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1 Introduction

During the past several decades techniques and technologies have emerged to design and imple-
ment distributed systems effectively. A remaining challenge, however, to devising techniques and
technologies that will help design and implement SoSs. SoSs present some unique challenges when
compared to traditional systems since their scale, heterogeneity, extensibility, and evolvability re-
quirements are unprecedented compared to traditional systems [9].

For instance, in Systems-of-Systems (SoS), such as the one depicted in Figure 1, the compu-
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Figure 1: A System-of-Systems Architecture.

tational and communication resources involved are highly heterogeneous, which yields situations
where high-end systems connected to high-speed networks must cooperate with embedded devices
or resource-constrained edge systems connected over bandwidth-limited links. Moreover, in SoS it
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is common to find multiple administrative entities that manage the different parts, so upgrading the
system must be incremental and never require a full redeployment of the whole SoS. In addition,
SoS are often characterized by high degrees of dynamism and thus must be enable subsystems and
devices dynamically joining and leaving the federation of system elements.

The Object Management Group (OMG) Data Distribution Service for Real-Time Systems
(DDS) [5] is a standard for data-centric Publish/Subscribe (P/S) introduced in 2004 to address
the challenges faced by important mission-critical systems and systems-of-systems. As described in
the reminder of this Chapter, DDS addresses all the key challenges posed by SoS outlined above. As
a result, it provides the most natural choice as the communication middleware fabrice for developing
scalable and extensible SoS.

Since its inception DDS has experienced a swift adoption in several different domains. The
reason for this successful adoption stems largely from its following characteristics:

1. DDS has been designed to scale up and down, allowing deployments that range from resource-
constrained embedded systems to large-scale systems-of-systems.

2. DDS is equipped with a powerful set of QoS policies that allow applications fine-grain control
over key data distribution properties, such as data availability, timeliness, resource consump-
tion, and usage.

3. DDS is equipped with a powerful type system that provides end-to-end type safety for built-in
and user-defined types, as well as type-safe extensibility.

As a result of these characteristics, the OMG DDS standard is the most advanced data distribution
technology and is a key building-block for many existing and upcoming SoSs.

The remainder of this chapter presents an in-depth introduction to DDS, as well a set of
guidelines on how to apply this technology to architect scalable and efficient SoSs. The chapter
concludes with a preview of forthcoming DDS innovations.

2 Overview of the OMG Data Distribution Service (DDS)

P/S is a paradigm for one-to-many communication that provides anonymous, decoupled, and asyn-
chronous communication between producers of data–the publishers–and consumers of data–the
subscribers. This paradigm is at the foundation of many technologies used today to develop and
integrate distributed applications (such as social application, e-services, financial trading, etc.),
while ensure the composed parts of the applications remain loosely coupled and independently
evolvable.

Different implementations of the P/S abstraction have emerged to support the needs of different
application domains. DDS [5] is an OMG P/S standard that enables scalable, real-time, dependable
and high performance data exchanges between publishers and subscribers. DDS addresses the
needs of mission- and business-critical applications, such as, financial trading, air traffic control
and management, defense, aerospace, smart grids, and complex supervisory and telemetry systems.
That key challenges addressed by DDS are to provide a P/S technology in which data exchanged
between publishers and subscribers are:

• Real-time, meaning that the right information is delivered at the right place at the right
time–all the time. Failing to deliver key information within the required deadlines can lead to
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life-, mission- or business-threatening situations. For instance in a financial trading 1ms can
make the difference between losing or gaining $1M. Likewise, in a supervisory applications
for power-grids, failing to meet deadlines under an overload situation could lead to severe
blackout, such as the one experienced by the northeastern US and Canada in 2003 [1].

• Dependable, thus ensuring availability, reliability, safety and integrity in spite of hardware
and software failures. For instance, the lives of thousands of air travelers depend on the
reliable functioning of an air traffic control and management system. These systems must
ensure 99.999% availability and ensure that critical data is delivered reliably, regardless of
experienced failures.

• High-performance, which necessitates the ability to distribute very high volumes of data
with very low latencies. As an example, financial auto-trading applications must handle
millions of messages per second, each delivered relialy with minimal latency, e.g., on the
order of tens of microseconds.

