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Abstract 

 
Purpose: Acoustic analysis of voice has the potential to expedite detection and diagnosis of 

voice disorders. Applying an image-based, neural-network approach to analyzing the acoustic 

signal may be an effective means for detecting and differentially diagnosing voice disorders. 

The purpose of this study is to provide a proof-of-concept that embedded data within human 

phonation can be accurately and efficiently decoded with deep learning neural network analysis 

to differentiate between normal and disordered voices. 

Methods: Acoustic recordings from 10 vocally-healthy speakers, as well as 70 patients with 

one of seven voice disorders (n=10 per diagnosis), were acquired from a clinical database. 

Acoustic signals were converted into spectrograms and used to train a convolutional neural 

network developed with the Keras library. The network architecture was trained separately for 

each of the seven diagnostic categories. Binary classification tasks (i.e., to classify normal vs 

disordered) were performed for each of the seven diagnostic categories. All models were 

validated using the 10-fold cross validation technique.  

Results: Binary classification averaged accuracies ranged from 60%-80%. Models were 

most accurate in their classification of adductor spasmodic dysphonia, vocal fold polyp, polypoid 

corditis, and recurrent respiratory papillomatosis. Despite a small sample size, these findings 

are consistent with previously published data utilizing deep neural networks for classification of 

voice disorders.  

Conclusion: Promising preliminary results support further study of deep neural networks for 

clinical detection and diagnosis of human voice disorders. Current models should be optimized 

with a larger sample size. 

Key Words: Voice disorders, detection, acoustic analysis, convolutional neural network, 

classification 

Levels of Evidence: Level III 
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1  Introduction 

The clinical diagnosis of voice disorders relies on both the physical examination of laryngeal 

function and perceptual assessment of the acoustic output. While physical examination via 

endoscopy is the current gold standard for diagnosis, laryngoscopy and/or stroboscopy requires 

clinical expertise, and limited access to these clinical specialists may delay diagnosis. 

Perceptual assessment based on sound encoded within the speech signal is non-invasive and 

easily acquired, and has the potential to accelerate diagnosis; however, perceptual assessment 

of voice quality is subjective, and inter- and intra-rater reliability is highly influenced by clinician 

background, training, and experience.1  

Acoustic analysis was initially introduced in the early 1990s as an objective, quantitative 

means to measure deviations from normal voice production.2 Despite its widespread use for 

screening and progress monitoring, intrinsic limitations have prevented its effective application 

for automated detection and diagnosis of voice disorders.3 Acoustic analysis has traditionally 

relied on the characterization of limited numbers of acoustic parameters.4 The mechanism of 

human speech production is highly complex, however, and any given pathology affects multiple 

acoustic parameters simultaneously. Although a highly trained expert human brain can integrate 

and interpret these multiple deviations, a parameter-by-parameter approach to acoustic analysis 

has not replicated this functionality. 

Artificial intelligence using deep neural networks may provide an alternative to the single or 

multi-dimensional parameter approach to acoustic analysis. Neural network learning has been 

extensively developed for automatic speech recognition applications since the 1980s.4 Despite 

extensive research developing deep learning architectures to decode the speech signal for 

linguistic content, few studies have applied this technology to analysis of the disordered voice. 

Findings from these studies, which report classification accuracies for dysphonic voices 

between 40% and 96%, support the value of using deep neural networks for detection and 
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differential diagnosis of voice disorders.5-7 These studies, however, not only require analysis of 

multiple acoustic parameters, which slows processing times, but they also rely heavily on the 

Mel frequency cepstral coefficient (MFCC), which filters frequency data to maintain the long-

term temporal aspects of the frequency spectrum needed to extract critical linguistic elements of 

the speech signal. While this discarded frequency data may not be salient for speech 

recognition, it may be vital for the detection and distinction between certain voice disorders.  

Recent studies have recommended moving away from the MFCC in favor of spectrograms.8-

9 Not only do spectrograms maintain the full frequency resolution of the acoustic signal, but they 

also have the unique characteristic of being data-rich images that can be analyzed via image 

analysis techniques. Since the early 2010s, a revolution in the field of image analysis has 

occurred. Tasks like image classification have been solved with near-human levels of accuracy.5 

Within medicine, image analysis with a neural network approach has made inroads into clinical 

diagnostics in both radiology10 and dermatology11, ultimately expediting accurate diagnoses 

using non-invasive techniques.  

