A Pattern Language for Efficient, Predictable,
and Scalable Dispatching Components

Irfan Pyarali and Carlos O’'Ryan Douglas C. Schmidt
{irfan,coryar} @cs.wustl.edu d.schmidt@vanderbilt.edu
Department of Computer Science, Washington University Electrical Engineering & Computer Science Dept.
St. Louis, MO 63130, USA Vanderbilt University, Nashville, TN
Abstract handle a variety of tasks, such as (1) dispatching multiple re-

guests simultaneously, (2) handling recursive dispatches from
In an increasing number of application domains, dispatclyithin application-provided upcalls, (3) dispatching the same
ing components are responsible for delivering upcalls to oggcall to multiple objects efficiently, and (4) adding and re-
or more application objects when events or requests arrigoving objects in dispatching tables while upcalls are in
in a system. Implementing efficient, predictable, and scplogress.
able dispatching components is hard and implementing thenThis paper presents a pattern language used to develop ef-
for multi-threaded systems is even harder. In particular, diicient, predictable, and scalable dispatching components in
patching components must be prepared to deliver upcallsatosariety of application domains, an example of which is

multiple objects, to handle recursive requests originated fraghown in Figure 1. These domains include the TAO Real-
application-provided upcalls, and often must collaborate with

applications to control object life-cycles.
In our distributed object computing (DOC) middleware re-
search, we have implemented many dispatching components
that apply common solutions repeatedly to solve the chal-
lenges outlined above. Moreover, we have discovered that 4 4: PULL(DATA)
the forces constraining dispatching components often differ 3:PUSH (EVENTS) Uy

slightly, thereby requiring alternative solution strategies. This EVENT REPLICATION
paper presents two contributions to the design and implemen- CHANNEL | 3:pUsH (EVENTS) SERVICE
tation of efficient, predictable, scalable, and flexible dispatch- —_—
ing components. First, it shows how patterns can be applied to 2: SENSOR PROXIES DEMARSHAL DATA

capture key design and performance characteristics of proven & PASS TO EVENT CHANNEL

dispatching components. Second, it presents a pattern lan-

guage that describes a series of solutions that resolve key dis- @ ﬁ @
patching challenges arising in various DOC middleware and

applications for distributed real-time and embedded systems.

1: SENSORS
GENERATE

1 Introduction DATA

Dispatching components are a core feature of many systems,
such as distributed object computing (DOC) middleware. For)
instance, the dispatching components in a CORBA Object ajure 1: Multiple Dispatching Components in DOC Middle-

guest Broker (ORB) are responsible for delivering incomi

client eventsor requeststo other (1) ORB components andrime CORBA [1] ORB [2], real-time avionics mission com-

(2) the application-level objects that implement applicatiogying with strict periodic deadline requirements [3, 4, 5],
defined behavior. In general, dispatching components mys gistributed interactive simulations with high scalability re-

“This work was funded in part by Boeing, NSF grant NCR-962g218Uirements [6, 7]. In addition, various dispatching-oriented
DARPA contract 9701516, and Siemens CT. framework components, such as Reactors and Proactors [8],

Observers [9], and Model-View-Controllers [10] are imple- e Non-existent objects. Clients may invoke requests on

mented using these patterns. “stale” identifiers,i.e., on objects that have been deactivated
The remainder of this paper is organized as follows: Sdtwm the Object Adapter. In this case, the Object Adapter

tion 2 describes the context in which dispatching componeat®uld not use the stale object because it may have been

are used and identifies common requirements for several tgpleted by the application. Instead, it must propagate an ap-

ical use cases; Section 3 presents the pattern language psegriate exception back to the client.

to implement efficient, predictable, scalable, and flexible dis-

patching components for both single and multiple targets; and, Unusual object actwatpn/deactwgﬂon use cases.Op T
Section 4 presents concluding remarks ject Adapters are responsible for activating and deactivating

objects on-demand. Moreover, server application objects can

activate or deactivate other objects in response to client re-
: : : _ quests. An object can even deactivate itself while in its own

2 An Overview of DISpatChmg Compo upcall,e.qg, if the request is a “shut yourself down” message.

nents and Pattern Languages e Multi-threading hazards. Implementing an Object

. . . . : . Adapter that works correctly and efficiently in a multi-
This section summarizes the functionality and requirements 0 . ; :

. 1Nreaded environmentis hard. For instance, there are many op-
two common use cases that illustrate the challenges associate

with developing dispatching components. The first exampl " unities for deadlock, unduly reduced concurrency, and pri-

the Object Adapter [11] componentin a standard CORBA [22 Ity inversion that may arise from recursive calls to an Object

. : 3pter while it is dispatching requests. Likewise, excessive
ORB. The second example is a event channel in a stan sarnchronization overhead may arise from locking performed
CORBA Event Service [13] or Notification Service [14]. y y ap

on a dispatching table.