2.1 Components in the DDS Standard

The components in the OMG DDS standards family are shown in Figure 2 and consist of the DDS
v1.2 API [5] and the Data Distribution Service Interoperability Wire Protocol (DDSI) [6]. The
DDS API standard ensures source code portability across different vendor implementations, while
the DDSI Standard ensures on the wire interoperability across DDS implementations from different
vendors. The DDS API standard shown in Figure 2 also defines several profiles that enhance real-
time P/S with content filtering, persistence, automatic fail-over, and transparent integration into
object oriented languages.

The DDS standard was formally adopted by the OMG in 2004. It quickly became the established
P/S technology for distributing high volumes of data dependably and with predictable low latencies
in applications such as radar processors, flying and land drones, combat management systems,
air traffic control and management, high performance telemetry, supervisory control and data
acquisition systems, and automated stocks and options trading. Along with wide commercial
adoption, the DDS standard has been mandated as the technology for real-time data distribution
by organization worldwide, including the US Navy, the Department of Defence (DoD) Information-
Technology Standards Registry (DISR) the UK Mistry of Defence (MoD), the Military Vehicle
Association (MILVA), and EUROCAE–the European organization that regulates standards in Air
Traffic Control and Management.

2.2 Key DDS Architectural Concepts and Entities

Below we summarize the key architectural concepts and entities in DDS.

2.2.1 Global Data Space

The key abstraction at the foundation of DDS is a fully distributed Global Data Space (GDS)
(see Figure 3). The DDS specification requires a fully distributed implementation of the GDS to
avoid single points of failure or single points of contention. Publishers and Subscribers can join or
leave the GDS at any point in time as they are dynamically discovered. The dynamic discovery of
Publisher and Subscribers is performed by the GDS and does not rely on any kind of centralized
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Figure 2: The DDS Standard.

registry, such as those found in other P/S technologies like the Java Message Service (JMS) [8]. The
GDS also discovers application defined data types and propagates them as part of the discovery
process.

Since DDS provides a GDS equipped with dynamic discovery, there is no need for applications
to configure anything explicitly when a system is deployed. Applications will be automatically
discovered and data will begin to flow. Moreover, since the GDS is fully distributed the crash
of one server will not induce unknown consequences on the system availability, i.e., in DDS there
is no single point of failure and the system as a whole will continue to run even if applications
crash/restart or connect/disconnect.

2.2.2 Topic

The information that populates the GDS is defined by means of DDS Topics. A topic is identified
by a unique name, a data type, and a collection of Quality of Service (QoS) policies. The unique
name provides a mean of uniquely referring to given topics, the data type defines the type of the
stream of data, and the QoS captures all the non-functional aspect of the information, such as its
temporal properties or its availability.

Topic types. DDS Topics can be specified using several different syntaxes, such as Interface Def-
inition Language (IDL), eXtensible Markup Langauge (XML), Unified Modeling Langauge (UML),
and annotated Java. For instance, Listing 1 shows a type declaration for an hypothetical temper-
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Figure 3: The DDS Global Data Space.

ature sensor topic-type. Some of the attributes of a topic-type can be marked as representing the
key of the type.

Listing 1: Topic type declaration for an hypothetical temperature sensor

1 struct TempSensorType {
@Key

3 short id;
float temp;

5 float hum;
};

The key allows DDS to deal with specific instances of a given topic. For instance, the topic type
declaration in Listing 1 defines the id attributes as being the key of the type. Each unique id
value therefore identifies a specific topic instance for which DDS will manage the entire life-cycle,
which allows an application to identify the specific source of data, such as the specific physical
sensor whose id=5. Figure 4 provides a visual representation of the relationship existing between
a topic, its instances, and the associated data streams.

Topic QoS. The Topic QoS provides a mechanism to express relevant non-functional properties
of a topic. Section 4 presents a detailed description of the DDS QoS model, but at this point we
simply mention the ability of defining QoS for topics to capture the key non-functional invariant
of the system and make them explicit and visible.