We hypothesize that applying an image-based neural network approach to classify voice 

disorders may result in similar advancements in laryngology. The purpose of this study is to 

provide a proof-of-concept that embedded data within human phonation can be accurately and 

efficiently decoded with deep learning neural network analysis to differentiate between normal 

and disordered voices.  

2  Materials and methods 

This study was performed in accordance with the Declaration of Helsinki, Good Clinical 

Practice, and was approved by the Institutional Review Board at Vanderbilt University Medical 

Center (IRB#: 181191). The study utilized previously-collected acoustic recordings from patients 

with voice disorders, as well as vocally-healthy individuals. As part of standard of care, 

individuals seen at the Vanderbilt Voice Center with a voice complaint are asked to provide a 
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standardized voice sample. These voice samples are captured at the time of evaluation and 

stored on a secure server (ImageStream, Image Stream Medical, Littleton, MA) as part of the 

patient’s electronic medical record. Voice samples from vocally-healthy individuals are also 

included in this electronic database as reference.  

2.1  Data Collection 

2.1.1  Participants 

Ten vocally-healthy adults and 70 adults with voice disorders were included in this study. 

Participants were identified by querying the electronic database by either diagnosis or normal 

voice status. The following diagnoses were included in the study (the sample size is n=10 in 

each diagnostic group): adductor spasmodic dysphonia (ADSD), essential tremor of voice 

(ETV), muscle tension dysphonia (MTD), polypoid corditis or Reinke’s edema (PCord), unilateral 

vocal fold paralysis (UVFP), vocal fold polyp (Polyp), and recurrent respiratory papillomatosis 

(RRP). Diagnoses were confirmed by two independent, board-certified laryngologists at the 

Vanderbilt Voice Center. Table 1 shows the demographic information for each diagnostic group.  

2.1.2  Acoustic Recordings 

All participants were recorded reading the first three sentences of the phonetically-balanced 

Rainbow Passage.12 Recordings were obtained in a quiet clinic room using an omnidirectional 

lapel microphone with a 44 KHz sampling rate (Olympus Visera Elite OTV-S19; Olympus 

Medical, Center Valley, PA) and stored on the clinical server as .mp4 files with audio 

compressed at 186kbps. Using the open-source audio editor Audacity® (Audacity® v2.2.1, Dec 

2017), the acoustic signals were extracted from the video files, edited to include only the 

Rainbow Passage, and saved as uncompressed .wav files in a password protected, REDCap 

database.  

Page 6 of 21

John Wiley & Sons

The Laryngoscope

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

7 

2.1.3  Data Processing 

To augment the limited amount of data, as well as make the model’s predictions more 

robust, the raw .wav files were segmented into 3-second ‘chunks’.13 For the last chunk of each 

recording (which would not be a full 3 seconds), the chunk’s frequencies were repeated with a 

small amount of noise (<5%) until the 3-second window was filled. This technique standardized 

the input to the neural network (despite the raw samples varying in duration) without losing 

information from the audio recordings (see Table 2 for the total number of spectrograms 

representing 3-second acoustic samples for each diagnostic group). Following segmentation, all 

.wav files were transformed into .png wide-band spectrogram images (standardized resolution: 

256x256 pixels) using the short-time Fourier transform, as shown in Figure 1. While the source 

audio captures frequencies up to 22.5kHz, the frequency ceiling for the images was set at 5kHz 

in order to provide better resolution of relevant voice data and remove any compression artifact. 