Object Adapter dispatching components. The core re-

sponsibilities of a CORBA Object Adapter include (1) gefevent channel dispatching components. The CORBA
erating identifiers for objects that are exported to clients aggent and Notification Services define participants that pro-
(2) mapping subsequent client requests to the appropriate\gle a more asynchronous and decoupled type of communica-
jectimplementations, which CORBA catiervants Figure 2 tjon service that alleviates some restrictions [15] with the stan-
illustrates the general structure and interactions of a CORBA(q synchronous CORBA ORB operation invocation models.
Object Adapter. As shown in Figure 3uppliersgenerate events acdnsumers

SUPPLIER CONSUMER

SERVANTS SERVANTS
SERVANTS SERVANTS f

(seRvants] ¥

PUSH PUSH

4 — N\
OBJECT ID O CONSUMER
OBJECT ID O
SUPPLIER CONSUMER
POA Root Figure 3: Participants in the COS Event and Notivation Ser-
POA vice Architecture
ACTIVE OBJECT MAP
L OBJECT ADAPTER) process events received from sgpphers. .ThIS figure al'so il-
lustrates theevent channelwhich is a mediator [9] that dis-
(j patches events to consumers on behalf of suppliers. By using

an event channel, a supplier can deliver events to one or more

I/0 SUBSYSTEM consumers without requiring any of these participants to know
about each other explicitly.

Figure 2: Object Adapter Structure and Interactions To perform its core responsibilities, a CORBA event chan-
nel must address the following aspects:
In addition to its core responsibilities, a CORBA Object Dynamic consumer subscriptions. A robust imple-

Adapter must handle the following situations correctly, r@zentation of an event channel must support the addition of
bustly, and efficiently:

new consumers while dispatching is in progress. Likewismecialized solutions. Moreover, as noted in Section 2, no sin-
it must support the removal of existing consumers before gle pattern or strategy alone resolves all the forces faced by
active dispatching operations complete. In multi-threaded @evelopers of complex dispatching components. Therefore,
vironments, it is possible for multiple threads (potentially ruthis section presentsatternsthat addresses the challenges for
ning at different priorities) to iterate over the dispatching tabiéspatching components outlined in Section 2.
concurrently. Some consumers may trigger further updatesp pattern is a recurring solution to a standard problem
which also must be handled properly and efficiently. within a particular context [9]. When related patterns are wo-
Naive implementations, such as copying the complete seh together they form a “language” [16] that provides a pro-
of consumers before starting the iteration, may fail if one cogess for the orderly resolution of software development prob-
sumer is destroyed as a side-effect of the upcall on anotlkens. Pattern languages are not formal languages or program-
consumer. In multi-threaded implementations, this problemmising languages, but rather a collection of interrelated patterns
exacerbated because separate threads may remove and deltipyrovide a vocabulary for solving particular problems [10].
consumers in the table concurrently. Both patterns and pattern languages help developers commu-

e Variable dispatching times. Dispatching events re-hicate architectural knowledge, help developers learn a new

quires an event channel to iterate over its set of consum@&Sign paradigm or architectural style, and help new develop-
However, iterators make it even harder to provide predictabfé avoid traps and pltfalls that have traditionally been learned
implementations because the number of consumers may vaRJy by costly experience.
Some type of synchronization is therefore required during the=ach pattern in our dispatching mechanism pattern lan-
dispatching process. guage resolves a particular set of forces, with varying con-
Implementations of the Observer pattern [9] must also cdiguences on performance, functionality, and flexibility. In
tend with problems similar to those faced in the CORBA Eve@gneral, simpler solutions result in better performance, but do
Service. The Observer pattern propagates updates emanél%desowe all the forces that more complex dispatching com-
from one or more suppliers to multiple consumers, ob- Ponents can handle. Application developers should not dis-
servers. An implementation of this pattern must iterate o/&gard simpler patterns, however. Instead, they should apply
the set of consumers and disseminate the update to eachtdg®atterns that are most appropriate for the problem at hand,
of them. As with the event channel, subscriptions may charfdancing the need to support advanced features with the per-
dynamically while updates are being dispatched. formance and flexibility requirements of their applications.