Content Filters. DDS supports defining content filters over a specific topic. These content
filters are defined by instantiating a ContentFilteredTopic for an existing topic and providing
a filter expression. The filter expression follows the same syntax of the WHERE clause on a SQL
statement and can operate on any of the topic type attributes. For instance, a filter expression for
a temperature sensor topic could be "id = 101 AND (temp > 35 OR hum > 65)".
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2.2.3 DataWriters and DataReaders

Since a topic defines the subjects produced and consumed, DDS provides two abstractions for
writing and reading these topics: DataWriterss and DataReaders, respectively. Both DataReaders
and DataWriters are strongly typed and are defined for a specific topic and topic type.

2.2.4 Publishers, Subscribers and Partitions

DDS also defines Publishers and Subscribers, which group together sets of DataReaders and DataWrit-
ers and perform some coordinated actions over them, as well as manage the communication session.
DDS also supports the concept of a Partition which can be used to organize data flows within a
GDS to decompose un-related sets of topics.

2.3 Example of Applying DDS

Now that we presented the key architectural concepts and entities in DDS, we will show the anatomy
of a simple DDS application. Listing 2 shows the steps required to join a DDS domain, to define a
publisher and a topic on the given domain, and then create a data writer and publish a sample.

Listing 2: A simple application writing DDS samples.

2 // -- Joing Domain by creating a DomainParticipant
int32_t domainID = 0;

4 DomainParticipant dp(domainID);

6 // -- Get write acces to a domain by creating a Publisher
Publisher pub(dp);

8

// -- Register Topic
10 Topic<TempSensor> topic(dp, "TemSensorTopic");

12 // -- Create DataWriter
DataWriter<TempSensor> dw(pub,topic);
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14

// -- Writer a sample
16 dw << TempSensor(701, 25, 67);

Note that no QoS has been specified for any of the DDS entities defined in this code fragment, so
the behavior will be the default QoS.

Listing 3: A simple application reading DDS samples.

2 // -- Joing Domain by creating a DomainParticipant
int32_t domainID = 0;

4 DomainParticipant dp(domainID);

6 // -- Get write acces to a domain by creating a Subscriber
Subscriber sub(dp);

8

// -- Register Topic
10 Topic<TempSensor> topic(dp, "TemSensorTopic");

12 // -- Create DataReader
DataReader<TempSensor> dr(pub,topic);

14

16 std::vector<TempSensor> data(MAX_LEN);
std::vector<SampleInfo> info(MAX_LEN);

18 // -- Rear a samples
dr.read(data.begin(), info.being(), MAX_LEN)

Listing 3 shows the steps required to read the data samples published on a given topic. This
code fragment shows the application proactively reading data. DDS also provides a notification
mechanism that informs a datareader via a callback when new data is available, as well as an
operation for waiting for new data to become available.

3 The DDS Type System

Strong typing plays a key role in developing software systems that are easier to extend, less expensive
to maintain, and in which runtime errors are limited to those computational aspects that either
cannot be decided at compile-time or that cannot be detected at compile-time by the type system.
Since DDS was designed to target mission- and business-critical systems where safety, extensibility,
and maintainability are critically important, DDS adopted a strong and statically typed system to
define type properties of a topic. This section provides an overview of the DDS type system, as
defined in [7].

3.1 Structural Polymorphic Types System

DDS provides a polymorphic structural type system [3, 2, 7], which means that the type system not
only supports polymorphism, but also bases its sub-typing on the structure of a type, as opposed
than its name. For example, consider the types declared in Listing 4.

Listing 4: Nominal vs. Structural Subtypes

7



struct Coord2D {
2 int x;

int y;
4 };

6 struct Coord3d : Coord2D {
int z;

8 };

10 struct Coord {
int x;

12 int y;
int z;

14 };

In a traditional nominal polymorphic type system, the Coord3D would be a subtype of Coord2D,
which would be expressed by writing Coord3D <: Coord2D. In a nominal type system, however,
there would be no relationship between the Coord2D/Coord3D with the type Coord. Con-
versely, in a polymorphic structural type system like DDS the type Coord is a subtype of the type
Coord2D—thus Coord <: Coord2D and it is structurally the same type as the type Coord3D.