2.2  Data Exploration 

2.2.1  Model Development 

An open-source, deep-learning library named Keras was used for this study.14 The Keras 

library is written in Python and was selected due to its ease of use and flexible interface that 

allows a combination of different types of layers in non-sequential architectures, with 

heterogeneous inputs and outputs.15 Figure 2 shows the architecture of the convolutional neural 

network deep learning model used for the binary classification tasks, built in Keras.14 The 

dimensions and number of parameters of each layer are shown, with a total of 6,795,457 

parameters. The network is a Convolutional Neural Network (CNN) with a dropout used to 

reduce overfitting (when the model learns the training data too well, resulting in poor 

generalization) by means of regularization. CNNs are a special kind of neural network inspired 

by how the human brain perceives and classifies objects. The network works by taking an 

image and reducing it to simpler features that the computer can work with (such as edges and 
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color spots) through a series of convolutions and pooling operations (Figure 2, Conv2D and 

MaxPooling2D). The spatial information from the original image is preserved during these 

convolutions so that in the final layers, these features are combined together to produce a 

feature map. The network assigns a probability that the image belongs to a certain class based 

on the data it has previously been trained on. 

2.2.2  Model Validation 

Large data sets (preferably made up of thousands of images with balanced classes) are 

necessary to provide sufficient material to train deep learning models. Given the small size of 

the data set consisting of only 451 images (Table 2), we chose to perform a 10-fold cross 

validation to evaluate our models. All images corresponding to an individual subject belonged to 

the same fold to ensure independence between folds, preventing leakage of information from 

the training set to the validation set. In other words, for the classification problem corresponding 

to each disease, each fold contained all the spectrograms corresponding to one subject having 

the disease, and all the spectrograms corresponding to a normal subject. For example, the 

frames used in the 5th validation fold include all spectrograms from the 5th normal subject and 

the 5th ADSD patient. Figure 3 shows the spectrograms from all normal subjects (left) and all 

patients with ADSD (right); the spectrograms included in the 5th validation fold are surrounded 

by a dashed line. This neural network was trained on all the other frames in Figure 3, and was 

then used to perform the binary classification task on the frames surrounded by black lines. For 

each iteration of the model, sequential folds were withheld from the training set for validation. 

Each fold was therefore incorporated into the training set 9 times and served as the validation 

set once. This technique was employed to ensure some statistical significance in the results, 

which is even more necessary in this case of little data available.  

2.2.3  Binary Classification Tasks 

Seven binary classification tasks were conducted to categorize normal and disordered voice 

Page 8 of 21

John Wiley & Sons

The Laryngoscope

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

9 

samples. These classification tasks mimicked a clinical screening task to discriminate between 

normal and disordered for each of the 7 diagnostic groups. The network architecture of the deep 

learning model (shown in Figure 2) was trained separately for each fold within each of the seven 

diagnostic groups, for a total of 70 models. Training for each model required 10 full 

presentations of the data (epochs), which were iteratively optimized using gradient descent with 

100 backpropagation steps and a learning rate equal to 10-4.  

The primary metric for assessing our training was accuracy, defined as the fraction of all 

correctly classified instances with respect to the total number of instances. Baseline accuracy 

(the minimally acceptable level of accuracy) for each disorder was determined by a naïve 

algorithm that always predicted the disordered class (��������	�		
��	� =
������

�������������
, where 

SpectD is the total number of disordered frames, and SpectN is the total number of normal 

frames). Table 2 lists the baseline accuracies for each diagnostic group. The accuracy of the 

model in the validation set provides an estimate of the model’s performance with new data. In 

the ideal case, the accuracies of the training and validation sets should be similar. 

Another important metric for training deep learning models is the loss function, which 

measures the difference between model predictions and the real values obtained from the 

binary classification task. Generally, high accuracy values should correspond to low loss values. 

To compare results between models, the presented values of the loss function have been 

normalized to values between 0 and 1. 

3  Results 

In some folds of some disorders, an almost perfect accuracy was obtained, such as the 

case of the 5th ADSD fold, which classifies all spectrograms from the 5th normal participant and 

the 5th ADSD patient (Figure 4). The classification accuracy from this task was 100% for 7 of the 

10 epochs, stabilizing in this value after the 7th epoch. The absence of overfitting in this 
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favorable case is demonstrated by the similarity of the accuracy and loss values of the training 

set to the validation set.  

Although similarly promising results were obtained on other individual folds, the accuracy of 

the models obtained by averaging the results of all folds within a diagnostic category is lower. 

