Constraint-based Model Weaving

Jules Whité, Jeff Gray, and Douglas C. Schmitit

1 vanderbilt University
Nashville, TN, USA
{jules, schmidt}@dre.vanderbilt.edu
2 University of Alabama at Birmingham
Birmingham, AL, USA
gray@cis.uab.edu

Abstract. Aspect-Oriented Modeling (AOM) is a promising technique fim-
tangling the concerns of complex enterprise software systdOM decomposes
the cross-cutting concerns of a model into separate maddai€an be woven to-
gether to form a composite solution model. In many domainsh as multi-tiered
e-commerce web applications, separating concerns is nagi@rehan deducing
the proper way to weave the concerns back together into icolonodel. For
example, modeling the types and sizes of caches that cardraded by a web
application is much easier than deducing the optimal way éawe the caches
back into the solution architecture to achieve high systewughput.

This paper presents a technique called constraint-basedtingethat maps
model weaving to a constraint satisfaction problem (CSH)us®s a constraint-
solver to deduce the appropriate weaving strategy. By mgppiodel weaving
to a CSP and leveraging a constraint solver, our technigugdierates solu-
tions that are correct with respect to the weaving condsa{2) can incorporate
complex global weaving constraints, (3) can provide wegngolutions that are
optimal with respect to a weaving cost function, and (4) cimieate manual
effort that would normally be required to specify pointcatgl maintain them as
target models change. The paper also presents the resaltsasé study that ap-
plies our CSP weaving technique to a representative eigerpava application.
Our evaluation of this case study showed a reduction in masftat that our
technique provides.

Keywords: Model Weaving, Aspect-Oriented Programming, Constraatisgc-
tion, Global Constraints

1 Introduction

Developers of complex enterprise applications are facéutive daunting task of man-
aging not only numerous functional concerns, such as awmgtiiat the application
properly executes key business logic, but also meetindestgihg non-functional re-
quirements, such as end-to-end response time and seé&inigyprise domain solutions
have traditionally been developed using large monolithdetis that either provide a
single view of the system or a limited set of views [20]. Theulé of using a limited

set of views to build the system is that certain concerns arelaanly separated by the
dominant lines of decomposition and are scattered throutghe system’s models.

Aspect-Oriented Modeling (AOM) [7, 17, 38] has emerged aswagrful method of
untangling and managing scattered concerns in large ersgegpplication models [19,
21]. With AOM, any scattered concern can be extracted istown view. For example,
caching considerations of an application can be extrantecin aspect. Once caching is
separated into its own aspect, the cache sizes and type®ajusted independently
of the application components where the caches are applieeén a final composite
solution model for the application is produced, the variasigects are woven back into
the solution model and the numerous affected modeling el&sveee updated to reflect
the independently modeled concerns.

Although concerns can often be separated easily into thiraspects or views, it is
hard to correctly or optimally merge these concerns backthe solution model. Merg-
ing the models is hard because there are typically numemuageting non-functional
and functional constraints, such as balancing encryptieel$ for security against end-
to-end performance, that must be balanced against eaatvatheut violating domain
constraints (such as maximum available bandwidth). Maapgloaches for deriving
solutions to these types of constraints do not scale well.

Most current model weavers [9, 16, 21, 38, 45] rely on teches such as specify-
ing queries or patterns to match against model elementsatéédeal for matching ad-
vice against methods and constructors in application daategre not necessarily ideal
for static weaving problems. Many enterprise applicati@tgiire developers to incor-
porate global constraints into the weaving process thatocdy be solved in a static
weaving problem. As discussed in Section 3.2, the techsigised to match against
dynamic joinpoints, such as pattern matching, cannot caggiobal constraints, such
as resource constraints., total RAM consumed < available RAM), that are common
in enterprise applications. Because global constrairgsnat honored by the model
weaver, developers are forced to expend significant effariually deriving weaving
solutions that honor them.

When weavers cannot handle global constraints, optinoizatir dependency-based
constraints, traditional model weaving becomes a manuaddtage process, as shown
in Figure 1. The left column shows the steps involved in megEving problems with
global constraints in general. The right column shows has¢hsteps manifest them-
selves in the cache weaving example. First, the advice andgmt elementsd€.g,
caches and components) available in the solution modetiantified in step 1. Second,
as shown in steps 2 and 3, because a weaver cannot handlégiobtaints or opti-
mization, developers manually determine which advice elemshould be matched to
which model elements(g, the cache types, cache sizes, and the components to apply
the caches to). This second step requires substantiat béoause it involves deriving
a solution to a complex set of global constraints.

In terms of deriving cache placements in an enterprise egiin, the second step
involves determining cache architectures that fit withia tequired memory budget
and respect the numerous dependency and exclusion caoistratween caches. After
viable cache architectures are identified, a developer nmestthe expected request
distribution patterns and queueing theory to predict thientgd cache architecture. As

Create Aspects

Identify Joinpoints

|

and J

Manually Derive
a Weaving Solution for Global
Constraints / Requirements

1. Derive the types of caches
available to the application and
the components they can be
applied to.

2. Deduce the optimal allocation
of caches to components based
on the requirements.

Manual steps
incurred by the

!

Optimize the Weaving
Solution

l

inability of a
model weaver to I
consider global
constraints and

3. Translate the caching

—
I
I

solution into a weaving

specification based upon optimize the
Implement the Solution for ﬁ regular expression matching solution.
the against model elements. I

Target Weaving Platform L

!