The main advantage of a polymorphic structural type system over nominal type systems is
that the former considers the structure of the type as opposed to the name to determine sub-types
relationships. As a result, polymorphic structural types systems are more flexible and well-suited
for SoS. In particular, types in SoS often need to evolve incrementally to provide a new functionality
to most subsystems and systems, without requiring a complete redeploy of the entire SoS.

In the example above the type Coord was a monotonic extension of the type Coord2D since
it was added some new attributes “at the end.” The DDS type system can handle both attribute
reording and attribute removal with equal alacrity.

3.2 Type Annotations

The DDS type systems supports an annotation system very similar to that available in Java [4]. It
also defines a set of built-in annotations that can be used to control the extensibility of a type, as
well as the properties of the attributes of a given type. Some important built-in annotations are
described below:

• The @ID annotation can be used to assign a global unique ID to the data members of a type.
This ID is used to deal efficiently with attributes reordering.

• The @Key annotation can be used to identify the type members that constitute the key of
the topic type.

• The @Optional annotations can be used to express that an attribute is optional and might
not be set by the sender. DDS provides specific accessors for optional attributes that can be
used to safely check whether the attribute is set or not. In addition, to save bandwidth, DDS
will not send optional attributes for which a value has not been provided.

• The @Shared annotation can be used to specify that the attribute must be referenced through
a pointer. This annotations helps avoid situations when large data-structures (such as images
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Figure 5: DDS QoS Policies.

or large arrays) would be allocated contiguously with the topic type, which may be undesirable
in resource-contrained embedded systems.

• The @Extensibility annotation can be used to control the level of extensibility allowed
for a given topic type. The possible values for this annotation are (1) Final to express
the fact that the type is sealed and cannot be evolved – as a result this type cannot be
substituted by any other type that is structurally its subtype, (2) Extensible to express
that only monotonic extensibility should be considered for a type, and (3) mutable to express
that the most generic structural subtype rules for a type should be applied when considering
subtypes.

In summary, the DDS type system provides all the advantages of a strongly-typed system, to-
gether with the flexibility of structural type systems. This combinations supports key requirements
of a SoS since it preserves types end-to-end, while providing type-safe extensibility and incremental
system evolution.

4 The DDS QoS Model

DDS provides applications with explicit control over a wide set of non-functional properties, such
as data availability, data delivery, data timeliness and resource usage through a rich set of QoS
policies – Figure 5 shows the full list of available QoS. The control provided by these policies over
the key non-functional properties of data is important for traditional systems and indispensable
for SoS. Each DDS entity (such as a topic, data reader, and data writer) can apply a subset of
available QoS policies. The policies that control and end-to-end property are considered as part of
the subscription matching. DDS uses a request vs. offered QoS matching approach, as shown in
Figure ?? in which a data reader matches a data writer if and only if the QoS it is requesting for
the given topic does not exceed (e.g., is no more stringent) than the QoS with which the data is
produced by the data writer.

DDS subscriptions are matched against the topic type and name, as well as against the QoS
being offered/requested by data writers and readers. This DDS matching mechanism ensures that
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(1) types are preserved end-to-end due to the topic type matching and (2) end-to-end QoS invariants
are also preserved.

The reminder of this section describes the most important QoS policies in DDS.

4.1 Data availability

DDS provides the following QoS policies that control the availability of data to domain participants:

• The DURABILITY QoS policy controls the lifetime of the data written to the global data space
in a DDS domain. Supported durability levels include (1) VOLATILE, which specifies that
once data is published it is not maintained by DDS for delivery to late joining applications,
(2) TRANSIENT LOCAL, which specifies that publishers store data locally so that late joining
subscribers get the last published item if a publisher is still alive, (3) TRANSIENT, which
ensures that the GDS maintains the information outside the local scope of any publishers for
use by late joining subscribers, and (4) PERSISTENT, which ensures that the GDS stores the
information persistently so to make it available to late joiners even after the shutdown and
restart of the whole system. Durability is achieved by relying on a durability service whose
properties are configured by means of the DURABILITY SERVICE QoS of non-volatile topics.

• The LIFESPAN QoS policy controls the interval of time during which a data sample is valid.
The default value is infinite, with alternative values being the time-span for which the data
can be considered valid.

