
Application of the QuO Quality-of-Service Framework to a Distributed Video
Application

David A. Karr, Craig Rodrigues, Yamuna Krishnamurthy and Irfan Pyarali
Joseph P. Loyall and Richard E. Schantz Department of Computer Science

BBN Technologies Washington University

karr@acm.org,fcrodrigu, jloyall, schantzg@bbn.com fyamuna, irfang@cs.wustl.edu

Douglas C. Schmidt
Electrical & Computer Engineering Department

University of California

schmidt@uci.edu

Abstract

Adaptation of distributed software to maintain the best
possible application performance in the face of changes in
available resources is an increasingly important and com-
plex problem. We discuss the application of the QuO adap-
tive middleware framework and the CORBA A/V Stream-
ing Service to the development of real-time embedded ap-
plications. We demonstrate a standards-based middleware
platform for developing adaptive applications that are bet-
ter architected and easier to modify and that can adapt to
changes in resource availability to meet QoS requirements.
These are presented in the context of a video distribution
application. The application is developed using QuO and
the A/V Streaming Service, and uses adaptive behavior to
meet timeliness requirements in the face of restrictions in
processing power and network bandwidth. We present ex-
perimental results we have gathered for this application.

1. Introduction

Middleware for Distributed Object Computing (DOC)
is an emerging and increasingly accepted tool for develop-
ment and implementation of a wide variety of software ap-
plications in a wide variety of environments. The applica-
tion of DOC middleware to real-time, embedded software
(RES) has resulted in the emergence of middleware sup-
port for the strict quality of service (QoS) requirements of
RES use cases. For example, the Minimum CORBA speci-
fication [11], the Real-time CORBA 1.0 specification [11],
and the Real-Time Specification for Java (RTSJ) [7] are
examples of extensions and services that have grown out

of a need to support embedded and real-time applications.
Adaptation of distributed software to maintain the best pos-
sible application performance in the face of changes in
available resources is an increasingly important and com-
plex problem for RES applications. We have been devel-
oping QuO, a middleware framework supporting adaptive
distributed-object applications.

In this paper, we apply QuO to the development of an
Unmanned Aerial Vehicle (UAV) video distribution appli-
cation, in which an MPEG video flow adapts to meet its
mission QoS requirements, such as timeliness. We discuss
three distinct behaviors that adapt to restrictions in process-
ing power and network bandwidth: reduction of the video
flow volume by dropping frames, relocation of a software
component for load balancing, and bandwidth reservation to
guarantee levels of network bandwidth. We have developed
a prototype application which uses QuO, the TAO real-time
ORB, and the TAO Audio/Video (A/V) Streaming Service
to establish and control video transmission via a distribu-
tion process to viewers on computer displays. The TAO
A/V Streaming Service is an implementation of the CORBA
A/V Streams specification [10], which grew out of the need
to transmit multimedia data among distributed objects.

The application demonstrates a standards-based middle-
ware platform for RES applications and that adaptation can
be effectively controlled by a superimposed QuO contract
to regulate performance problems in the prototype that are
induced by processor or network load. Our experience also
shows that the use of the QuO framework, in contrast to
typical ad-hoc performance-optimization techniques, which
become entangled with basic functionality, leads to a form
of aspect-oriented programming with a beneficial separa-
tion of concerns. This results in code that is clearer and eas-



ier to modify, and promotes re-usability of software under
different requirements.

The rest of this paper is organized as follows. Section 2
provides a brief introduction to QuO. Section 3 describes
the UAV implementation. Section 4 describes the way in
which the UAV prototype can adapt to resource constraints
using QuO while still delivering its live video feed in a
timely manner using the A/V Streaming Service. In Sec-
tion 5, we present empirical results showing the improve-
ment in performance under load provided by adaptation and
the software engineering benefits of using the QuO frame-
work to implement QoS concerns. Section 6 discusses re-
lated work. Section 7 projects future work on this research.
Finally, Section 8 presents some concluding remarks.

2. An Adaptive Framework for DOC

2.1. The Benefits of Adaptation

Except in systems whose deployment environment is ex-
tremely stable, operational DOC systems will encounter
more-or-less temporary conditions that impinge on their
available computing resources (e.g., processing power and
network bandwidth) and have a consequent effect on the
ability of the system to deliver the QoS needed by users. For
example, other applications may require resources, hard-
ware may fail, or the network may be reconfigured.

It is also possible in many cases that the desired QoS may
change depending on the usage patterns at any given time,
e.g., some use cases may require a great volume of data
(high precision) even if this comes at the expense of latency
(timeliness); other use cases may reverse these priorities.

It is desirable, therefore, that software systems be able
to adapt to these varying resources and needs. Because of
this, many existing systems already incorporate specialized
adaptations (typically ad-hoc and local to a subsystem) to
adapt to at least some of these variations. In other cases,
adaptive behaviors are encoded in more general-purpose
software; for example, the TCP protocol will adjust its
data rate upward as bandwidth becomes available to support
transmission of more data, and downward when not enough
bandwidth is available to transmit data at the current rate.
Such adaptations tend to be “one size fits all,” however, and
prove to be poor behaviors for certain applications.