For example, the highest validation accuracy of the averaged ADSD model is 76% in the third 

epoch (Figure 5a), compared to 100% in the same epoch for the 5th fold only, as shown in 

Figure 4. Despite the decrease in accuracy from the averaged ADSD data, the model still 

performed substantially better than the baseline accuracy of the naïve algorithm (55%). Similar 

results for averaged data were obtained for PCord, Polyp and RRP, with highest validation 

accuracies equal to 78%, 77% and 80% respectively, as shown in Figure 5b-d. The difference 

between the accuracy and loss values from the training data (dashed line) and the validation 

data (solid line) indicates that overfitting was prominent in all four models. 

The averaged results for ETV, MTD and UFVP conditions were comparable to the naïve 

algorithm’s baseline accuracy. Maximum validation accuracies for ETV, MTD, and UVFP were 

64%, 60%, and 63% respectively. Despite these lower accuracies from the averaged data, the 

model performed much better than the naïve algorithm for classifying spectrograms from select 

individual speakers within these diagnostic groups, as shown in Figure 6.  

4  Discussion 

4.1  Current Findings 

In this proof-of-concept study, we investigated the utility of employing image analysis with 

deep learning to differentiate between normal and disordered voices using spectrograms. The 

averaged models achieved substantially higher accuracy in the validation set compared to the 

naïve algorithm for classifying normal vs adductor spasmodic dysphonia (76%), polypoid corditis 

(78%), vocal fold polyp (77%), and recurrent respiratory papillomatosis (80%) voice samples, as 

shown in Figure 5a-d. While the average models for muscle tension dysphonia, unilateral vocal 
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fold paralysis, and essential tremor of voice were comparably less robust, results coincided with 

other studies that employ artificial intelligence models.5 For all diagnostic groups, moreover, 

spectrograms from individual speakers (i.e., specific folds) were classified with accuracies up to 

100%, as shown in Figure 4. We hypothesize that the variability in results from individual folds 

stem from individual patients’ symptom severity, and subsequently, individuals with a more 

severe presentation of the voice disorder may be classified more accurately. These results are 

promising (despite the small dataset used for this study) and the accuracy of these models 

should improve with additional training data.  

The cross-validation models for all seven classification tasks demonstrated overfitting, 

despite the dropout layers added for regularization. Overfitting occurs when the model adapts 

too closely to the idiosyncrasies of the training set and is unable to generalize to new data (i.e., 

the validation set). This type of modeling error is common in highly-complex models and is 

exacerbated by small sample sizes.  

Implementation of an image augmentation technique commonly used to address overfitting 

did not improve our results, so that data is not reported. This augmentation technique boosts 

model performance by introducing random rotations and scalings of the original images.13 We 

hypothesize that these findings are related to the inherent symmetry of the sound spectrogram 

images. The spectrogram is a two-dimensional visual representation of the frequency and 

intensity spectrums; all the spikes are parallel to the frame borders and are therefore relevant 

for this specific classification task. As such, the interpretation of the image is highly dependent 

on the orientation of the image and thus the orientation cannot be varied. Increasing the sample 

size would reasonably reduce overfitting and improve the generalizability of the model without 

the use of any image augmentation.  

4.2  Challenges and Future Directions 

The primary limiting factor in our proof-of-concept study is a lack of sufficient data. The 

current results are based on data from 80 individuals with a total sample size of 451 
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spectrograms. Each classification task, however, included data from the normal group and only 

one disordered group. The mean sample size for each classification task was therefore only 

103, 3-second spectrograms (Table 2).  

While these initial results are promising, a robust dataset that represents the full range of 

severities for each diagnostic group, as well as the wide variability among vocally-healthy 

speakers, is critical to improve the models. Current efforts are underway to gather thousands of 

new and existing voice samples from patients and vocally-healthy participants. However, the 

need for big data necessitates data collection protocols that minimize salient variabilities in 

recording conditions, and similarly requires models that are robust against these 

inconsistencies. Recordings must also be actively curated to maintain the fidelity of the training 

set, which is time-consuming and expensive.  

Although these challenges are non-trivial, the potential clinical import of a robust, artificial 

intelligence-driven, acoustic analysis tool is worth the effort. Such a tool has the potential to 

improve diagnostic accuracy and reliability and provide a standardized metric for interpretation 

within and between clinical institutions.  