• The HISTORY QoS policy controls the number of data samples (i.e., subsequent writes of the
same topic) that must be stored for readers or writers. Possible values are the last sample,
the last n samples, or all samples.

These DDS data availability QoS policies decouple applications in time and space. They also enable
these applications to cooperate in highly dynamic environments characterized by continuous joining
and leaving of publisher/subscribers. Such properties are particularly relevant in SoS since they
increase the decoupling of the component parts.
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4.2 Data delivery

DDS provides the following QoS policies that control how data is delivered and how publishers can
claim exclusive rights on data updates:

• The PRESENTATION QoS policy gives control on how changes to the information model are
presented to subscribers. This QoS gives control on the ordering as well as the coherency of
data updates. The scope at which it is applied is defined by the access scope, which can be
one of INSTANCE, TOPIC, or GROUP level.

• The RELIABILITY QoS policy controls the level of reliability associated with data diffusion.
Possible choices are RELIABLE and BEST EFFORT distribution.

• The PARTITION QoS policy gives control over the association between DDS partitions (rep-
resented by a string name) and a specific instance of a publisher/subscriber. This association
provides DDS implementations with an abstraction that allow to segregate traffic generated
by different partitions, thereby improving overall system scalability and performance.

• The DESTINATION ORDER QoS policy controls the order of changes made by publishers to
some instance of a given topic. DDS allows the ordering of different changes according to
source or destination timestamps.

• The OWNERSHIP QoS policy controls which writer “owns” the write-access to a topic when
there are multiple writers and ownership is EXCLUSIVE. Only the writer with the highest
OWNERSHIP STRENGTH can publish the data. If the OWNERSHIP QoS policy value is shared,
multiple writers can concurrently update a topic. OWNERSHIP thus helps to manage replicated
publishers of the same data.

These DDS data delivery QoS policies control the reliability and availability of data, thereby al-
lowing the delivery of the right data to the right place at the right time. More elaborate ways of
selecting the right data are offered by the DDS content-awareness profile, which allows applications
to select information of interest based upon their content. These QoS policies are particularly useful
in SoS since they can be used to finely tune how—and to whom—data is delivered, thus limiting
not only the amount of resources used, but also minimizing the level of interference by independent
data streams.

4.3 Data timeliness

DDS provides the following QoS policies to control the timeliness properties of distributed data:

• The DEADLINE QoS policy allows applications to define the maximum inter-arrival time for
data. DDS can be configured to automatically notify applications when deadlines are missed.

• The LATENCY BUDGET QoS policy provides a means for applications to inform DDS of the
urgency associated with transmitted data. The latency budget specifies the time period within
which DDS must distribute the information. This time period starts from the moment the
data is written by a publisher until it is available in the subscribers data-cache ready for use
by reader(s).
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• The TRANSPORT PRIORITY QoS policy allows applications to control the importance asso-
ciated with a topic or with a topic instance, thus allowing a DDS implementation to prioritize
more important data relative to less important data. These QoS policies help ensure that
mission-critical information needed to reconstruct the shared operational picture is delivered
in a timely manner.

These DDS data timeliness QoS policies provide control over the temporal properties of data. Such
properties are particularly relevant in SoS since they can be used to define and control the temporal
aspects of various subsystem data exchanges, while ensuring that bandwidth is exploited optimally.

4.4 Resources

DDS defines the following QoS policies to control the network and computing resources that are
essential to meet data dissemination requirements:

• The TIME BASED FILTER QoS policy allows applications to specify the minimum inter-
arrival time between data samples, thereby expressing their capability to consume information
at a maximum rate. Samples that are produced at a faster pace are not delivered. This policy
helps a DDS implementation optimize network bandwidth, memory, and processing power
for subscribers that are connected over limited bandwidth networks or which have limited
computing capabilities.

• The RESOURCE LIMITS QoS policy allows applications to control the maximum available
storage to hold topic instances and related number of historical samples DDSs QoS policies
support the various elements and operating scenarios that constitute net-centric mission-
critical information management. By controlling these QoS policies it is possible to scale
DDS from low-end embedded systems connected with narrow and noisy radio links, to high-
end servers connected to high-speed fiber-optic networks.

