cutting between a sin-
gle client/object pair. Neither Qoskets nor CIAO yet
provide the ability to cross-cut application compo-
nents, however. Many QoS-related adaptations will
need to modify the behavior of several components at
once, likely in a distributed way. Some form of dy-
namic aspect-oriented programming might be used in
this context. This is an area of ongoing research[16].

7. Concluding Remarks

Component middleware [7] has emerged as a
promising solution to many limitations with object-
oriented application frameworks. This type of mid-
dleware consists of reusable software artifacts that
can be distributed or collocated throughout a network.
Existing component middleware, however, does not
address end-to-end QoS provisioning needs of DRE
applications, which spread beyond component bound-
aries. QoS-enabled middleware is therefore necessary
to separate QoS provisioning concerns from applica-
tion functional concerns.

This paper describes how CIAO is augmenting the
standard CCM specification to support static QoS pro-
visioning that pre-allocates resources for DRE ap-
plication. We also describe how BBN’s QuO Qos-
kets middleware framework provides powerful ab-
stractions that help define and implement reusable dy-
namic QoS provisioning behaviors. By combining
QuO Qoskets and CIAO, we are providing an inte-

grated QoS provisioning solution for DRE applica-
tions. We are applying the total QoS provisioning so-
lution to several research projects to demonstrate the
effectiveness of the solution. These projects include
composing mission critical software systems, such as
avionics mission computing systems and a video dis-
tribution system for unmanned aerial vehicles (UAV).

REFERENCES

1. Object Management Group, CORBA Components, OMG
Document formal/2001-11-03 Edition (Jun. 2002).

2. Sun Microsystems, Java�� 2 Platform Enterprise Edition,
http://java.sun.com/j2ee/index.html (2001).

3. D. Box, Essential COM, Addison-Wesley, Reading, MA,
1998.

4. J. A. Zinky, D. E. Bakken, R. Schantz, Architectural Support
for Quality of Service for CORBA Objects, Theory and
Practice of Object Systems 3 (1) (1997) 1–20.

5. R. E. Schantz, D. C. Schmidt, Middleware for Distributed
Systems: Evolving the Common Structure for
Network-centric Applications, in: J. Marciniak, G. Telecki
(Eds.), Encyclopedia of Software Engineering, Wiley & Sons,
New York, 2002.

6. Object Management Group, The Common Object Request
Broker: Architecture and Specification, 2.6.1 Edition (May
2002).

7. G. T. Heineman, B. T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley,
Reading, Massachusetts, 2001.

8. D. C. Schmidt, D. L. Levine, S. Mungee, The Design and
Performance of Real-Time Object Request Brokers, Computer
Communications 21 (4) (1998) 294–324.

9. D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2, Wiley & Sons,
New York, 2000.

10. N. Wang, D. C. Schmidt, O. Othman, K. Parameswaran,
Evaluating Meta-Programming Mechanisms for ORB
Middleware, IEEE Communication Magazine, special issue
on Evolving Communications Software: Techniques and
Technologies 39 (10).

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, J. Irwin, Aspect-Oriented
Programming, in: Proceedings of the 11th European
Conference on Object-Oriented Programming, 1997.

12. R. E. Schantz, J. A. Zinky, D. A. Karr, D. E. Bakken,
J. Megquier, J. P. Loyall, An object-level gateway supporting
integrated-property quality of service, in: Proceedings of The
2nd IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC 99), 1999.

13. J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. Karr,
R. Vanegas, K. R. Anderson, QoS Aspect Languages and
Their Runtime Integration, Proceedings of the Fourth
Workshop on Languages, Compilers and Runtime Syste,s for
Sclable Components .

14. R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz,
D. E. Bakken, QuO’s Runtime Support for Quality of Service
in Distributed Objects, Proceedings of Middleware 98, the
IFIP International Conference on Distributed Systems
Platform and Open Distributed Processing .

15. R. Schantz, J. Loyall, M. Atighetchi, P. Pal, Packaging Quality
of Service Control Behaviors for Reuse, in: Proceedings of
the ��� IEEE International Symposium on Object-Oriented
Real-time Distributed Computing (ISORC), IEEE/IFIP,
Crystal City, VA, 2002.

16. D. I. T. Office, The Programmable Composition of Embedded
Software (PCES) Program, http://www.darpa.mil/
ito/research/pces/index.html.