‘ Weave Models

e e e oS S CEE——S css—— e—

4. Use the model weaver to
implement the solution

Fig. 1: The Model Weaving Process Applied to Cache Allogatio

the examples in Section 3 show, even for a small set of caamggpatential cache
locations, the cache placement process requires sigrtificak.

In the third step, developers take this manually-derivddtsm and translate it
into pointcut definitions that match against model elemestag regular expressions
or queries €.g, a specification of how to insert the caching model elemaerits the
models to implement the caching architecture). In somescahe manually derived
solution needs to be translated into the pointcut spedificdanguages of multiple
model weavers so that the architecture can be implementadgat of heterogeneous
models spanning multiple modeling tools. The model weattees take these final
specifications and merge the models. Each time the undgrbgitution models change
(e.g, the available memory for caching changes), the globaltcainss can cause the
entire solution to change (g, the previously used caches no longer fit in the budgeted
memory) and the entire three steps must be repeated fromclscra

This paper shows that the manual steps of deriving a weadahgien that meets
the global application requirements (steps 2 and 3) can tmreded in many cases
by creating a weaver capable of handling global constraintésoptimization. Creating
a weaver that can honor these constraints and optimize mgalliows developers to
translate the high-level application requirements intonfouit specifications and opti-
mization goals that can be used by the weaver when produciregeing solution. Fi-
nally, because the weaver is responsible for deducing aingawlution that meets the
overall application requirements, as the individual solutnodels change, the weaver
can automatically update the global weaving solution aridndement it on behalf of
the developer for multiple model weaving platforms.

This paper shows how model weaving can be mapped to a coristadisfaction
problem (CSP) [13, 34, 44]. With a CSP formulation of a modeblwing problem, a
constraint solver can be used to derive a correct—and in sages optimal—weaving
solution. Using a constraint solver to derive a correct weggolution provides the
following key benefits to model weaving:

— It ensures that the solution is correct with respect to t®ua modeled functional
and non-functional weaving constraints.

— A constraint solver can honor global constraints when pecodypa solution and not
just local regular expression or query-based constraints.

— A constraint solver automates the deduction of the correetimg and saves con-
siderable manual solution derivation effort.

— The weaving solution can automatically be updated by theesalhen the core
solution models (and hence joinpoints) change.

— The solver can produce a platform-independent weavindisal(a symbolic weav-
ing solution that is not coupled to any specific pointcut lzexge) where model
transformations [8, 15] are applied to create a weavingtismidor each required
weaving platform and

— The solver can derive an optimal weaving solution (with ezspo a cost function)
in many cases.

The remainder of this paper is organized as follows: Se@ipnesents the multi-
tiered web application used as a case study throughout ther;p&ection 3 shows
current challenges in applying existing model weaving héghes to our case study;
Section 5 describes how constraint solving can be used feedarcorrect weaving
solution and how it addresses the gaps in existing solut®astion 4 presents a map-
ping from model weaving to a constraint satisfaction prohl&ection 7 summarizes
empirical results obtained from applying constraint-lokseaving to our case study;
Section 8 compares constraint-based weaving with relatel;\and Section 9 presents
concluding remarks and lessons learned.

2 Case Study: The Java Pet Store

This paper uses a case study based on Sun'’s Java Pet StordtjS]ered e-commerce
application. The Pet Store is a canonical e-commerce atjalicfor selling pets. Cus-
tomers can create accounts, browse the Pet Store’s proaliggjories, products, and
individual product itemsd.g, male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showhaseapabilities of
the various Java 2 Enterprise Edition frameworks [43]. The$tore has since been
re-implemented or modified by multiple parties, includingchsoft (the .NET Pet
Store) [4] and the Java Spring Framework [6]. The Spring enaark’s version of the
Pet Store includes support for aspects via AspectJ [2] amish@mterceptors and is
hence the implementation that we base our study on.

2.1 Middle-tier Caching in the Pet Store

Our case study focuses on implementing caching in the mitielii.e., the persistent
data access layer) of the Pet Store through caching asfgdwsbusiness logic and
views in the Pet Store are relatively simple and thus théeretk and storage of per-
sistent data is the major performance bottleneck. In peréoice tests that we ran on
the Pet Store using Apache JMeter [1], the average respioms@ctross 3,000 requests
for viewing the product categories was 3 times greater f@maotely hosted database
versus a remotely hosted database with a local data cactel{2Bate). The same tests
also showed that caching reduced the worst case responsddinriewing product
categories by a factor of two.

Our experiments tested only a single middle-tier and backe®nfiguration of the
Pet Store. Many different configurations are possible. Tineng§ Pet Store can use a
single database for product and order data or separateagamtData access objects
(DAOSs) are provided for four different database vendord@3ing the correct way of
weaving caches into the middle-tier of the Pet Store requiomsidering the following
factors:

— The workload characteristics or distributions of requggpes, which determine
what data is most beneficial to cache [32]. For example, kegftie product in-
formation in the cache that is most frequently requesteldbeiimost beneficial.

— The architecture of the back-end database servers prgvioduct, account, and
order data to the application determines the cost of a quly For example, in
a simple Pet Store deployment where the back-end databesdadsated with the
Pet Store’s application server, queries will be less exigetisan in an arrangement
where queries must be sent across a network to the datalvase se

— The hardware hosting the cache and the applications coeldedth it will deter-
mine the amount of memory available for caching product.datae Pet Store is
deployed on small commodity servers with limited memorggéacaches may be
undesirable.