These DDS resource QoS policies provide control over the local and end-to-end resources, such as
memory and network bandwidth. Such properties are particularly relevant in SoS since they are
characterized by largely heterogeneous subsystems, devices, and network connections that often
require down-sampling, as well as overall controlled limit on the amount of resources used.

4.5 Configuration

The QoS policies described above, provide control over the most important aspects of data delivery,
availability, timeliness, and resource usage. DDS also supports the definition and distribution of
user specified bootstrapping information via the following QoS policies:

• The USER DATA QoS policy allows applications to associate a sequence of octets to domain
participant, data readers and data writers. This data is then distributed by means of a
built-in topic. This QoS policy is commonly used to distribute security credentials.

• The TOPIC DATA QoS policy allows applications to associate a sequence of octet with a topic.
This bootstrapping information is distributed by means of a built-in topic. A common use of
this QoS policy is to extend topics with additional information, or meta-information, such as
IDL type-codes or XML schemas.
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• The GROUP DATA QoS policy allows applications to associate a sequence of octets with pub-
lishers and subscribers–this bootstrapping information is distributed by means built-in topics.
A typical use of this information is to allow additional application control over subscriptions
matching.

These DDS configuration QoS policies provide useful a mechanism for bootstrapping and configur-
ing applications that run in SoS. This mechanism is particularly relevant in SoS since it provides
a fully distributed means of providing configuration information.

5 Guidelines for Building System of Systems with DDS

This section presents a systematic method for building scalable, extensible, and efficient SoS by
integrating them through DDS. This method has been used successfully in many SoS and has shown
over time its value on addressing the key requirements faced when architecting a SoS, including (1)
achieving the right level of scalability and extensibility while maintaining loose coupling and (2)
minimizing resource usage.

The method described below will be presented as a series of steps, which are applied incrementally—
and often iteratively–to achieve the appropriate SoS design. With time and experience the number
of iterations required will diminish. It is advisable, however, to iterate two to three times through
the steps described below when first applying the method. A visual representation of the steps
involved in this approach is outlined in Figure 7.

Step I

Step II

Step III

Step IV

Define the Common 
Information Model

Annotate for Extensibility

Identify QoS Invariants

Optimize for the Network

Figure 7: Visual representation of the steps involved in the common information model approach.

5.1 Step I: Define the Common Information Model

Integrating systems to form a SoS involves interconnecting these systems in a meaningful way. A
conventional approach is to integrate systems in a pairwise manner, thus leading to a star-like
system topology depicted in Figure 8(a). This conventional approach to system integration has
several shortcomings, however, because (1) is not scalable since it requires integrating with n − 1
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systems, (2) it is not resource efficient since it duplicates information, and (3) it is hard to extend
since each change is usually propagated on the n − 1 point-to-point integrations.

S1

S2 S3

...

...Sn

S1 S2 S3 ... ... Sn

Common Information Model

(a) Point-to-Point Integration (b) Common Information Model Integration

Figure 8: System of System Integration Styles.

An alternative approach to architect SoS involves focusing on a common set of abstractions—the
common information model—used to represent all information that is necessary and relevant for
the interworkings of the SoS. This approach, depicted in Figure 8(b), reduces—and in some cases
eliminates—the integration effort since all systems communicate using the same protocol and type
system. This approach also migrates some effort to the careful design of the common information
model, which defines the data representations that establish the lingua franca for the SoS.

The first step required to build a common information model involves devising the data types
that capture the state and the events relevant throughout the SoS. This data can then be normalized
using one of the several forms defined in the database management systems literature [10]. After
applying this first step, the information model should be free of common anomalies, such as the
update or deletion anomalies, and should be efficient, in the sense that information duplication will
have been removed via the normalization process. At this point, however, the information model
may not be ideal for SoS with respect to aspects like evolvability, efficiency, and QoS.

5.2 Step II: Annotate for Extensibility

The second step of information model design should account for the extensibility requirements of
each data type. Some data types must support evolutions, such as the ability of adding or removing
attributes. Other data types must disallow extensions since they represent structural invariants,
such as the type representing some physical structure of the system like the position and number of
wheels. In either case, it is necessary to consciously decide what kind of extensibility is associated
with each data type and use the annotations described in Section refSection:DDS:TypeSystem.