2.2. The Benefits of a Framework

Adaptation is made more complicated by application-
level issues. For example, consider a video-editing system
in which the user can fast-forward to a desired section of
the video and then copy that section frame by frame to a
new file. During the fast-forward mode, the most important
performance characteristic may be that the position in the

video (measured in seconds since the beginning) advance at
a constant rate. The number of frames actually transmitted
during any given period of real time is less critical, pro-
vided the user is shown enough frames to detect what scene
or action is being shown. Once the “copy” mode is entered,
however, it is critical to copy every frame, even if it is not
possible to do so at the normal speed of motion of the video.

Protocols such as TCP and UDP can be configured to
adapt within a reasonable set of parameters in either one of
the two application modes described above. The difficulty
is that this application must be able to switch between one
mode and the other during its execution. This complicates
the application’s interface to network facilities; the code
that implements the “fast forward” and “copy” functions
must be tangled up with code to achieve the needed QoS
at any instant in the communications protocols. The com-
plexity of this greatly increases when other considerations
(e.g., running in different computing environments, or other
user preferences) are taken into account. It is therefore de-
sirable to separate the concerns of the program’s functional
specification and these condition-dependent optimizations
of QoS. Separation of concerns is the primary objective of
Aspect-Oriented Programming [3].

The use of an appropriate framework to handle these
QoS concerns alongside the functional code created by the
application developer, enables a separation of concerns. As
we will see, this results in code that is much clearer, is de-
veloped at a greater speed, and is easily modifiable to meet
new performance requirements.

2.3. The Benefits of QuO

Quality Objects (QuO) is a distributed object computing
(DOC) framework designed to develop distributed applica-
tions that can specify (1) their QoS requirements, (2) the
system elements that must be monitored and controlled to
measure and provide QoS, and (3) the behavior for adapt-
ing to QoS variations that occur at run-time.

In a client-to-object logical method call over a typical
DOC toolkit, a client makes a logical method call to a re-
mote object. In a traditional CORBA application, the client
does this by invoking the method on a local ORB proxy. The
proxy marshals the argument data, which the local ORB
then transmits across the network. The ORB on the server
side receives the message call, and a remote proxy (i.e., a
skeleton) then unmarshals the data and delivers it to the re-
mote servant. Upon method return, the process is reversed.

A method call in the QuO framework is a superset of a
traditional DOC call, including the following components:

� Contracts specify the level of service desired by a
client, the level of service an object expects to provide, op-
erating regions indicating possible measured QoS, and ac-
tions to take when the level of QoS changes.



�Delegates act as local proxies for remote objects. Each
delegate provides an interface similar to that of the remote
object stub, but adds locally adaptive behavior based upon
the current state of QoS in the system, as measured by the
contract.

� System condition objects provide interfaces to re-
sources, mechanisms, objects, and ORBs in the system that
need to be measured and controlled by QuO contracts.

In addition to traditional application developers (who de-
velop the client and object implementations) and mecha-
nism developers (who develop the ORBs, property man-
agers, and other distributed resource control infrastruc-
ture), QuO applications involve another group of develop-
ers, namely QoS developers. QoS developers are respon-
sible for defining QuO contracts, system condition objects,
callback mechanisms, and object delegate behavior. To sup-
port the added role of QoS developer, we have developed a
QuO toolkit, consisting of the following components:

� Quality Description Languages (QDL) for describing
the QoS aspects of QuO applications, such as QoS contracts
and adaptive behavior, described in [5, 6].

�The QuO runtime kernel, which coordinates evaluation
of contracts and monitoring of system condition objects, de-
scribed in [14].

�Code generators that weave together QDL descriptions,
the QuO kernel code, and client code to produce a single
application program, discussed in [5].

The QuO contract offers a number of powerful abstrac-
tions for programming QoS in a DOC application. These
include regions, which abstract the notion of regions of op-
eration which may depend on user preferences or on the
condition of the computing environment (as reflected by
the system conditions). The QuO contract may also con-
tain states, an abstraction on which one can program a state
machine whose inputs are the changing system conditions.

The QuO middleware currently supports CORBA appli-
cations in C++ and Java, and Java RMI applications.

3. The Unmanned Air Vehicle application

As part of an activity for the US Navy at the Naval
Surface Warfare Center in Dahlgren, Virginia, USA, we
have been developing a prototype concept application for
use with an Unmanned Aerial Vehicle (UAV). A UAV is a
remote-controlled aircraft that is launched in order to ob-
tain a view of an engagement, performing such functions as
spotting enemy movements or locating targets. A UAV can
receive remote-control commands from a ship in order to
perform such actions as changing its direction of flight or
directing a laser at a target.

The prototype supports the UAV concept of operation by
disseminating data from a UAV throughout a remotely lo-
cated ship. As shown in Figure 1, there are several steps to

2

1

3 4

Figure 1. Typical UAV operation

this process:

1. Video feed from off-board source (UAV).

2. Distributor sends video to hosts on ship’s network.

3. Users’ hosts receive video and display it.

4. Users analyze the data and send commands to the UAV
to control it.

Our prototype simulates the first three of these steps. The
command phase of the fourth step is observed as a require-
ment to be able control the timeliness of data displayed on
a user’s video monitor: if the data is too stale, it will not
represent the current situation of the physical UAV and the
scene it is observing, and the user cannot control the UAV
appropriately. Hence, for example, for such uses it is not ac-
ceptable to suspend the display during a period of network
congestion and resume the display from the same point in
the video flow when bandwidth is restored.