— The number of possible cache keys and sizes of the data assibwiith each cache
item will influence the expected cache hit rate and the pgf@lthaving to transfer
a data set across the network from the database to the appilisarver [35]. For
example, product categories with large numbers of prodwuititbe more expensive
to serialize and transfer from the database than the infitaman a single product
item.

— The frequency that the data associated with the variousIeiiet DAOS is up-
dated and the importance of up-to-date information wilkeffwhich items can be
cached and any required cache coherence schemes [35].dfpkex product item
availability is likely to change frequently, making produtems less suitable to
cache than product categories that are unlikely to change.

2.2 Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave cacheshetd et Store to adapt
it for changing request distribution patterns and back-aatdbase configurations. We

used this scenario for our case study to show that althougiiesacan be woven into
code and models to adapt the Pet Store for a new environmeatirgy and maintaining

a cache weaving solution that satisfies the Pet Store’s bégpdication requirements
takes significant manual effort due to the inability of modedavers to encode and
automate weaving with the global application constraiBeh time the global appli-

cation requirements change, the manually deduced globhakcaeaving solution must
be updated. Updating the global cache weaving solutionhiegoa number of mod-

els and tools. Figure 2 shows the various models, code @gjfand tools involved in

implementing caching in the Pet Store.

Merge models in GME and EMF

2. Model Weavers: C-SAW, AMW
respectively

‘ ‘ N 1. Modeling

) Weaving T platforms: Generic
Caching Aspect . \\ Eclipse Modeling
Model — Code Generation N \\ AN System, Generic
O\ ”
£ 3. Aspect NN\ Modeling
L | AN Environment
A weavers: AspectJ. AN N
S Merges caching \\ i
8 N aspects into 2
./ application code. ~ Code Pet Store
/ [Generation Architecture
1 . - Model
N
Cache Weaving ™\
| TTeaving
Interceptors/ N
Advice " Code | Pet Store
Generation Deployment
‘ It Model

oL
Pet Store
Application Code,
Deployment
Descriptors,
Artifact Packaging

Fig. 2: Models and Tools Involved in the Pet Store

1. Modeling platformsWe have implemented models of different parts of the Pe&Stor
in two different modeling tools: the Generic Eclipse ModgliSystem (GEMS) [48]
and the Generic Modeling Environment (GME) [30]. GME was s#rodue to its ex-
tensive support for different views, while GEMS was selddtg its strengths irmodel
intelligence which was used for automating parts of the deployment nioglerocess.
Using different tools simplifies the derivation of the depitent plan and the under-
standing of the system architecture, but also requires $evekof integration between
the tools.

GEMS is a graphical modeling tool built on top of Eclipse [4l]d the Eclipse
Modeling Framework (EMF) [12]. GEMS allows developers te asVisio-like graph-
ical interface to specify metamodels and generate donpsnific modeling language
(DSML) tools for Eclipse. In GEMS, a deployment modeling ltbas been imple-
mented to capture the various deployment artifacts, sucacasred Java Archive Re-
sources (JAR) files, and their placement on applicationessrnAnother Neat Tool

(ANT) [24] build, configuration, and deployment scripts da@ generated from the
GEMS deployment model.

GME [30] is another graphical modeling tool similar to GEMfat allows devel-
opers to graphically specify a metamodel and generate a D8dtior. A modeling
tool for specifying the overall component architecturetw Pet Store has been imple-
mented in GME. The GME architecture model is used to capheedmponent types,
the various client types, back-end database architecim expected distribution of
client requests to the Pet Store. The GME architecture nisdglown in Figure 3.

2. Model weaving toolsThe caching aspect of the Pet Store is modeled separatety fro
the GEMS deployment model and GME architecture model. Emcé the caching
model is updated, model weaving tools must be used to applypév caching archi-
tecture to the GEMS and GME models. For the GME models, thé\@-§12] model
weaver is used to merge the caching architecture into ttétacture model. C-SAW re-
lies on a series of weaving definition files to perform the reergach manually derived
global cache weaving solution is implemented in C-SAW’s vireg definition files to
apply to the GME architecture models. Again, because we tveedeparate modeling
tools to produce the best possible deployment and archieeatodels, we must also
utilize and integrate two separate model weavers into tkieldpment process.

W e Edt Window _Help
/iod 2] VI A nsd mEREEED 2| ~
x T NoneNevachigiode | I <] Base: [N/A Zoom:[100%]
o
2
o
Q
&
Jdm ol Produ§tDAC
RequestChdracteristics L Llc =P —1
Category jsp CategoryDAO =
Product DB
|J ViewOrder jsp AccountDAO
Client
‘ R ’—> Order/Account DB

Fig. 3: GME Pet Store Architecture Model

The deployment models in GEMS need to be updated via a modmleresuch
as the Atlas Model Weaver (AMW) [16], which can interopenatth models based on
EMF. With AMW, developers specify two EMF models and a sevigserger directives
(i.e., a weaving specification). AMW produces a third merged EMFRleidrom the
two source models. Each global cache weaving solution nisisttee implemented as
a weaving specification for AMW. Once the AMW specificatioringlemented, the

cache weaving solution can be merged into the GEMS EMF-baspldyment model
to include any required JAR files and cache configuratiorsstep

3. Code weaving toolsFinally, to apply the cache weaving solution to the legacy Pe
Store code, the Java cache advice implementations must\@nvimto the Pet Store’s
middle-tier objects using AspectJ [2], which is a framewfk weaving advice into
Java applications. Although the Spring framework allows #pplication of AspectJ
advice definitions to the Pet Store, it requires that thergpbiean definition files for
the Pet Store be updated to include the new AspectJ poirgndtadvice specifications.
A final third implementation of the global cache weaving $iolo must be created and
specified in terms of Spring bean definitions and AspectJtpais.