Historically, a variety ofad hocstrategies have emerged to
address the dispatching challenges outlined above. No @& Dispatching to a Single Object
strategy is optimal for all application domains or use cases, .
however. For instance, real-time implementations may impddais subsection focuses on patterns for components where
too much overhead for high-performance, “best-effort” sy§vents or requests are dispatched to asingle target quect. S_ec-
tems. Likewise, implementations tailored for multi-threadiriin 3-2 then describes patterns that are suitable for dispatching
may impose excessive locking overhead for single-thread@dnultiple objects. The initial patterns are relatively straight-
reactive systems. In addition, strategies that support red@fward and are intended for less complex systems. The latter
sive access can incur excessive overhead if all upcalls are BR{€rns are more intricate and address more complex require-
patched to separate threads or remote servers. Thus, whaggts for efficiency, predictability, scalability, and flexibility.

required are strategies and methodologies that systematically
capture the; range'of possible solutions that grise inthe desigN 1 gerialized Dispatching
space of dispatching components. One family of these strate-
gies is described in the Section 3. Context. Dispatching components are vital in DOC middle-
ware and applications. They typically contain a collection of
. . target objects that reside in one or more dispatching tables.
3 A Pattern Language for Dlspatchlng These tables are used to select appropriate objects based upon
Components identifiers contained in incoming requests. For example, as
outlined in Section 2, the CORBA architecture [12] defines an
Certain patterns, such as Strategized Locking [8] or Str@bject Adapter [11] that (1) maps client requests to objects
egy [9] address some of the challenges associated with desepplied by server applications and (2) helps dispatch opera-
oping efficient, predictable, scalable, and flexible dispatchitigns on server objects.
components. In other cases, however, the relationships and

collaborations between dispatching components require mpFaPlém- Multi-threaded applications must serialize access
to their dispatching table to prevent data corruption.

Forces. Serialization mechanisms, such as mutexes dispatching table, only one of them can be dispatched at a
semaphores, should be used carefully to avoid excessive ldthke.

ing, priority inversion, and non-determinism. Distributed real-

time and embedded systems can maximize parallelismby mjry 5 geyiajized Dispatching with a Recursive Mutex

imizing serialization. However, application correctness cannot

be sacrificed to improve performanaeg, a multi-threaded Context. Assume the dispatching component outlined in
application should be able to add and remove objects r&gction 3.1.1 is being implemented in multi-threaded appli-
istered with the dispatching table efficiently during run-timeations.

without corrupting the dispatching table. Problem. Monitor locks are not recursive on many OS plat-

Solution. Serialize dispatching of requests by using tHerms. When using non-recursive locks, attempts to query or
Monitor Object pattern [8] where a single monitor lock sermodify the dispatch table while holding the lock will cause
alizes access to the entire dispatching table, as shown in [igadlock. Thus application code cannot query or modify the
ure 4. The monitor lock is held both while (1) searching thiispatch table since it is called while the lock is held.

Forces. A monitor lock cannot be released before dispatch-

—»» UPCALL ing the application upcall because another thread could re-
THREAD move and destroy the object while it is still being dispatched.
DISPATCHING TABLE Solution. Serialize dispatching of requests by usingeur-

CTTTTTTT T sive monitor lock [17]. A recursive lock allows the calling
thread to re-acquire the lock if that thread already owns it. The
. R structure of this solution is identical to the one shown in Fig-

TIN ure 4, except that a recursive monitor lock is used in lieu of a
—»p —»p —»p WAIIING non-recursive lock
THREADS)

Consequences. As before, the monitor lock serializes con-
current access to avoid corruption of the dispatching table.