3.1. Prototype architecture

Figure 2 illustrates the initial architecture of the demon-
stration. It is a three-stage pipeline, with an off-board UAV
sending MPEG video to an on-board video distribution pro-
cess. The off-board UAV is simulated by a process that con-
tinually reads an MPEG file and sends it to the distribution
process. The video distribution process then sends the video
frames to multiple video display processes.

����
������	�
��
�
�	

�
���
������
�������

���
�
���
�
��

��
��
��

�
�����
���
�����

�������

����
����	����	�
���
�	

��
��� !�
"��#�$������������

�
����

�
�!� ��

#���

�
�����
�!� �
�������

����
�������%��
�	

�
���

���& ��
$'

#���

�
�!� �����(�
�������

	)���')!��
�� *��� ��

�
���
���& ��
$'

#���

�$����*�$� �
�$


��!���� ��
#�$����

#�$�� ��

�
���
���& ��
$'

#���

Figure 2. UAV Prototype Architecture

QuO adaptation is used as part of an overall system con-
cept to provide load-invariant performance. Video displays
located throughout the ship must display the current images
observed by the UAV with acceptable fidelity, regardless of



the network and host load, in order for the shipboard op-
erators to achieve their missions (e.g., flying the UAV or
tracking a target). There are several ways to achieve this
goal by appropriate adaptations to various conditions of the
system. Among the possible adaptive strategies are:

� Send a reduced amount of data, e.g., by dropping
frames of the video. The resultant video appears as if the
camera had simply captured fewer images per second, with-
out affecting the speed at which objects in the scene move.

� Move the distributor from an overloaded host to a dif-
ferent host where more CPU is available.

�Use a bandwidth reservation protocol to ensure that the
distributor is able to send the necessary data to the viewers
through the network, even when the network is congested.

3.2. A/V Streams transport

All remote method calls in this architecture are made
via TAO, the real-time ORB developed by the Distributed
Object Computing Group at Washington University in St.
Louis [12]. However, in early versions of the prototype,
ad-hoc TCP connections were made between the processes
in order to transmit video data. This made reconfiguration
of the system processes (e.g., changing the number of pro-
cesses or their locations) difficult, as it was necessary for
each process to know the specific hosts and ports that would
be used to establish each connection. In current versions,
we have replaced this flow connection setup between the
various processes with the TAO A/V Streaming Service [8].
This is an implementation of the CORBA A/V Streaming
Service [9], which supports multimedia applications, such
as video-on-demand. The TAO A/V Streaming Service is
layered over TAO and ACE [13], which handle flow control
processing and media transfer, respectively.

The CORBA A/V Streaming Service controls and man-
ages the creation of streams between two or more media
devices. Although the original intent of this service was to
transmit audio and video streams, it can be used to send
any type of data. Streams are terminated by endpoints that
can be distributed across networks and are controlled by
a stream control interface, which manages the behavior of
each stream.

The CORBA A/V Streaming Service combines (1) the
flexibility and portability of the CORBA object-oriented
programming model with (2) the efficiency of lower-level
transport protocols. The stream connection establishment
and management is performed via conventional CORBA
operations. In contrast, data transfer can be performed
directly via more efficient lower-level protocols, such as
ATM, UDP, TCP, and RTP. This separation of concerns ad-
dresses the needs of developers who want to leverage the
language and platform flexibility of CORBA, without in-
curring the overhead of transferring data via the standard

����������	�
�

+�#�$�
�
�$,��(����
"��$��&��-����#����� �
+����
�$,����!�������
"��.� *��

Figure 3. Adaptation by filtering frames

CORBA inter-operable inter-ORB protocol (IIOP) opera-
tion path through the ORB.

4. Adaptation in UAV

In this section, we discuss some performance issues in
our UAV concept application, and adaptive behaviors that
address these issues.

A bottleneck may occur in the application because at
some point along the video transport path there are not
enough resources to send the entire video to the viewers
in real time. For example, the distributor host may not have
enough CPU available to dispatch video frames to all view-
ers at that rate, or there may be insufficient bandwidth in
the network path to one or more viewers. In either of these
cases, we detect the bottleneck by tracking the number of
frames received by the distributor and the number of frames
displayed by each viewer, and comparing them. Also, if
the transport provides some form of back pressure, e.g., as
in our TCP version, we can measure the rate at which the
distributor is able to send frames to viewers.

One adaptation to these conditions is simply to reduce
the amount of data being sent. Depending on user require-
ments, it may be possible to omit some frames of the video
entirely, resulting in an end-user video that displays the mo-
tion of the scene in real time (i.e., objects that move across
the real-life scene at constant speed appear to move at con-
stant speed in the video), but without the total illusion of
continuously displayed motion that can be attained at frame
rates of 24 frames or more per second. Figure 3 shows a
mechanism for reducing the number of frames in the video
stream. For example, if the distributor receives a video at 30
frames per second, it can reduce resource usage by deleting
two of every three frames to produce video output at 10
frames per second.

Alternatively to reducing the number of frames, the
amount of data per frame might be reduced. This would
typically reduce the image quality of each frame.

