Research Synopsis

David L. Levine

www.cs.wustl.edu/~levine/

Director, Center for Distributed Object Computing
Computer Science Dept.
Washington University, St. Louis

Sponsors
NSF, DARPA, Bellcore/Telcordia, BBN, Boeing, CDI/GDIS, Converse, Hughes, Kodak, Lockheed, Lucent, Microsoft, Motorola, Nokia, Nortel, OCI, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, USENIX

24 November 1999

Motivation: the Communication Software Crisis

Symptoms
Communication hardware gets smaller, faster, cheaper
– Communication software gets larger, slower, more expensive

Culprits
– Inherent and accidental complexity

Solution Approach
– Standard communication middleware

www.arl.wustl.edu/arl/

DOC Center Research Focus

Patterns, Patterns Languages, and Frameworks

Mission Critical and Embedded Systems
Configurable Communication Systems
High Performance Real-Time CORBA
Distributed Simulation

The ACE Orb (TAO)
Adaptive Communication Environment (ACE)

DOC Center Members

David L. Levine, Director
Fred Kuhns, Associate Director
Douglas C. Schmidt, Former Director
Full-time staff: C. Gill, C. O’Ryan, J. Parsons, I. Pyarali, N. Wang
PhD students: C. Gill, J. Hu, C. O’Ryan, O. Othman, I. Pyarali, N. Wang
Undergrads: K. Pathayapura
Problem: Lack of QoS-enabled Middleware

- Many applications require QoS guarantees
 - e.g., avionics, telecom, WWW, medical, high-energy physics
- Building these applications manually is hard
- Existing middleware doesn’t support QoS effectively
 - e.g., CORBA, DCOM, DCE, Java
- Solutions must be integrated horizontally & vertically

Candidate Solution: CORBA

Goals of CORBA

- Simplify distribution by automating
 - Object location & activation
 - Parameter marshaling
 - Demultiplexing
 - Error handling
- Provide foundation for higher-level services

Caveat: Requirements/Limitations of CORBA for QoS-enabled Systems

Requirements

- Lack of QoS specifications
- Lack of QoS enforcement
- Lack of real-time programming features
- Lack of performance optimizations

Limitations

- Location transparency
- Performance transparency
- Predictability transparency
- Reliability transparency
Problem: Optimizing Complex Software

Common Problems
- Optimizing complex software is hard
- Small "mistakes" can be costly

Solution Approach (iterative)
- Pinpoint overhead via white-box metrics
 - e.g., Quantify and VMEtro
- Apply patterns and framework components
- Revalidate via white-box and black-box metrics

Solution 1: Patterns and Framework Components

Definitions
- Pattern
 - A solution to a problem in a context
- Framework
 - A "semi-complete" application built with components
- Components
 - Self-contained, "pluggable" ADTs

Definition
- Pattern
- Framework
- Components

Key Principle Patterns Used in TAO

<table>
<thead>
<tr>
<th>Principle Pattern</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize for the common case</td>
<td>1</td>
</tr>
<tr>
<td>Remove gratuitous waste</td>
<td>2</td>
</tr>
<tr>
<td>Replace inefficient general-purpose functions with efficient special-purpose ones</td>
<td>3</td>
</tr>
<tr>
<td>Shift computation in time, e.g., precompute</td>
<td>4</td>
</tr>
<tr>
<td>Store redundant state to speed-up expensive operations</td>
<td>5</td>
</tr>
<tr>
<td>Pass hints between layers and components</td>
<td>6</td>
</tr>
<tr>
<td>Don’t be tied to reference implementations/models</td>
<td>7</td>
</tr>
<tr>
<td>Use efficient/predictable data structures</td>
<td>8</td>
</tr>
</tbody>
</table>

Patterns for Communication Middleware

Observation
- Failures rarely result from unknown scientific principles, but from failing to apply proven engineering practices and patterns