Overall, there are three separate tool chains that the Bet &ache weaving solu-
tion must be implemented in. First, C-SAW weaving speciiice must be created to
update the GME architectural models. Second, AMW weavirggifigations must be
produced to update the GEMS deployment models. Finallywéeeving solution must
be turned into AspectJ advice/pointcut definitions for wegihe caches into the Pet
Store at runtime.

3 Model Weaving Challenges

One of the primary limitations of applying existing modelavers to the Pet Store case
study described in Section 2 is that existing model weavirtpat specifications cannot
encode global application constraints, such as memoryucopton constraints, and
also cannot leverage global constraints or dependen@dhasaving rules to produce
an overall global weaving solution. Developers must irgtdacument and derive a
solution for the overall global application constraintglamplement the solution for
each of the numerous modeling and weaving platforms for g &re. Moreover, each
time the underlying global application constraints chateyg, the memory available
for caches is adjusted) the overall global weaving solutiarst be recalculated and
implemented in the numerous modeling tools and platforms.

3.1 Differences Between Aspect Weavers and Model Weavers

To understand why model weavers do not currently suppobiagloonstraints and how
this can be rectified, we first must evaluate aspect weavehe atoding level, which
have influenced model weavers. Aspect weavers, such as tdspatHyperJ [3], face
an indeterminate number of potential joinpoints (also nrefé to asjoinpoint shad-
ows[23]) that will be passed through during application exemutFor example, late-
binding can be used in a Java application to dynamically laad link in multiple
libraries for different parts of the application.

Each library may have hundreds or thousands of classes androus methods
per class (each a potential joinpoint). An aspect weavenaiaknow which classes
and methods the execution path of the application will plassuigh before the process
exits. The weaver can therefore never ascertain the exadf gtential joinpoints
that will be used ahead of time. Although the weaver may ha@vedge of every

joinpoint shadow, it will not have knowledge of which are ety used at runtime.
Model weaving, however, faces a different situation thanrdime aspect weaver. The
key differences are:

— Model weaving merges two models of finite and known size.

— Because models have no thread of execution, the weaver caras exactly what
joinpoints are used by each model.

— Model weaving speed is less critical than aspect weavingdp¢ runtime and
adding additional seconds to the total weaving time is no¢asonable.

Because a model weaver has knowledge of the entire set gigits used by the
models at its disposal it can perform a number of activities aire not possible with
runtime weaving where the entire used set of target joirtpaginot known. For ex-
ample, a model weaver can incorporate global constraitaslie weaving process. A
runtime weaver cannot honor global constraints becausmitat see the entire used
joinpoint set at once. To honor a global constraint, the \wweawst be able to see the
entire target joinpoint set to avoid violating a global coamt.

Runtime aspect weaving involves a large number of potegoiigboints or joinpoint
shadows and is not well-suited for capturing and solvindpgl@pplication constraints
as part of the weaving process. When weaving must be pertboman extremely large
set of target joinpoints, the weaver must use a high-effagi¢achnique for matching
advice to joinpoints (every millisecond counts). The mashmon technique is to use
a query or regular expression that can be used to determmgdintcut matches a
joinpoint. The queries and regular expressions are indbgrgrof each other, which
allows the weaver to quickly compare each pointcut to theitd! joinpoints and
determine matches.

If dependencies were introduced between the queries oessipns €.g, only
match pointcut A if pointcut B or C do not match), the weaveulddoe forced to per-
form far less efficient matching algorithms. Moreover, sitite weaver could not know
the entire joinpoint set passed through by the applicatierecution thread ahead of
time, it could not honor a dependency, such as match poidtautly if pointcuts B
and C arenevermatched, because it cannot predict whether or not B and Gnailth
in the future. Finally, when dependencies are introdudegtetis no longer necessarily
a single correct solution. Situations can arise where theveremust either choose to
apply A or to apply B and C.

3.2 Challenge 1: Existing Model Weaving Poinctut Specificidns Cannot
Encode Global Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WRA\X4], have
adopted the approach of runtime weavers and do not allowdigpeies between point-
cuts or global constraints. Because the model weaver da@scooporate these types of
constraints, developers cannot encode the global applicabnstraints into the weav-
ing specification. Figure 4 presents the manual refactostegs (the first six steps)
that must be performed when the modeled distribution ofestitypes to the Pet Store
changes.

L, O Il
) EE. T2
290 8% >cE 2
2 Ty gjg“’ﬁ 22 0 m<§(035 o=]
Q c o] 5 ® SECo0 b call c= o
i 6l @asES » oirc 2| | Eg9| |£§2 3
[3] 2SS T80 002 -1 T3 =0~ =& =«Tax 3
Soel B = ,06 %2e0f TLW FTTO Ts52 S
2539 564£85 02 L "E2Z NESEECL "
> - [
§ >3 ><2%53 g2EF 25% 2585 2£2 | &
® £2 Tosge | £88< £3 Esy E3 =
G ©<| coccz £EZ0 =2 ESd| |ES =
®o Eo<6%E o< <)] %)
o= 82708 @ @
=5 a l
)= Manual Process = Automated Process

Fig. 4: Solution Model Changes Cause Weaving Solution Usslat

In the Pet Store case study, there are a number of dependemzeglobal con-
straints that must be honored to find a correct weaving. Watedecaching advice
implementations that capture all product queries and implgations that are biased
towards specific data items, such askhehCache. The biased cache is used when the
majority of requests are for a particular product type. FhehCache and the generic
product cache should be mutually exclusive. The use oFilséCache is excluded if
the percentage of requests for fish drops below 50%. Moretivergeneric product
cache will then become applicable and must be applied.