A second adaptation is to move the distributor to a host
that does not suffer the bottleneck, either because of bet-
ter network location or because of greater available CPU
resources. Figure 4 illustrates this adaptation. A new in-
stance of the distributor must be started on the new host,
and new communication paths must be formed between the



�����
���
��
�

+�#�$�
�
�$,��(����
"��#����� �
+����
�$,�*�"���
���
���������*�����
')���
�� ����)���

��

Figure 4. Adaptation by moving distributor

� �

�

�

�

�

�

�

�

�

��
�

�

�
�

� � �

�

�

�

� �����

� �����
�

�

�
������

��������������
�

�
��������������

�

�� �
����������������������������� � � � � � � � � �


����	��	���	�����


+�#�$�
�
�$,��(����
"��$��&��-��� �
+����
�$,������$����"���������"��� $�&
��)

Figure 5. Adaptation by reserving bandwidth

UAV, the new distributor instance, and the viewer to replace
the corresponding paths that led through the old distributor
instance. The old distributor can then be halted and its paths
torn down.

A third adaptation applies when the bottleneck is due
to competing data flows that take up some of the network
bandwidth needed by the UAV. This adaptation reserves a
certain amount of network bandwidth (using the Resource
Reservation Protocol (RSVP)) for the distributor’s commu-
nication paths so that a sufficient rate of data can be trans-
mitted. Figure 5 illustrates this adaptation.

It is also possible to combine these adaptations in var-
ious ways. For example, it might be necessary not only
to move the distributor to a new host, but also to send a
reduced video flow (e.g., fewer frames) to certain viewers
through RSVP-enabled links.

Which adaptations should be used can depend on the
mission-critical tasks that each user of the system has to
perform. There may be many simultaneous uses of a given
video flow that passes through a given distributor, each with
a unique set of requirements. For example, the video might
be used simultaneously to guide the UAV’s flight, to con-
trol on-board systems (such as a laser to “paint” a target),
or to collect reconnaissance data. Some of these uses may
require only a few images per second, others depend crit-
ically on getting all video frames sent by the UAV; some
may require a high-resolution, wide-angle view, while oth-
ers need only a part of the image, or lower resolution. Some
tasks may have higher priority than others, and so should be

the last to suffer degradation of service, and these priorities
may change dynamically during a mission. QuO provides
the flexibility to accommodate such a diverse set of uses:
different sets of requirements can be embodied in different
contracts. QuO also provides an interface for a resource
manager to control the use of resources by the application;
for example, the resource manager can set the value of a
special system condition that causes the application to re-
linquish resources that are needed by other applications in
the system.

4.1. Adaptation in a video domain

At the beginning of Section 4, we presented three adap-
tive behaviors. Of these behaviors, load balancing and net-
work reservation can be implemented without regard for the
details of the video encoding; an alternative encoding can
be employed without needing to change these behaviors.
The implementation of data filtering to reduce the volume
of video data, however, is highly dependent on the video
encoding format itself.

In order to perform data filtering in the UAV prototype,
we employ the technique of reducing the frame rate trans-
mitted from the distributor to the viewer. Similar techniques
can be applied elsewhere in the data path, of course, in par-
ticular between the UAV itself and the distributor. (To re-
duce the quality of the individual frames displayed, it is nec-
essary to trans-code the contents of the frames themselves;
tools to perform this task exist but are not yet used in our
application). But the frame rate must not be reduced in
such a way as to create a “slow motion effect”; that is, a
vehicle that crossed the field of view of the UAV camera
in 2.5 seconds should cross the application display in 2.5
seconds, and so forth for all other action in the video, in
order that the display continue to present a true and up-to-
the-moment view from the UAV itself. For the purposes of
experiments performed on our prototype, therefore, we as-
sumed that the UAV transmits video data at the rate of 30
frames per second, which is received by the distributor at
that rate (when system resources permit), but the distributor
implements an adaptive behavior that sends out a smaller
number of frames representing the action that occurs during
each second. The subset to be sent is selected by dropping
(eliminating) some frames from the video, and sending out
the remaining frames at a reduced rate.

Our options for efficiently dropping frames are limited
by the MPEG encoding format. MPEG-1 [1], which we use
in this project, utilizes three distinct types of frame. An
I-frame (standing for “intraframe”) is a compressed image
of a single frame. A P-frame (standing for “predictive”)
contains only the data necessary to correctly extrapolate an
image from a previously-displayed frame (an I-frame or an-
other P-frame, and which may or may not have been the im-



mediately preceding frame). A B-frame (standing for “bidi-
rectional”) requires the images from two other frames (ei-
ther of which can be an I-frame or a P-frame), one displayed
prior to and one displayed after the B-frame. In a typical 30-
frame-per-second MPEG encoding, each group of pictures
(GOP) consists of a single I-frame, four P-frames, and ten
B-frames, as shown in Figure 6.

2 0 1 5 3 4 8 6 97 11 10 14 12 13

GOP header GOP header
Sequence header

BI B BBP BBP BBP BBP

Figure 6. Sequence of frames in MPEG file

Our adaptation strategies must consider this encoding
scheme. For example, if we could simply drop every sec-
ond frame, we would be left with 15 frames out of every
30, and could send the video at the rate of 15 frames per
second without affecting the apparent speed of motion of
the scene. (At this rate the human eye would be able to de-
tect a slight flickering or stroboscopic effect as one image
was replaced by the next, because the 1/15 second inter-
val between images is a little longer than the threshold for
distinguishing successive still images from true continuous
change in the scene.) This particular example is impractical
in the videos we worked with, however, because some of
the frames dropped would have been I-frames, but 16 other
consecutive frames (all other frames in the same GOP, and
the first two B-frames in the next GOP) depend directly or
indirectly on each I-frame, so dropping a single I-frame re-
sults in more than 0.5 second of the video being lost.