table to locate the object and (2) dispatching the appropristike the Serialized Dispatching pattern outlined in Sec-
operation call on the application-provided code. In additio#P" 3:1.1, however, application upcalls can modify the dis-

the same monitor lock is used when inserting and removifigiching table or dispatch new upcalls.
entries from the table. nfortunately, this solution does not resolve the concur-

rency and predictability problems since the monitor is held
Consequences. A regular monitor lock is sufficient to through the upcall. In particular, it is (1) still hard for the
achieve the level of serialization necessary for this diSpat@ﬂspatching component to predict how |0ng the monitor lock
ing component. Serialization overhead is minimal since ofyust be handle and (2) the component does not allow multi-
one set of acquire/release calls are made on the lock dupngrequests to be dispatched simultaneously. Moreover, re-
an upcall. Thus, this design is appropriate when there is litdgrsive monitor locks are usually more expensive than their
or no contention for the dispatching table or when upcalls g@n-recursive counterparts [18].
application code are short-lived.
teéjlmple protgcol can control the I|fe-cyclg of objects reg'%‘_.l[.B Dispatching with a Readers/Writer Lock
with the dispatching component. For instance, an obje¢

cannot be destroyed while it is still registered in the dispatabontext. In complex DOC middleware and applications,
ing table. Since the table’s monitor lock is used both for digvents and requests often occur simultaneously. Unless ap-
patching and modifying the table, other threads cannot delgfigation upcalls are sharing resources that must be serialized,
an object that is in the midst of being dispatched. these operations should be dispatched and executed concur-

Note, however, that this pattern may be inadequate for spently. Even if hardware support is not available for parallel
tems with stringent real-time requirements. In particular, tegecution, it may be possible to execute events and requests
monitor lock is held during the execution of application codgoncurrently by overlapping CPU-intensive operations with
which makes it hard for the dispatching component to predi-intensive operations.
how long it will take to release the monitor lock. Likewise

this pattern does not work well when there is significant coproblem. - Serialized Dispatching patterns are inefficient for
tention for the dispatching table. For instance, if two requedfglementing concurrent dispatching upcalls since they do not

arrive simultaneously for different target objects in the sarfliStinguish between read and write operations, and thus seri-
alize all operations on the dispatching table.

Figure 4: Serialized Dispatching with a Monitor Lock

4

Forces. Although dispatching table modifications typicallgerialization overhead of readers/writer locks may be higher
require exclusive access, dispatching operations do not modidynpared to regular locks [18] when little or no contention

the table. However, the dispatching component must ensoiceurs on the dispatching table.

that the table is not modified while a thread is performing almplementors of this pattern must analyze their dispatching
lookup operation on it. component carefully to identify operations that require only a
head lock versus those that requirewasite lock. For exam-

gizluatilt?: ?]'in Utiili riﬁeﬁﬁgﬁ r;ﬁ(uljozi?na“ie ?ﬁget:\? tgttpfae, the CORBA Object Adapter supports activation of objects
P 9 ' patke., 9up 9€ \within upcalls. Thus, when a dispatch lookup is initiated, the

?;é?em ?Egr;\é?gmage:; ?cf):lf\i/vuitljlnsg%ég Sooretiigmaﬁc’dgy_t@bject Adapter cannot be certain whether the upcall will mod-
X ' Pam. PP iy the dispatching table. Note that acquiringvaite lock a

erations that modify the dispatching table, such as adding or .". .) . .
X : i . . 3)r|or| is self-defeating since it may impede concurrent access
removing objects from it, require exclusive access, howe

er .
Therefore, avrite lock is required for these operations. F|gt—0 the table u.nneces.sanly. . .
. . . > _Finally, this solution does not resolve the predictability
ure 5 illustrates the structure of this solution, where multiple) S .
. ! roblem. In particular, unbounded priority inversion may oc-
reader threads can dispatch operations concurrently, Wheceua}swhen high-priority writer threads are suspended waitin
writer threads are serialized. gn-p y b 9

for low-priority reader threads to complete dispatching up-

UPCALL calls.
-7 —»7 —> READ
THREADS 3.1.4 Reference Counting During Dispatch
DISPATCHING TABLE Context. As before, a multi-threaded system is using the dis-

[TTTITTITITT1 patching component. However, assume the system has strin-
. MONITOR R/W LOCK gent QoS requirements that demand predictable and efficient
behavior from the dispatching component.

WAITING Problem. To be predictable, the system must eliminate all
THREADS unbounded priority inversions. In addition, system effiency

)) .)) should be maximized by reducing bounded priority inversions.
Figure 5: Dispatching with a Readers/Writer Lock

Forces. During an upcall, an application can invoke opera-

tions that modify the dispatching table. In addition, the dis-
Consequences. Readers/writer locks allow multiple readerpatching component must be efficient and scalable, maximiz-
to access a shared resource simultaneously, while only allawg concurrency whenever possible.

ing one writer to access the shared resource at atime. ThusSthe

. : : . lution. Reference count the entries of the dispatching ta-
solution described above allows multiple concurrent dlspatglfi during dispatch by using a single lock to serialize (1)
calls.