5.3 Step III: Identify QoS Invariants

The previous steps allow refinement of an information model so that it cleanly captures key traits
of the SoS. At this point, however, the information model does not capture any non-functional
requirements associated with various data types. The next step, therefore, involves identifying the
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least stringent set of QoS policies (see Section 4) that should be associated with each data type to
meet SoS non-functional requirements.

Decorating the common information model with the proper QoS ensures data producers can
only produce data with stronger guarantees, whereas data consumers can only ask to consume data
with weaker guarantees. This rule ensures the QoS violations do not occur and that the SoS will
work as expected.

5.4 Step IV: Optimize for the Network

After the common information model is decorated with QoS there is yet another steps to perform
to address the fact that (1) a SoS is a distributed system, which requires awareness of network
characteristics, and optimization of the used bandwidth as some of the subsystem or devices will
often be connected through narrow-bandwidth links or will inherently have scarce computational
and storage resources, and (2) DDS data is sent atomically, i.e., regardless of what changes occur in
the (non-optional) fields of a data type when the entire data type is transmitted across the network.

These considerations requires additional scrutiny on the information model. In particular, it is
necessary to identify all the data types that belong in one of the following cases:

• Update frequency mix. Each data type should be regarded with respect to the relative
update frequency of its attributes. If there is a subset of attributes that are relatively static
and another subset that changes relatively often, it is advisable to split the data type into
two data types. The two types will share the key to allow correlation on the receiving
side. This technique minimizes bandwidth utilization by limiting the amount of data sent
over the network. For SoS that communicate over some low bandwidth links this technique
significantly improve performance.

• QoS mix. Since QoS policies in DDS apply to the whole topic it is important to recognize
that the DURABILITY or RELIABILITY QoS policy affects all attributes of the data type
associated with the topic. In certain cases, however, some attributes will work fine with a
weaker QoS setting. In such case, it is advisable to split data types into as many types as
necessary to ensure that all attributes within a given data type share the same QoS, i.e., no
attribute could select a weaker QoS without compromising correctness. This technique can
improve both performance and resource utilization.

5.5 Step V: Iterate

The steps I to IV described above should be performed iteratively to ensure that (1) all key SoS
concepts have been captured, (2) extensibility constraints have been handled, (3) the QoS policies
properly capture non-functional invariants, and (4) the data model is efficient and scalable. With
experience the number of iterations required will reduce, but you should typically apply these steps
at least twice.

6 DDS: The Road Ahead

The DDS technology ecosystem is characterized by a lively and vibrant community that continues
to innovate and extend the applicability of this powerful P/S technology. This section we summarize
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the state-of-the-art in DDS and then examine the DDS standards that will be forthcoming in the
next year or so.

ULS-DDSI ULS-DDSI 

DDS 

App 

Standard API 

network 

Interoperable  
Wire Protocol 

UML4DDS 

ISO-C++ PSM 
2010 

Java5 PSM 
2010 2004 

2011 

2008 
X

-T
y

p
e

s 
2

0
1

0
 

DDS 

App 

UML4DDS 

2004 

2011 

2008 

X
-T

y
p

e
s 

2
0

1
0
 

W
e

b
-D

D
S
 

2
0

1
1
 

W
e

b
-D

D
S
 

2
0

1
1
 

S
e

c
u

ri
ty

 
2

0
1

2
 

S
e

c
u

ri
ty

 
2

0
1

2
 

DDS-RMI 
2012 

DDS-RMI 
2012 

Figure 9: The DDS Standard Evolution.

6.1 State-of-the-Art for DDS

Figure 9 presents the whole family of standards belonging to the DDS ecosystem, including some
of the upcoming extensions. As described in earlier sections, DDS supports QoS-enabled topic-
based P/S [5] where topics are strongly typed and where a structural polymorphic type system is
used to enable type-safe system extensibility and evolution [7]. DDS is equipped with a standard
wire-protocol, DDSI [6], that provides native interoperability across vendor implementations of the
standard.