Further, in support of the application, one of whose re-
quirements is to track moving images as continuously as
possible, it is highly desirable to minimize any intervals in
the video during which the image remains still. Hence it is
not desirable to display, say, the I-frame and eight subse-
quent frames in a GOP, and drop the remaining six frames.
While this scheme incurs the load entailed in transmitting
18 frames per second, it suffers intervals of 7/30 second
during which no motion is seen; this is a longer interval
than if the video were displayed at a steady rate of only 5
frames per second (6/30 second between frames). From a
human-factor point of view, it is desirable that the intervals
between the correct display times of frames be as uniform
as possible.

Because of these issues and the dependencies between
frames, the best frame-dropping protocols drop B-frames
when only a few frames are to be dropped (because a miss-
ing P-frame implies an interval of at least 1/5 second —six
frames— between the correct times of displayed frames).
There are 20 B-frames in each second of video, so this tech-
nique can bring the sending rate down to 10 frames per sec-
ond. To drop more frames, P-frames can then be dropped.

I-frames should be dropped only if intervals of 1 second or
more between images are acceptable.

If each frame in the MPEG format contained a timestamp
showing the time at which it is supposed to be displayed
(e.g., expressed in milliseconds from the time when the
video started), it would be relatively easy to delete frames
from the video one at a time without causing jitter (frames
displayed sooner or later than the correct time). But the
frames do not include such a timestamp, so there are fewer
good options for dropping frames. For example, if we were
to drop one frame out of every three, we would be left with
a video in which, to minimize jitter, some images in a se-
quence should be displayed 1/30 second after the previous
image, and some 1/15 second after. But the typical MPEG
video player is designed to read a single frame rate from the
sequence header and to display all frames in the sequence
at that constant rate; indeed the MPEG format is designed
to support nothing more sophisticated.

A technique for “dropping” frames without incurring this
display-timing difficulty is to replace B- or P-frames with
“dummy” frames rather than dropping them entirely [2].
The dummy frame contains only the minimal information
to allow the viewer to display an image similar to the pre-
ceding (or following) image, but omits all the new image
information that the B- or P-frame itself would have con-
tained; hence this frame is very small, and the bandwidth
required to transmit the video is reduced, although not as
much as if the frame were eliminated entirely.

For our current implementation we chose to drop frames
entirely in such a way that the remaining frames are dis-
played at a constant rate. This implementation provides us
with three different levels of QoS among which to adapt the
application, as determined by the frame rate:

� 30 frames per second. This is done by transmitting the
video intact. When this rate is achieved it represents the
highest level of QoS.

� 10 frames per second. This is done by dropping all
B-frames from the video, and transmitting all the I- and P-
frames. At this level of QoS, most perception of motion in
the video scene is preserved, but a careful human observer
can detect by eye the transitions from one image to the next.

� 2 frames per second. This is done by dropping all P-
and B-frames from the video, and transmitting all I-frames.
At this level of QoS, the image changes frequently enough
for some motion to be judged, but finer details of motion
(and some very short-lived actions) can be lost entirely.

It is then possible to adaptively switch among these three
frame rates by assigning each frame rate to a different re-
gion of a QuO contract, and setting the frame-dropping pro-
tocol at any given time according to the current region. (We
also implemented frame rates of 1 frame per second and
slower, but due to their extremely low levels of fidelity we
excluded these from our adaptive behaviors.)



In actual MPEG videos we examined, mean sizes of I
frames were in the range between 11500 and 14000 bytes,
of P frames in the range between 4900 and 7000 bytes, and
of B frames in the range between 2900 and 3400 bytes.
In the sample video provided by the Navy and selected as
the test case for the UAV application, I-frames averaged
approximately 13800 bytes, P-frames approximately 5000
bytes, and B-frames approximately 2900 bytes. The ap-
proximate size in bits of two average GOPs is therefore

(2(13800) + 8(5000) + 20(2900)) � 8 = 1004800

(i.e., near the capacity of a 1.5 Mbit link). This is the band-
width requirement of sending one second of the video at the
full rate of 30 frames per second.

If we drop the rate to 10 frames per second by eliminat-
ing the B-frames, the bandwidth required, in bits per sec-
ond, falls to approximately

(2(13800) + 8(5000)) � 8 = 540800

and if we drop the rate to 2 frames per second by eliminat-
ing the P-frames as well, the required bandwidth in bits per
second falls to approximately

2(13800) � 8 = 220800:

That is, reducing the frame rate from 30 to 10 (a 67 per-
cent reduction) reduces the bit rate by 46 percent, and re-
ducing the frame rate from 30 to 2 (a 93 percent reduction)
reduces the bit rate by 78 percent. These are substantial re-
ductions of bandwidth and other system requirements, so
it is not hard to find system conditions under which the
full bandwidth is not supportable, but one of the reduced-
bandwidth adaptations is. The reduction in bit rate is not
proportional to the reduction in frame rate, because the
frames that must be dropped first are precisely those frames
that have the greatest dependency on other frames (and the
fewest frames depending on them), and consequently the
encoded sizes of these dropped frames are relatively small.
On the other hand, reduction in the perceived value of the
reduced-frame-rate display to a human viewer also is not
proportional to the reduction in frame rate, judging from
the informal reactions of people who have watched demon-
strations of the application adapting.