A small change in the solution model can cause numerousfisigmi ripple ef-
fects in the global application constraints and hence wepsolution. This problem of
changes to the solution models of an applicaiton causingtanbal refactoring of the
weaving solution is well-known [22]. The problem becomesremore complex, how-
ever, with the global weaving solution where significanaoebring causes multiple
implementations of the weaving specification to change.

The problem with managing this ripple effect with existingael weavers is that
both theFi shCache and the generic product cache have a pointcut that matckes th
same model element, tikeoduct DAO. With existing pointcut languages based on reg-
ular expressions or queries, there is no way to specify thigtane of the two pointcut
definitions should be matched to tReoduct DAO. The pointcut definitions only allow
the developer to specify matching conditions based on @irtproperties and not on
the matching success of other pointcuts.

Developers often need to restrict the overall cache seledt use less than a
specified amount of memory. For example, rather than havieg-itshCache and
Generi cCache be mutually exclusive, the two caches could be allowed toppdied if
there is sufficient memory available to support both. Reqgithat the woven caches fit
within a memory budget is a resource constraint on the toghory consumed by the
weaving solution and relies on specifying a property overehtire weaving solution.
Existing regular expression and query-based pointcutiaggs usually do not capture
these types of rules.

Another challenge of producing this weaving constraintlmmemory consumed
by the caches is that it relies on properties of both the &dolgects €.g, the mem-
ory consumed by the cache) and the joinpoint objeetg, (the memory available to
the hosting object’s application server). Most model wegyointcut languages allow

specifying conditions only against the properties of thrgetjoinpoints and not over
the advice elements associated with the pointcut. To civeuntithis limitation, devel-
opers must manually add up the memory consumed by the adssoeiated with the
pointcut and encode it into the pointcut specification’srgue.g, find all elements
hosted by an application server with at least 30 MB of memory)

3.3 Challenge 2: Changes to the Solution Model Can Require @ificant
Refactoring of the Weaving Solution

As the solution models of the application that determinestteof joinpoints change,
each manual step in Figure 4 may need to be repeated. Thengastiution relies on
multiple solution models, such as the server request bligiain model, the cache hit
ratio and service times model, and the PetStore softwalgtecture model. A change
in any of these models can trigger a recalculation of thealaleaving solution. Each
recalculation of the global weaving solution involves riplé complex caculations to
determine the new targets for caches. After the new caclgettaare identified, the
implementation of the solution for each weaving platforogtsas the C-SAW weaving
definition files, must be updated to reflect the new cachinkjitacture.

For example, the correct weaving of caches into the Pet $agugres considering
the back-end organization of the product database. If ttebdae is hosted on a sep-
arate server from the Pet Store’s application server, ogchioduct information can
significantly improve performance, as described in Se@iorhe cache weaving solu-
tion is no longer correct, however, if biased caches areeghp various product types
that are being retrieved from a remote database and theadatédco-hosted with the
Pet Store’s application server. A Developer must then wpthe weaving solution to
produce a new and correct solution for the updated solutiodei

As seen in Figure 5, not only are numerous manual steps eshjtorupdate the
weaving solution when solution model changes occur, bulh @aanual step can be
complex. For example, re-caculating the optimal placeraéoaches using a queueing
model is non-trivial. Moreover, each manual step in the gssds a potential source of
errors that can produce incorrect solutions and requireatipy the process. The large
numbers of solution model changes that occur in enterpaseldpment and the com-
plexity of updating the weaving solution to respect glolmistraints, make manually
updating a global weaving solution hard.

3.4 Challenge 3: Existing Model Weavers Cannot Leverage a Vdeing Goal to
Find an Optimal Concern Merging Solution

Another challenge of encoding global application conatgainto a weaving specifica-
tion is that global constraints create situations whereetla@e multiple correct solu-
tions. Existing model weavers do not allow situations wtikege are multiple possible
weaving solutions. Because the weaver cannot choose hetwesving solutions, de-
velopers must manually deduce the correct and optimalisalt use.
Optimizing a solution bound by a set of global constrainta isomputationally

intensive search process. Searching for an optimal salitieolves exploring the so-
lution space (the set of solutions that adhere to the glalratcaints) to determine the

S
Manually Update Backend DB
Arch, Queueing Analysis,
Memory Constraints, etc. and
Method to Determine
Optimal Weaving Strategy
EMF (GEMS)

Weave Models

I
I
I
l
|
e
|
I
|
I
I

Derive a Weaving Solution

v
Utilize a Numerical
Implement the Solution for
C-SAW (GME)

v

Implement the Solution for

AspectJ (Legacy Code)

A2

Implement the Solution for ‘

Create Aspects
and
Identify Joinpoints

1. Since these are manual 2. Deriving a correct 3. Optimization can : :

0 - . 4. Requires updating tens
processes, difficult to detect global weaving be challenging, o indred s o lnesr
errors can be introduced that solution can involve even with numerical 2 i

T g 2 pointcut specifications
can cause application failure solving a complex methods, such as T o Foaree ey
or require significant solution problem involving the Simplex method pthe Iogbal aolliton

factoring late in the tens or hundreds of and is difficult to gchan =
development cycle variables perform manually 9

Fig. 5: Challenges of Updating a Weaving Solution

optimal solution. This type of optimization search can stmes be performed man-
ually with numerical methods, such as the Simplex [37] méhit is typically hard.
In particular, each time the solution models change, dpesomust manually derive a
new optimal solution from scratch.