Some DOC middleware executes the upcall in a se archanges to the referenced count and (2) modifications to the
. pca b %ﬁle. As shown in Figure 6, the lock is acquired during the
thread in the same process or on a remote object. Other mid-

dleware executes the upcall in the same thread after releasing

theread lock. Thus, this readers/writer locking pattern [17]) —>

can be applied to such systems without any risk of deadlocks. UPCALL &
However, this solution is not applicable to systems that execute —> —p MODIFICATION
an upcall while holding theead lock. In that case, chang- \ THREADS

ing the table from within an upcall would require upgrading DISP A\F\C\HNG TABLE

the readers/writer lock from eead lock to awrite lock.

Unfortunately, standard readers/writer lock implementations, 110l olo2lol1l0l0
such as Solaris/UI threads, do not support upgradable locks.

Even when this support exists, lock upgrades will not succeed . MONITOR LOCK

if multiple threads require simultaneous upgrades.
Note that applications using readers/writer locks become Fégure 6: Dispatching with a Reference Counted Table Entries

sponsible for providing appropriate serialization of their data

structures since they cannot rely on the dispatching comppeall, the appropriate entry is located, its reference count in-

nent itself to serialize upcalls. As with recursive locks, theeased, and the lock is released before performing the ap-

plication upcall. Once the upcall completes, the lock is re- identifier as the partially removed object. Typically, the

acquired, the reference count on the entry is decremented, and new insertion must block until upcalls on the old object

the lock is released. complete and the old object is physically removed from
As long as the reference count on the entry remains greater the dispatching table.

than zero, the entry is not removed and the corresponding ob-

ject is not destroyed. Concurrency hazards are avoided, there-

fore, because the reference count is always greater than zemable 1 summaries the different patterns for dispatching to a

while a thread is processing an upcall for that entry. If an ofingle object and compares their relative strengths and weak-
ject is “logically” removed from the dispatching table, its emesses.

try is not “physically” removed immediately since outstanding

upcalls may still be pendlpg. Insteaq, the thread t'hat br.lngs FBatem Times lock | Nested | Priority Appropriate
reference count to zero is responsible for deleting this “par- acquired upcalls | Inversion | when
tially” removed entry from the table. Serialized | 1 No Unbounded| Little or

In programming languages, such as C and C++, that lgcHispatching no contention
built-in garbage collection, the dispatching table must collab- i‘;‘?;l"s“’ed
orate with thg application to control the objects’ life-cycle. It gacarsve 11 Yes Unbounded| Same as above
this case, objects are usually reference countédr example, || mutex
the reference count is usually incremented when the objegt Beaders/ | 1 Limited | Unbounded| Concurrent
registered with the dispatching table and decremented whef(iter lock upcalls
the object is removed from the dispatching table Reference | 2 ves Bounded | Predictable

) P g ' counting behavior

Consequences. This pattern supports multiple simultaneous
upcalls since the lock is not held during the upcall. For the Table 1: Summary of Dispatching to Single Object
same reason, this model also supports recursive calls . An
important benefit of this pattern is that the level of priority
inversion does not depend on the duration of the upcall. In
fact, priority inversion can be calculated as a function of tlfz
time needed to search the dispatching table. Our previous re-

search [19] has shown that very low and bounded search tif section focuses on patterns for dispatching components
can be achieved using techniques like active demultiplexigere events or requests are delivered to multiple target ob-
and perfect hashing. Implementations that use these t§ghts. Sending the same event to multiple target objects adds
niques in conjunction with the serialization pattern describgfother level of complexity to dispatching component imple-

here can achieve predictable dispatching with bounded prigfsntations. For instance, an implementation may need to iter-

ity inversions. _ _ _ _ate over the collection of potential targets and invoke upcalls
A disadvantage of t.hIS pattern, however, is thaF it acquirss a subset of the objects in the dispatching table.