4.2 QuO Contract

Figure 7 shows a QuO contract that adapts the distributor
to available resources by increasing or decreasing the rate at
which frames are transmitted to viewers. We show it to il-
lustrate the high-level adaptation-oriented abstraction that
QuO provides, and to illustrate the isolation of these adap-
tive behavior aspects from the rest of the code. This contract
is substantially similar to the one used in the prototype, but

contract UAVdistrib (
syscond quo::ValueSC timeInRegion,
syscond quo::ValueSC actualFrameRate,
callback InstrCallback instrControl,
callback SourceCtrlCallback sourceControl)

{
region NormalLoad (actualFrameRate >= 27)
{ }

region HighLoad ((actualFrameRate < 27 and
actualFrameRate >= 8))

{
state Duty until (timeInRegion >= 3)

(timeInRegion >= 30 -> Test)
{ }

state Test until (timeInRegion >= 3)
(true -> Duty)

{ }
transition any->Duty {

sourceControl.setFrameRate(10);
timeInRegion.longValue(0); }

transition any->Test {
sourceControl.setFrameRate(30);
timeInRegion.longValue(0); }

}
region ExcessLoad (actualFrameRate < 8)
{

state Duty until (timeInRegion >= 3)
(timeInRegion >= 30 -> Test)

{ }
state Test until (timeInRegion >= 3)

(true -> Duty)
{ }

transition any->Duty {
sourceControl.setFrameRate(2);
timeInRegion.longValue(0); }

transition any->Test {
sourceControl.setFrameRate(10);
timeInRegion.longValue(0); }

}
transition any->NormalLoad {
instrControl.setRegion("NormalLoad");
sourceControl.setFrameRate(30); }

transition any->HighLoad {
instrControl.setRegion ("HighLoad"); }

transition any->ExcessLoad {
instrControl.setRegion ("ExcessLoad"); }

};

Figure 7. QuO Contract for UAV

with certain details of syntax and non-essential functional-
ity elided in order to fit it legibly within a single column of
text. The contract divides the operational conditions of the
distributor into three QuO regions:

� NormalLoad: Entered when resources are adequate
to transmit the video to the viewers at the full bit rate. In
this region, the distributor sends 30 frames per second.

� HighLoad: Entered when there are not adequate re-
sources to transmit the video at the full bit rate. In this re-
gion, the distributor sends 10 frames per second. Interme-
diate frames of the video are dropped so that the remain-
ing frames, displayed at the rate of 10 per second, depict
normal-speed motion.

� ExcessLoad: Entered when there are not adequate
resources to transmit the video even at the reduced bit rate
required for 10 frames per second. In this region, the dis-
tributor sends 2 frames per second, again dropping interme-
diate frames in order to preserve the speed of motion.



This contract communicates with the rest of the system
in several ways. First, the system condition object actu-
alFrameRate is set periodically by the distributor; its
value is the actual number of frames sent in the previous
second. The contract uses this system condition to gauge
the amount of data that the distributor has resources to
send. This particular measurement is quite general-purpose;
whether the restricted resource is bandwidth, CPU, or an
I/O device, to the extent that this restriction affects the abil-
ity of the distributor to transmit video at its desired frame
rate, the deficiency will be detected in the form of a reduced
actual frame rate. The prototype implementation averages
the rate over a period of one second; a shorter period may
be practical, but the rate must be averaged over some pe-
riod in order to be measurable and accurate. An alternative
that might provide quicker reaction is to monitor more basic
system conditions such as processor load and network load,
and to predict when the achievable frame rate is likely to be
reduced rather than merely observing it, but such schemes
entail tradeoffs, such as the greater complexity of calibrat-
ing the predictions, and the failure to detect performance
problems caused by conditions that are not measured.

A disadvantage of estimating the capacity to send frames
by measuring only the frames actually sent is that it is dif-
ficult to detect when there is excess capacity (and when the
frame rate might safely be increased). This contract ad-
dresses this problem by occasionally attempting to send the
video flow at the next higher frame rate from its current
setting. The frequency and duration of these “tests” is con-
trolled by a state machine within the current region, which
alternates between the Duty and Test states at certain inter-
vals of time. The time in any state is measured by the system
condition timeInRegion, which is set to zero every time
there is a state transition and is thereafter incremented once
per second.

Based on the value of actualFrameRate, then, the
contract selects the correct region from among Normal-
Load, HighLoad, and ExcessLoad, which in turn con-
trols the frame rate via execution of the sourceCon-
trol.setFrameRate callback, which is called on tran-
sition to the NormalLoad region or to the Duty states of the
other two regions. Then, if the contract is in a Duty state,
after the value of timeInRegion passes a predetermined
threshold the contract will transition to the Test state for a
few seconds, at which time it sets a higher frame rate. The
until clause of each state prevents any transitions out of that
state for a few seconds, ensuring that a stable measurement
of the new achievable frame rate is made; at the end of this
time, if the test succeeds (that is, if the actual frame rate is
observed to be at the requested rate) a contract reevaluation
results in a change of regions. Otherwise, the contract be-
gins a new Duty cycle in the same region (unless, of course,
insufficient resources for the HighLoad region force a tran-

sition down to the ExcessLoad region).
The instrControl callback enables the contract to

communicate with a resource manager that monitors and
controls the resource usage and location of application pro-
cesses. We installed the prototype in an environment con-
trolled by such a resource manager. The transition into
the ExcessLoad region caused the contract to execute the
code in transition any->ExcessLoad, which in
turn transmitted an indicator of the region to the resource
manager. The resource manager then restarted the distribu-
tor on a different host where more resources were available.