For example, to optimize the allocation of caches to DAOs@&Ret Store, devel-
opers must:

— Evaluate the back-end database configuration to deterfpreduct, account, or
other data must be cached to reduce query latency.

— Derive from the cache deployment constraints what cache®eaapplied to the
system and in what combinations.

— Determine how much memory is available to the caches and hemary con-
straints restrict potential cache configurations.

— Exhaustively compare feasible caching architecturegyugireuing analysis to de-
rive the optimal allocation of caches to DAOs based on DAQiserrates with and
without caching and with various cache hit rates.

It is hard to manually perform these complex calculationsheime the solution
models change or caching constraints are modified.

4 CSP-based Model Weaving

To address the challenges described in Section 3, we hawtopedAspectScatter
which is a static model weaver that can:

1. Transform a model weaving problem into a CSP and incotpglabal constraints
and dependencies between pointcuts to address Challeng Séction 3.2.

2. Using a constraint solver, automatically derive a wegnsalution that is correct
with respect to a set of global constraints, eliminatingrteed to manually update
the weaving solution when solution models change, as destiin Challenge 2
from Section 3.3

3. Select an optimal weaving solution (when multiple solog exist) with regard to a
function over the properties of the advice and joinpoiritsyang the weaver rather
than the developer to perform optimization, thereby adidngsChallenge 3 from
Section 3.4.

4. Produce a platform-independentweaving model and toamsf into multiple platform-
specific weaving solutions for AspectJ, C-SAW, and AMW tlgbumodel trans-
formations, thus addressing the problems associated vathtaining the weaving
specification in multiple weaving platforms.

Figure 6 shows an overview of AspectScatter's weaving agpgroFirst, develop-

Advice Set Joinpoints
Global Constraints

i Constraint Satisfaction Problem E

Platform-specific

Step 1. /—é_/l—é_%_ Weaving Models
Weaving P 77 N csaw
Problem aliial }f_/ Weaving Solution

Translated UjL/{Lf-/'r AspectJ
into a CSP 51,4
intoa %—%—Lf— Weaving Solution
Step 2. Step 3. Step 4. Step 5.
Solver Derives CSP Weaving Table Model
Solution (Platform-independent Transformation

Weaving Model)

Fig. 6: Constraint-based Weaving Overview

ers describe the advice, joinpoints, and weaving congsrénAspectScatter using its
domain-specific language (DSL) for specifying aspect wagyiroblems with global
constraints. In Step 1, AspectScatter transforms the DStante into a CSP. In Step 2,
AspectScatter uses a constraint solver to derive a guadoterect and, if needed, opti-
mal weaving solution. In Step 3, AspectScatter transfolrasblution into a platform-
independent weaving model. In Step 4, model transformgtée used to transform
the platform-independent weaving model into specific impatations, such as C-
SAW weaving definition files, for each target weaving platioFinally, in Step 5, the
platform-specific weaving models are applied to their tangedels or code.

The remainder of this section presents a mapping from moeaVing to a CSP. By
producing a CSP for model weaving, a constraint solver carsbd to deduce a correct
and in many cases optimal solution to a weaving problem.

4.1 CSP Background

A CSP is a set of variables and a set of constraints over tharsables. For example,
A < B <100 is a CSP over the integer variabkeandB. A solution to a CSP is a set
of values for the variables (called a labeling) that adh&reéke set of constraints. For
exampleA=10,B =50 is a valid labeling (solution) of the example CSP.

Solutions to CSPs are obtained by ussunstraint solverswhich are automated
tools for finding CSP solutions. Constraint solvers buildrapd of the variables and
constraints and apply techniques, such as arc-consistienityd the ranges that vari-
able values can be set to. Search algorithms then traversetistraint network to hone
in on a valid or optimal solution.

A constraint solver can also be used to derive a labeling o8B tat maximizes
or minimizes a specific goal function€., a function over the variables). For example,
the solver could be asked to maximize the goal funcionB in our example CSP.
A maximal labeling of the variables with respect to this ghadction would beA =
98,B =99.

4.2 Mapping Cache Weaving to a CSP

Cache weaving can be used as a simple example of how a CSP caed¢o solve

a weaving problem. In the following example, we make sevasalimptions, such as
the hit ratio for the caches being the same for both joingoiat simplify the problem

for clarity. Real weaving examples involving optimal cawiior other types of global
constraints are substantially more difficult to solve mdlyuend hence motivate our
constraint solver weaving solution.

Assume that there are two caches that can be woven into aitatipt, denoted
C1 andC2. Furthermore, assume that there are two joinpoints tleatéithes can be
applied to, denotedl andJ2. Let there be a total of 200K of memory available to the
caches. Furthermore, the two caches are mutually exclasisecannot be applied to
the same joinpoint. Let the time required to service a reitptdd be 10ms and the time
atJ2 be 12ms.