5  Conclusion 

In this paper we applied image classification techniques with deep learning to classify 

spectrograms into normal vs disordered voices. Despite the small size of the available dataset, 

satisfactory results were obtained for the adductor spasmodic dysphonia, polypoid corditis, 

vocal fold polyp, and recurrent respiratory papillomatosis diagnostic groups, with accuracy in the 

validation set substantially higher than the baseline accuracy of the naïve algorithm. These 

preliminary results support further study of deep neural networks for clinical detection and 

diagnosis of human voice disorders. 
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Figure 1: To standardize input into the neural network, acoustic signals were segmented into 3-second 
chunks (left) and transformed into spectrograms using the Fourier transform (middle). Spectrograms 

displayed frequency over time, with intensity coded in color (right).  
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Figure 2: Summary of the Keras convolutional neural network models trained for the seven binary 
classification tasks. Conv2D = 2D convolutional layer; MaxPooling2D = 2D max-pooling layer.  
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Figure 3: Spectrograms of all audio files from vocally-healthy individuals (left) and patients with adductor 
spasmodic dysphonia (right). The 5th validation fold classified all spectrograms from normal subject and 

ADSD patient 5. Frames used in the binary classification task are surrounded by lines. All other frames were 
used to train the model.  
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Figure 4: Accuracy and loss results for the 5th fold (best case) from the ADSD diagnostic category. Baseline 
accuracy, as well as the accuracy and loss results from the highest performing epoch (epoch 8) are labeled. 
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Figure 5: Average results of all folds obtained from 10-fold cross validation of (a) adductor spasmodic 
dysphonia, (b) polypoid corditis or Reinke’s edema, (c) vocal fold polyp, (d) and recurrent respiratory 

papillomatosis. Baseline accuracies, as well as the accuracy and loss results from the highest performing 
epochs are labeled for each model.  
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Figure 6: Accuracy and loss results for the best fold for (a) essential tremor of voice, (b) muscle tension 
dysphonia, and (c) unilateral vocal fold paralysis. Baseline accuracies, as well as the accuracy and loss 

results from the highest performing epochs are labeled for each model.  
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Table 1: Demographic information for each diagnostic group. 

Diagnostic Group 
Normal 

(n=10) 

ADSD 

(n=10) 

ETV 

(n=10) 

MTD 

(n=10) 

PCord 

(n=10) 

UVFP 

(n=10) 

Polyp 

(n=10) 

RRP 

(n=10) 

Total 

(n=80) 

Gender 

F (M) 
8 (2) 5 (5) 10 (0) 8 (2) 8 (2) 8 (2) 5 (5) 3 (7) 55 (25) 

Age 

Mean (Stdv) 
34 (10) 56 (10) 79 (4) 47 (16) 55 (10) 53 (17) 46 (11) 53 (18) 53 (17) 

Normal=vocally healthy; AdSD=adductor spasmodic dysphonia; ETV=essential tremor of voice; 
MTD=muscle tension dysphonia; PCord=polypoid corditis or Reinke’s edema; UVFP=unilateral vocal fold 
paralysis; Polyp=vocal fold polyp; RRP=recurrent respiratory papillomatosis. 
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Table 2: Total sample size for each group and the derived baseline accuracy for each classification task. 

Diagnostic Group Normal ADSD ETV MTD PCord UVFP Polyp RRP Total 

Total Spectrograms 45 56 74 49 54 59 56 58 451 

Baseline Accuracy 

Naïve algorithm 
(%) 

-- 
 

56/101 
(55%) 

 
74/119 
(62%) 

 
49/94 
(52%) 

 
54/99 
(55%) 

 
59/104 
(57%) 

 
56/101 
(55%) 

 
58/103 
(56%) 

-- 

Normal=vocally healthy; AdSD=adductor spasmodic dysphonia; ETV=essential tremor of voice; 
MTD=muscle tension dysphonia; PCord=polypoid corditis or Reinke’s edema; UVFP=unilateral vocal fold 
paralysis; Polyp=vocal fold polyp; RRP=recurrent respiratory papillomatosis. 
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