5. Results

5.1. Adaptation controls latency

We performed experiments to test the effectiveness of
our adaptive behavior in the UAV application. We ran the
three stages on three Linux boxes, each with a 200MHz pro-
cessor and 128MB of memory. The video transport was
TCP sockets.

At time t = 0, the distributor started. Shortly after this,
the video began to flow. At t = 60 seconds, t = 62 sec-
onds, and t = 64 seconds, we started three load-simulating
processes on the same host as the distributor, each attempt-
ing to use 20 percent of the maximum processing load (a
total of 60 percent additional processing load). This re-
duced the distributor’s share of processing power below
what it needed to transmit video at 30 frames per second.
At t = 124 seconds, we removed the load. At time t = 300
seconds (approximately), the experiment terminated. The
basic premise is that the full load was applied for a dura-
tion of one minute, starting after the pipeline had had time
to “settle in,” and ending a few minutes before the end of
measurement so we could observe any trailing effects.

This scenario was run twice, once without QuO attached
and without any adaptation (the control case) and once with
a QuO contract causing adaptation (the experimental case).
For the purposes of this experiment, the only adaptation en-
abled was to reduce bandwidth by dropping frames.

Figure 8 shows the effect of the increased load on the
latency of the video stream. In this graph, the x-axis rep-
resents the passage of time in seconds from the start of the
video and the y-axis represents the “lateness” of each im-
age in seconds, i.e., the additional latency (in delivery to
the viewer) caused by the system load. That is, if all im-
ages were delivered with the same latency, the graph would
be a constant zero. The label “Load” indicates the period
of time during which there was contention for the proces-
sor. Without QuO adaptation, the video images fall pro-
gressively further behind starting when the contention first
occurs, and the video does not fully recover until some time
after the contention disappears.



0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

without QuO

with QuO

Load 9

)

^

time since start (seconds)

late-
ness

(secs)

Figure 8. Effect of adaptation on latency

Adaptation Lateness (sec)
Mean Maximum

No (without QuO) 5.400 32.696
Yes (with QuO) 0.067 1.930

Table 1. Mean and maximum frame lateness

Table 1 summarizes these results. The lateness values
in all these figures are based on the timing of the I frames,
which occur 2 times per second and (ideally) are not biased
between non-adaptive and adaptive cases since our adapta-
tions never drop I frames. (We also obtained numbers for
all frames, and they are similar to these.) Lateness for each
frame was calculated by counting the I frames seen so far
and computing how long it should have taken to get to the
nth frame. The maximum lateness, then, is the greatest de-
lay between the time we expected a frame to be displayed
and the time that frame actually was displayed. The mean
lateness is dependent on the period over which it was av-
eraged (in this case, five minutes), but assuming the same
period is used in all cases, the mean lateness is a legitimate
figure of merit, with lower values representing better per-
formance.

The outcome of this experiment demonstrated that adap-
tation leads to improved performance of the application.
The added latency caused by adverse system conditions (in
this case, excessive CPU load) occurs in a sharply reduced
magnitude and duration when adaptation is enabled, and
the video image is continuously usable for its intended real-
time purpose despite the fluctuation.

5.2. Software engineering with QuO

The effectiveness of QuO as a software engineering
framework is exemplified in Table 2. In this table, “dis-
play time of frames” refers to issues concerning the rate at
which frames are displayed. These issues arose because the
viewer implementation we used mixed QoS concerns in an
ad-hoc fashion with application function code. Because of
this manual tangling of concerns, the code was unneces-

Property Adapted Coding Method Time to develop

Display time
of frames

Ad hoc
Months

(or never)
Transmission

load
QuO Hours

Table 2. Impact of QuO framework on devel-
opment time

sarily complex and it was difficult to modify or even fully
understand its behavior. Adaptation of the program to new
performance criteria (i.e., fast local decoding and display
hardware but variable quality of video input, as opposed to
its original domain in which the video input was of uni-
form quality but decoding and display could suffer delays)
required an unacceptably high investment of effort by pro-
grammers. On the other hand, changing the parameters of
behaviors controlled by QuO often took only minutes (for a
simple change in, say, a threshold value) to a day (for more
substantial changes in behaviors exhibited).

6. Related work

Hemy et al. present an adaptive MPEG transmission ap-
plication that also does frame-dropping, but in a slightly dif-
ferent way [2]. Where we delete frames entirely, they insert
“dummy” frames into the MPEG flow in order to replace the
dropped frames. In this way they achieve most of the possi-
ble reduction in bandwidth without changing the frame rate
used by the viewer (although the rate of sending new images
is reduced by the same factor as in the UAV prototype).