and releases the lodwice per upgall. n pract'lce, thls'usually In many use cases, modifications to the collection invalidate

does not exceed the cost of a single recursive monitor Iocka?l

inal ders/writ itor lock 1181, Thi lution d E/iterators for that collection [20], even for single-threaded
a single readers/writer monitor lock [18]. This solution Oe(§0nfigurations. In general, an implementation must ensure that

htowever, warrant extra care in the following special CIFCUNR, modifications are performed while a thread is iterating over
stances: the dispatching table. For distributed real-tim and embedded
systems, moreover, simple serialization components, such as

e Accessing “logically deleted” objects A new request Aventional mutex n result in unbounded priority inver
arrives for an object that has been logically, but not phycéc—) entional mutexes, can resu unbounded priority inve

ically removed from the dispatching table. Additionafl'o.n if.high(.ar priority threads wait for lower priority threads to
state can be used to record that this object has been 'I%-Sh |ter§tlng. o))
moved and should therefore receive no new requests. Intgrestmgly, the most solphlstlcated pattern for dlspatchlng
o Lo . to a single target object (which was presented in Section 3.1.4)
e Activating “partially removed” objects- An implemen- iq ot suitable for dispatching to multiple targets. In particular,
tation must handle the case where an object has been paf e would have to be acquired for the entire iteration and
tially removed (as described above) and a client applizcai cycle, thereby worsening priority inversion problems.

cation requests a new object to be inserted for the saffig\e |ock was released, it could lead to an inconsistent view

INote that this reference count is different from the per-entry referer@f the dispatching table. Below, we present a successive series
count described above. of patterns that address these problems.

Dispatching to Multiple Objects

3.2.1 Copy-then-Dispatch In this case, other patterns, such as the Thread-Specific Stor-
) _age [8] that eliminates locking overhead, can be used to mini-
Context. An eventor request must be dispatched to multiplgize these costs, thereby making the Copy-then-Dispatch pat-

objects concurrently. tern applicable for systems that have small dispatching tables.

Problem. The challenge is how to optimize throughput
while minimizing contention and serialization overhead. ~ 3-2-2 Copy-On-Demand

F Modificati to the dispatching tabl Context. As in Section 3.2.1, an event or request must be
orces. ‘Modilications to the dispalching table are Commo(ﬂspatched to multiple objects concurrently.

during the dispatch loop. The dispatching table does not pro- _ _ . : _
vide robust iterators [20] or the iterators are not thread-sdféoblem. Making copies of the dispatching table is expen-
There are no stringent real-time requirements. sive and non-scalable.

Forces. Changesto the dispatching table are infrequent. The

Sg[ut[on. hMgke acopy of ':]he enj['r?:fj'Spat;h'ngr;[ablehbef%qspatching table does not provide robust iterators [20] or the
Initiating the iteration, as shown in Figure 7. Although Somg,.a16rs are not thread-safe. In addition, there are no stringent

real-time requirements.

e

_ UPCALL THREAD Solution. Copy the table on-demand, as shown in Figure 8.

When starting an iteration, a counter flag is incremented to in-

UPCALL THREAD >

DISPATCHING TABLE COPY DISPATCHING TABLE COPY

4)
Y omeion
MODIFICATION M T T TTTT]
THREAD Z DISPATCHING TABLE COPY
—%7 ORIGINAL DISPATCHING
TABLE HEEEEEEEN
- J
Figure 7: Copy-then-Dispatch UPCALL
UELLEAIDS HEEEEEEEE

serialization mechanism must be used during the copy, its cost | __ N~ ORIGINAL DISPATCHING
is relatively low since it is outside the critical path. As an Y TABLE
optimization, the dispatching component can acquire the lock,
copy only the target objects that are interested in the event, and
then release the lock. At this point, the dispatching compon
iterates over the smaller set of interested target objects

J

Figure 8: Copy-On-Demand

t . . .
Eﬂ@te that a thread is using the table. If a thread wishes to
dispatch lls. modify the table it mu%tomically(_l) mgke a copy of the dis-
'spatches upcals ﬁ1atch|ng table, (2) make the modification on the copy, and (3)

To 'apply t.h's pattern, applications mu§t co'IIaborate WIreplace the reference to the old table with a reference to the
the dispatching component to control object life-cycle. FQF

example, an object cannot be destroyed simply becaushey one. When the last thread using the original dispatching

. . fable finishes its iteration, the table must be deallocated. In
was removed successfully from the dispatching table. Other . . .
gramming languages that lack garbage collection, a simple

threads may still be dispatching events on an older copyptg :)
. g . reference count can be used to accomplish this memory allo-

the dispatching table, and thus still have a reference to the ob-

%aetmn strategy.

ject. Therefore, objects in the dispatching table copy must
marked “in use” until all dispatching loops using it completeConsequences. Since the solution does not copy the dis-
patching table when initiating the dispatch loop, the Copy-On-

Consequences. This pattern allows multiple events or reDemand pattern improves the dispatch latency when compared
quests to be dispatched concurrently. In addition, it permits Copy-then-Dispatch pattern described in Section 3.2.1.
recursive operations from within application upcalls that caNote that locks are not held while executing the upcalls. Thus,
modify the dispatching table, either by inserting or removirgh application upcall can invoke recursive operations without
objects. risking deadlock.