Two new APIs were recently specified for DDS. One API defines a new mapping to ISO C++
and another defines a mapping to Java 5. Both APIs improve the productivity, safety and efficiency
of DDS applications. As a result of these enhancements, DDS now provides the most dependable
and productive standard-based communication middleware infrastructure for building mission- and
business-critical SoS that require scalability, fault-tolerance, efficiency and performance.

6.2 Coming Next

There are three areas that will yield the following new DDS standards by 2012:

• Web-enabled DDS. This specification addresses the needs of SoS that must expose DDS
data to Web/Internet applications. These capabilities will make it possible to expose DDS
topics in a standardized manner to both RESTful and W3C web services. Web-enabled
DDS will simplify the way in which SoS can bring mission-critical and real-time information
to enterprise applications, as well as to browser-enabled devices, such as smart phones and
tablets.

• Secure DDS. To date, DDS Security has been an area where each vendor has provided
their own proprietary (and thus non-interoperable) solutions. With the increased adoption of
DDS in SoS the need for an interoperable and extensible security infrastructure has become
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evident. As a result, work is progressing on an interoperable DDS security specification that
will address many aspects of security, such as data confidentiality, integrity, assurance and
availability. This specification is based on pluggable security modules that will allow vendors
to provide a default interoperable set of behaviours and customers or vertical domains to
develop their own customized security plugins.

• Ultra Large Scale Systems (ULS) DDSI. The DDS wire-protocol, knowns as DDSI, was
designed by first optimizing for LAN deployments and then adding a series of mechanisms
that vendors can use over WANs. The DDSI wire-protocol does not, however, take advantage
of the latest research on dissemination and discovery protocols, such as encoding techniques,
dynamic distribution trees, and distributed hash-tables. The ULS DDSI specification will thus
extend the existing DDSI protocol to further improve its efficiency over WAN and improve
the scalability on ULS deployments [9].

In summary, the DDS technology ecosystem continues to expand its applicability and support
systems and SoS efficiently and effectively.

7 Concluding Remarks

This chapter has introduced the DDS standard and explained its core concepts in the context
of meeting the requirements of SoS. As it has emerged from the use cases cited throughout the
chapter—as well as from the set of features characterizing this technology—DDS is the ideal tech-
nology for integrating Systems-of-Systems. The main properties DDS-based SoS enjoy include:

• Interoperability and portability. DDS provides a standardized API and a standardize
wire-protocol, thereby enabling portability and interoperability of applications across DDS
implementations. These capabilities are essential for SoS since it is hard to mandate a single
product be used for all systems and subsystems, but it is easier to mandate a standard.

• Loose coupling. DDS completely decouples publishers and subscribers in both time, e.g.,
data readers can receive data that was produced before they had joined the system, and
space, e.g., through its dynamic discovery that requires no specific configuration—applications
dynamically discover the data and topics of interest. These two properties minimize coupling
between the constituent parts of SoS, thereby enabling them to scale up and down seamlessly.

• Extensibility. The DDS type system provides built-in support for system extensibility and
evolution. Moreover, the system information model can be evolved dynamically in a type-safe
manner, which helps ensure key quality assurance properties in SoS.

• Scalability, efficiency, and timeliness. The DDS architecture and the protocols used in
its core where designed to ensure scalability, efficiency, and performance. In addition, the
QoS policies available in DDS provide fine-grained control over the non-functional properties
of a system, thereby allowing finely tuning and optimization of its scalability, efficiency, and
timeliness.

In summary, DDS is a natural choice as the integration infrastructure for SoS, as evidenced by
the many adoptions of DDS as the basis for current and next-generation SoS.
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8 Acronyms

DDS Data Distribution Service for Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DDSI Data Distribution Service Interoperability Wire Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

DISR DoD Information-Technology Standards Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DoD Department of Defence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

GDS Global Data Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

IDL Interface Definition Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

JMS the Java Message Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

MILVA Military Vehicle Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

MoD Mistry of Defence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

OMG Object Management Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

P/S Publish/Subscribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SoS Systems-of-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ULS Ultra Large Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

UML Unified Modeling Langauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

XML eXtensible Markup Langauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
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