Benefits of Patterns
- Facilitate design reuse
- Preserve crucial design information
- Guide design choices
The ADAPTIVE Communication Environment (ACE)

ACE Overview
- Concurrent OO networking framework
- Available for C++ and Java
- Ported to POSIX, Win32, VxWorks, Chorus, PharLap, TNT, et al.

www.cs.wustl.edu/~schmidt/ACE.html

Real-time Optimizations in TAO

ACE and TAO Statistics
- Over 30 person-years of effort
 - ACE > 200,000 LOC
 - TAO > 125,000 LOC
 - TAO IDL compiler > 100,000 LOC
 - TAO CORBA Object Services > 150,000 LOC
- Ported to POSIX, Win32, VxWorks, et al.
- Large user community
 - www.cs.wustl.edu/~schmidt/ACE-users.html
- Currently used by dozens of companies
 - Bellcore, Boeing, Ericsson, Kodak, Lockheed, Lucent, Motorola, Nokia, Nortel, Raytheon, SAIC, Siemens, etc.
- Supported commercially
 - ACE → www.riverace.com
 - TAO → www.theaceorb.com
New TAO Features and Optimizations

- **New Features**
 - Real-time CORBA
 - Minimum CORBA
 - CORBA Messaging
 - Fault Tolerance

- **URL**
 - ~schmidt/TAO-status.html

Integrating TAO with ATM I/O Subsystem

- **Features**
 - Vertical integration of QoS through ORB, OS, and ATM network
 - Real-time I/O enhancements to Solaris kernel
 - Provides rate-based QoS end-to-end
 - Leverages APIC features for cell pacing and zero-copy buffering

Strategized Scheduling Framework

1. Specify RT_operation characteristics and dependencies
2. Populate RT_INFO repository
3. Assign static priority and static subpriority
4. Map static priority, dynamic subpriority, and static subpriority into dispatching priority and dispatching subpriority
5. Assess schedulability
6. Assign dispatching queue configuration
7. Supply dispatching queue configuration to the ORB
8. Supply static priorities of dispatching priority and dispatching subpriority to the ORB

Use-cases for ACE and TAO

- Electronic medical imaging
- Wireless personal communication systems (PCS)
- Real-time avionics mission computing
- Multimedia services
- Distributed interactive simulation
Applying ACE and TAO to Medical Imaging

- **Domain Challenges**
 - Large volume of “Blob” data
 * e.g., 10 to 40 Mbps
 - “Lossy compression” isn’t viable
 - Prioritization of requests

- **URLs**
 - ~schmidt/COOTS-96.ps.gz
 - ~schmidt/av.ps.gz
 - ~schmidt/NMVC.html

Applying ACE to Network Management

- **Domain Challenges**
 - Low latency
 - Multi-platform
 - Family of related services

- **URLs**
 - ~schmidt/DSEJ-94.ps.gz
 - ~schmidt/ECOOP-95.ps.gz

Applying ACE to Global PCS

- **Domain Challenges**
 - Long latency satellite links
 - High reliability
 - Prioritization

- **URL**
 - ~schmidt/TAPOS-95.ps.gz

Applying TAO to Real-time Avionics

- **Domain Challenges**
 - Real-time periodic processing
 - Complex dependencies
 - Very low latency

- **URL**
 - ~levine/research/JSAC-98.ps.gz
Open ATM Signaling & Control

Concluding Remarks

- Researchers and developers of distributed, real-time applications confront many common challenges
 - *e.g.*, service initialization and distribution, error handling, flow control, scheduling, event demultiplexing, concurrency control, persistence, fault tolerance
- Successful researchers and developers apply *patterns*, *frameworks*, and *components* to resolve these challenges
- Careful application of patterns can yield efficient, predictable, scalable, and flexible middleware
 - *i.e.*, middleware performance is largely an “implementation detail”
- Next-generation ORBs will be highly QoS-enabled, though many research challenges remain