However, making copies of the dispatching table does notOne downside with this pattern is that it acquires the lock
scale well, when (1) the table is large, (2) memory allocat least twice. The first acquisition occurs when the table state
tion is expensive, or (3) object life-cycle management s cosily.updated to indicate the start of an iteration. The second

acquisition indicates the end of the same iteration. Thus, witkres not deadlock when upcalls request modifications since
there is little or no contention, this solution is slightly morthey are simply queued.
expensive than simply holding a lock over the entire dispatchThere is, however, a more subtle priority inversion in this
loop. Asynchronous-Change Command pattern implementation. A
Moreover, when threads contend to initiate a dispatch itetagh-priority thread can request a modification, but the modifi-
tion, some priority inversion may occur. Since the lock is hetdhtion will not occur until the potentially lower priority threads
for a short and fixed period of time, however, the priority irkave finished dispatching events. In many systems this is an
version is bounded. In contrast, when a thread makes charageeptable tradeoff since priority inversions must be avoided
to the dispatching table, the amount of time for which it holdis the critical pathj.e., the dispatching path.
the lock depends on the size of the table, which may result inn addition, it is hard to ascertain when requested modifi-
longer priority inversions. Thus, this pattern may be unsuitaldations actually occur because they execute asynchronously.
for distributed real-time and embedded systems with stringeikewise, it is hard to report errors when executing change re-

timing requirements. quests because the thread requesting the change does not wait
for operations to complete.
3.2.3 Asynchronous-Change Commands Table 2 summaries the different patterns for dispatching

o] .] _ to multiple objects and compares their relative strengths and
Context. An application with stringent real-time requireyesknesses.

ments where events or requests must be dispatched to multiple

objects ConcurrentIY- l Pattern Times lock | Nested | Priority Appropriate
Problem. Modifications to the dispatching table must be se- acquired | upcalls | Inversion | when
rialized. However, the amount of time locks are held must J%i‘;‘;ﬁg‘ﬁ” 2 ves Unbounded f‘a’;‘g" dispatch
bounded to minimize priority inversions. Copy-on 5 Yes Unbounded | Rare table
Forces. Upcalls are executed in the same thread that dis2emand modifications
. . 1| “Asynchronous-| 2 Yes Bounded Predictable
patches the event. The application can add and remove obje ﬁ);nges behavior

from the dispatching table dynamically.

Solution. Postpone changes to the dispatching table while Table 2: Summary of Dispatching to Single Object
threads are dispatching upcalls. Before iterating over the dis-

patching table, the dispatching thread atomically increments

a counter that indicates the number of threads iterating over

the dispatching table currently. When an iteration completds, Concluding Remarks

it decrements the counter atomically. If a change is requested

while the dispatching table is “busy,” the request is convertétis paper describes a pattern language for developing and
into a Command Object [9], as shown in Figure 9, and queusslecting appropriate solutions to common problems encoun-
tered when developing efficient, scalable, predictable, and
flexible dispatching components. This pattern language is part
of ongoing efforts [10, 8, 21, 22] to develop a handbook of pat-
terns for developing DOC middleware for distributed real-time
and embedded (DRE) systems. Patterns help middleware re-
searchers and developers reuse successful strategies and prac-
tices. Moreover, they help developers communicate and rea-
son more effectively about what they do and why they use par-
—»y —p DISPATCHING ticular designs and implementations. In addition, patterns are
Y TABLE) a step towards an engineering handbook for DOC middleware.