The Agilos middleware project implements a hierarchi-
cal adaptive QoS control architecture [4], similar to QuO in
some ways. However, QuO supports application-specific,
local adaptation as well as cooperative adaptation across ap-
plications using shared system condition objects, contracts,
and resource or property managers. In contrast, Agilos sup-
ports a global, control-theoretic mechanism incorporating
all applications in an environment, including possibly unre-
lated applications, for application-neutral resource control.

7. Future work

We are currently implementing bandwidth reservation
for the MPEG flows over A/V Streams, including devel-
oping QuO contracts for the UAV that use the full set of
adaptations described in Section 4. This will allow us to
test UAV adaptation under conditions in which multiple sys-
tem conditions (such as CPU load and network congestion)
vary independently, and in which multiple adaptive strate-
gies (such as bandwidth reservation and frame dropping)
may be combined.



We have recently implemented support for multiple
viewers, dynamically created and connected at run time,
and independently adaptable. We also plan to support mul-
tiple distinct video flows in the system involving multiple
sources and distributors. This will enable us to investigate
the interaction of multiple adapting entities in a complex
system.

QuO itself is still an evolving framework —for exam-
ple, new syntax for states and for “locking down” regions
was added to the contract language in order to more clearly
express contract features used by the contract of the UAV
prototype— and the development of the UAV application
will continue interacting with the evolution of QuO, both as
a testing ground for improvements to the framework and as
a driver of more innovations.

8. Conclusion

In this paper, we described a prototype multimedia ap-
plication, the UAV video distribution system, and the stan-
dards (MPEG video and CORBA A/V Streams) we used
to implement it. We described QuO, a framework for dis-
tributed object computing designed to enable adaptive opti-
mization of distributed software systems. We demonstrated
how QuO can interact with distributed-object applications
—even one in which the communication path to be adapted
is not a client-server method call and return— in order to
implement application- and implementation-specific adap-
tations to system performance issues. Further, we presented
empirical results that show that QuO adaptation signifi-
cantly improves application performance in the presence of
system load. Moreover, our experience was that the use
of the QuO framework made the implementation and re-
design of adaptive behaviors easier for developers than ad-
hoc methods typically used, because it enables adaptive be-
haviors to be separated from the basic video functions, mak-
ing them easier to understand and modify.

Acknowledgements

This work is sponsored by DARPA and US AFRL under
contract nos. F30602-98-C-0187 and F33615-00-C-1694.
The authors would like to gratefully acknowledge the sup-
port of Dr. Gary Koob, Thomas Lawrence, and Mike Mas-
ters for this research. The authors would also like to ac-
knowledge the contributions of Michael Atighetchi, Tom
Mitchell, John Zinky, and James Megquier, the Naval Sur-
face Warfare Center (NSWC) Dahlgren, VA (in particular
Paul Werme, Karen O’Donoghue, David Alexander, Wayne
Mills, and Steve Brannan), and the DOC groups at Wash-
ington University, St. Louis, and University of California,
Irvine, to the research described in this paper.

References

[1] D. L. Gall. MPEG: a video compression standard for mul-
timedia applications. Communications of the ACM, April
1991.

[2] M. Hemy, P. Steenkiste, and T. Gross. Evaluation of adaptive
filtering of MPEG system streams in IP networks. In IEEE
International Conference on Multimedia and Expo 2000,
New York, New York, 2000.

[3] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V.
Lopes, C. Maeda, and A. Mendhekar. Aspect-oriented pro-
gramming. ACM Computing Surveys, 28(4es), 1996.

[4] B. Li and C. Nahrstedt. QualProbes: Middleware QoS
Profiling Services for Configuring Adaptive Applications.
Springer-Verlag, 2000.

[5] J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky,
D. Karr, R. Vanegas, and K. R. Anderson. QoS Aspect
Languages and Their Runtime Integration. Springer-Verlag,
1998.

[6] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken.
Specifying and measuring quality of service in distributed
object systems. In Proceedings of the 1st IEEE Interna-
tional Symposium on Object-oriented Real-time distributed
Computing (ISORC), April 1998.

[7] S. Microsystems. The real time specification for java. In-
ternet URL http://java.sun.com/aboutJava/ communitypro-
cess/first/jsr001/.

[8] S. Mungee, N. Surendran, and D. C. Schmidt. The Design
and Performance of a CORBA Audio/Video Streaming Ser-
vice. In Proceedings of the Hawaiian International Confer-
ence on System Sciences, Jan. 1999.

[9] Object Management Group. Control and Management of
Audio/Video Streams: OMG RFP Submission, 1.2 edition,
Mar. 1997.

[10] OMG. Control and Management of Audio/Video Streams,
OMG RFP Submission (Revised), OMG Technical Docu-
ment 98-10-05. Object Management Group, Framingham.
MA, Oct 1998.

[11] OMG. CORBA 2.4 Specification, OMG Technical Document
00-10-33. Object Management Group, Framingham. MA,
Oct 2000.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee. The De-
sign and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

[13] D. C. Schmidt and T. Suda. An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Com-
munication Systems. IEE/BCS Distributed Systems Engi-
neering Journal (Special Issue on Configurable Distributed
Systems), 2:280–293, December 1994.

[14] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz,
and D. E. Bakken. QuO’s runtime support for quality of
service in distributed objects. Proceedings of Middleware
98, the IFIP International Conference on Distributed Sys-
tems Platform and Open Distributed Processing, September
1998.