J

MODIFICATION
THREAD

OCOO(();O

UPCALL
THREADS [[[[[[]

The pattern language presented in this paper has been
applied to the TAO real-time ORB [2] on a range of
DRE systems, including the Boeing Bold Stroke avion-
ics mission computing system [15, 23, 24, 4, 5], and the

AIC Run Time Infrastructure (RTI) implementation [6, 7]
Consequences. Queueing a change to the dispatching téer the Defense Modeling and Simulation Organization’s
ble requires a bounded amount of time, thus preventing BMSQO) High Level Architecture (HLA) [25]. The source
bounded priority inversions. For similar reasons, this solutionde and documentation for the TAO ORB and its Event

Figure 9: Asynchronous-Change Commands

to be executed when the dispatching table becomes “ictg,”
when no more dispatching threads are iterating over the ta

and Notification Services are freely available from URI21] M. Kircher and P. JairPattern-Oriented Software Architecture, Volume
www.dre.vanderbilt.edu/TAO

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

(20]

(11]
(12]
(23]

[14]

(18]

[16]

[17]

(18]

[29]

[20]

[22]

Object Management GrouReal-time CORBA SpecificatioBMG
Document formal/02-08-02 ed., Aug. 2002.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeEaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

D. C. Schmidt and C. O'Ryan, “Patterns and Performance of Real-time
Publisher/Subscriber Architecturedgurnal of Systems and Software,
Special Issue on Software Architecture - Engineering Quality
Attributes 2002.

D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,”Rmoceedings of the Workshop
on Model-Driven Embedded Systems in RTAS 208 2003.

W. Roll, “Towards Model-Based and CCM-Based Applications for
Real-Time Systems,” ifroceedings of the International Symposium
on Object-Oriented Real-time Distributed Computing (ISORC)
(Hakodate, Hokkaido, Japan), IEEE/IFIP, May 2003.

C. O'Ryan, D. C. Schmidt, D. Levine, and R. Noseworthy, “Applying a
Scalable CORBA Events Service to Large-scale Distributed Interactive
Simulations,” inProceedings of the*" Workshop on Object-oriented
Real-time Dependable Systertidontery, CA), IEEE, Nov. 1999.

R. Noseworthy, “IKE 2 — Implementing the Stateful Distributed Object
Paradigm ,” in5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 200@)ashington, DC),
IEEE, Apr. 2002.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume Rew York: Wiley & Sons, 2000.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid#esign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture—A System of Pattéves/
York: Wiley & Sons, 1996.

I. Pyarali and D. C. Schmidt, “An Overview of the CORBA Portable
Object Adapter,’”ACM StandardVieywol. 6, Mar. 1998.

Object Management Groufphe Common Object Request Broker:
Architecture and Specificatio®.0.2 ed., Dec. 2002.

Object Management Groupyvent Service Specification Version,1.1
OMG Document formal/01-03-01 ed., Mar. 2001.

Object Management Grouplotification Service Specificatio®bject
Management Group, OMG Document formal/2002-08-04 ed., Aug.
2002.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), pp. 184-199, ACM, Oct. 1997.

C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Ange Pattern LanguageNew York, NY:
Oxford University Press, 1977.

Paul E. McKinney, “Selecting Locking Designs for Parallel Programs,”
in Pattern Languages of Program Desigr{2 O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, Massachusetts: Addison-Wesley, 1996.

D. C. Schmidt, “An OO Encapsulation of Lightweight OS Concurrency
Mechanisms in the ACE Toolkit,” Tech. Rep. WUCS-95-31,
Washington University, St. Louis, Sept. 1995.

I. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” irProceedings of the*" Conference on
Object-Oriented Technologies and Systg(Ban Diego, CA),

pp. 145-159, USENIX, May 1999.

T. Kofler, “Robust Iterators for ET++Structured Programming
vol. 14, no. 2, pp. 62-85, 1993.

(23]

[24]

[25]

3: Patterns for Resource Managemeldtiley and sons, 2004.

C. Gill and L. DiPippo,Design Patterns for Distributed Real-Time
SystemsNorwell, Massachusetts: Kluwer Academic Publishers, 2005
(to appeatr).

Christopher D. Gill et al., “Applying Adaptive Real-time Middleware
to Address Grand Challenges of COTS-based Mission-Critical
Real-Time Systems,” iffroceedings of the 1st IEEE International
Workshop on Real-Time Mission-Critical Systems: Grand Challenge
Problems Nov. 1999.

B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt,
“Adaptive Scheduling for Real-time, Embedded Information Systems,”
in Proceedings of the 18tEEEE/AIAA Digital Avionics Systems
Conference (DASCPct. 1999.

F. Kuhl, R. Weatherly, and J. Dahmar@reating Computer Simulation
SystemsUpper Saddle River, New Jersey: Prentice Hall PTR, 1999.