Each cache hit 061 requires 2ms to service and each cache h®requires 3ms.
All requests pass through baifh andJ2 and the goal is to optimally match the caches
to joinpoints and set their sizes to minimize the total sertime per request. The size
of each cache(1s,c andC2g,¢ determines the cache’s hit ratio. Kot the hit ratio is
CLsiz¢/500 and forC2 the hit ratio iSC2i,¢/700. Let's assume that cacié is woven
into joinpointJ1 andC2 is woven into joinpoind2, the service time per request can be
calculated as

SvcTime= 2(Clsize/500) + 10(1 — Clgjzg/500) + 3(Clgizg/ 700) + 12(1 — Clgjz/ 700)

With this formulation, we can derive the optimal sizes fag ttaches subject to the
global weaving constraint:

Clsize+ C2size < 200

The problem, however, is that we want to know not only theropticache size
but also where to weave the caches. The above formulatiomessthat cach€l is
assigned tal1 andC2 to J2. Thus, instead we need to introduce variables into the
service time calculation to represent the joinpoint thahezache is actually applied to
so that we do not assume an architecture of how caches atiecifipJoinpoints. That
is, we want to deduce not only the cache sizes but also thealbesation of caches to

joinpoints (the caching architecture). Let the varialdig have value 1 if thg, cache
Cj is matched to joinpoind, and O otherwise. We can update our service time formula
so that it does not include a fixed assignment of caches tpgais:

SvcTime= 2(M11 * Clsize/500) + 3(Ma1 + C2giz¢/ 700)+
10(1 — ((My1 % Clgize/500) + (Mpy % C25iz¢/ 700)))+
2(M12# Clsize/500) + 3(Ma2# C2siz¢/ 700)+
12(1 — ((M12+ Clsize/500) 4 (M22* C2siz¢/ 700)))

The new formulation of the response time takes into accdwntifferent caches
that could be deployed at each joinpoint. For example, thaécetime at joinpoint1l
is defined as:

+3(Ma1 % C2siz¢/ 700)+
+10(l - ((Mll* ClsizQ/SOO) + (M21* C23i23/500)))

In this formulation the variablelsl1; andMa; are influencing the service time cal-
cuation by determining if a specific cache’s servicing infation is included in the
calculation. If the cach€l is applied tol1, thenM;1 = 1 and the cache’s service time
is included in the calculation. If the cache is not woven idig thenM11 = 0, which
zeros out the effect of the cacheldtsince:

J1SvcTime= 2(0)...10(1 — (0+ (M21* C2si2¢/500)))

Thus, by calculating the optimal values of tiig variables, we are also calculating the
optimal way of assigning the caches (advice) to the joinizoin
To optimally weave the caches into the application, we neeltive a set of values
for the variables in the service time equation that minimiite value. Furthermore, we
must derive a solution that not only minimizes the above #goa value, but respects
the constraints:
Clsizet+ C2si2e< 200

(M]_]_ = 1) = (Mz]_ = 0)
(Mlz = 1) = (Mzz = 0)

because the cache sizes must add up to less than the allotedryn@00K) and both
caches cannot be applied to the same joinpoint.

When the constraint solver is invoked on the CSP, the outjilbe/the values for
the M;j variables. That is, for each Advice, i, and Joinpoint, j, sbéser will output the
value of the variabljj, which specifies if Adviced;, should be mapped to Joinpoint,
Bj. The Mjj variables can be viewed as a table where the rows represeidthice
elements, the columns represent the joinpoints, and thesdD or 1) at each cell are
the solver’s solution as to whether or not a particular aehghould be applied to a
specific joinpoint. Furthermore, any variables that do rentehvalues set, such as the
cache sizeq1sjzeandC2siz9), Will have optimal values set by the constraint solver.

Even for this seemingly simple weaving problem, derivingatvfpinpoints the
caches should be applied to and how big each cache shouldrm &asy to deter-
mine manually. However, by creating this formulation of theaving problems as a
CSP, we can use a constraint solver to automatically ddmweptimal solution on our
behalf. The solution that the solver creates will includeardy the optimal cache sizes,
but also which joinpoints each cache should be applied to.

A General Mapping of Weaving to a CSP: The previous subsection showed how
a CSP could be used to solve a weaving problem involving apéition and global
constraints. This section presents a generalized mappang & weaving problem to
a CSP so that the technique can be applied to arbitrary moekeling problems with
global constraints.

We define a solution to a model weaving problem as a mappingofents from
an advice sett to a joinpoint se3 that adheres to a set of constraiftgo represent
this mapping as a CSP, we create a table—calledvving table-where for each
adviceA in a and joinpointB; in B, we define a celli(e., a variable in the CSRYj;;.

If the adviceA; should be applied to the joinpoiB, thenM;j = 1 (meaning the table
cell <i,j> has value 1). IfA; should not be applied t8j, thenM;; = 0. The rules for
building a weaving solution are described to the constrsdhter as constraints over
the Mjj variables. An example weaving table where Eneduct sCache is applied to
thePr oduct DAOis shown in Table 1.

| [ProductDAO [ltemDAO |
ProductsCache Moo= 1 Mo1 =0
FishCache M10=0 M1, =0

Table 1. An Example Weaving Table

Some weaving constraints are described purely in termseofvkaving table. For
example, Challenge 1 from Section 3.2 introduced the caimétthat theFi shCache
should only be used if ther oduct sCache is not applied to any component. This con-
straint can be defined in terms of a constraint over the weauible. If theFi shCache
is Ag and thePr oduct sCache is Ag, then we can encode this constraint as for all join-

points,j:
n n
(Mo'>0)—>(Ml-:O)
,Zo j JZO j

Some examples of dependency constraints between advinemigthat can be imple-
mented as CSP constraints on the weaving table are:
Advice requiresAdvice to always be applied to the same joinpoint:

VBj C B,(Mgoj =1) — (My; =1)
Advice excludesAdvicg from being applied to the same joinpoint:

VBj C B,(Moj =1)— (Mlj =0)

Advice requires betweeMIN...MAX of Advice...Advicg at the same join-
point:

k k
VBj C B,(Moj =1) — (-ZM” > MlN)/\(-ZM” < MAX)

Advice and Joinpoint Properties Tables: Other weaving constraints must take into
accountthe properties of the advice and joinpoint elemamdannot be defined purely
in terms of the weaving table. To incorporate constraintsliring the properties of
the advice and joinpoints, we create two additional talitesadvice properties table
and joinpoint properties tableEach rowPR, in the advice properties table represents
the properties of the advice elemekt The columns of the advice table represent the
different property types. Thus, the cell <i,j>, represeritg the variabldA;, contains
Aj’s value for the property associated with tiygcolumn. The joinpoint properties table
is constructed in the same fashion with the rows being thepfints (.e., each cell is
denoted by the variableT;). An example joinpoint properties table is shown in Table
2.

| %Fish Requests %Bird Requests |
ProductDAO 65% Ploo — 0.65) 20% Plor = 0.2)
ItemDAO 17% PTyo = 0.17) 47% PTyy = 0.47)

Table 2: An Example Joinpoint Properties Table

Challenge 1 from Section 3.2 introduced the constraintttiesfi shCache should
only be applied to th@r oduct DAO if more than 50% (the majority) of the requests to
the Product DAO are for fish. We can use the advice and joinpoint propertigesao
encode this request distribution constraint. Let the joinpproperties table column at
index 0 be associated with the property for the percentagegqfests that are for Fish,
as shown in the the joinpoint properties table shown in TabMoreover, leA; be the
Fi shCache andBg be thePr oduct DAQ. The example request distribution constraint can
be encoded a$l190 — (PToo > 50).

4.3 Global Constraints

In enterprise systems, global constraints are often netedédit the amount of mem-
ory, bandwidth, or CPU consumed by a weaving solution. Globastraints can nat-
urally be incorporated into the CSP model as constraintshinvg the entire set of
variables in the weaving table. For example, the memorytcaing on the total amount
of RAM consumed by the caches, described in Challenge 1 freatic 3.2, can be
specified as a constraint on the weaving and propertiesstable

Let the joinpoint property table column at index 5, as showiiable 3, represent
the amount of free memory available on the hosting appticagerver of each joinpoint.
Moreover, let the advice property table column at index 4tesvn in Table 4, contain

RAM on Application Server
ProductDAO 1024K PTos = 1024)

Table 3: An Example Joinpoint Properties Table with Avdialdemory

RAM Consumed
ProductCache ... 400K (PAg4 = 400)
FishCache ... 700K (PA14 = 700)

Table 4: An Example Advice Properties Table with RAM Constiop

the amount of memory consumed by each cache. The memoryroptisn constraint
can be specified as:

n
VBJ' C B, (';PAm* Mij) < PTJ'5
i=l

If an advice element is matched against a joinpoint, theespondingVijj variable is
set to 1 and the advice element’'s memory consumption vRyg, is added to the total
consumed memory on the target application server. The @nisthat the consumed
memory be less than the available memory is captured by ifhdation that this sum
be < PTjs, which is the total amount of free memory available on thegeint's appli-
cation server.

4.4 Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that reqatehing strings against
regular expressions, are more naturally represented @siisting query and regular
expression techniques. The CSP approach to model weavingjsaincorporate these
types of constraint expressions. Regular expressionsggand other pointcut expres-
sions that do not have dependenices can be used as an iligi@hd step to explicitly
set zero values for somid;; variables. The filtering step reduces the set of feasible
joinpoints that the solver must consider when producing avvey solution.

For example, th&éi shCache should only be applied to DAOs with the naming con-
vention "Product*". This rule can be captured with an ergtpointcut language and
then checked against all possible joinpoints, as showngargi7. For each joinpoint,
J, that the pointcut does not match, the CSP varialdig, for each advice element, i,
associated with the pointcutis set to 0. Layering existiegehdency-free pointcut lan-
guages as filters on top of the CSP based weaver can help eagecthe number of
labeled variables provided to the solver and thus reduséngplime.

4.5 CSP-Weaving Benefits

Challenge 3 from Section 3.4 showed the need for the abditg¢orporate a weaving
goal to produce an optimal weaving. Using a CSP model of a ingaperoblem, a
weaving goal can be specified as a function oveiMhePA;j, andPT;; variables. Once

IProductDAO ItemDAO
\ProductsCache Moo =? My =7
\FishCache MIO :? l Mll =?

Apply “Product*” Filter
]

ProductDAO - ItemDAO
iProductsCache Moo =? Mo =7?
\FishCache Mg =7 M =0

Potential Joinpoint Filtered Out
Before CSP Solving

Fig. 7: Joinpoint Feasibility Filtering

the goal is defined in terms of these variables, the solvebearsed to derive a weaving
solution that maximizes the weaving goal. Moreover, theesotan set optimal values
for attributes of the advice elements, such as cache size.

Allowing developers to specify optimization goals for theaver enables different
weaving solutions to be obtained that prioritize applmatoncerns differently. For ex-
ample, the same Pet Store solution models can be used te dadhing solutions that
minimize response time at the expense of memory, balanpemss time and memory
consumption, or minimize the response time of particular astions, such as adding
items to the shopping cart. To explore these various salyimssibilities, developers
update the optimization function provided to AspectScattel not the entire weaving
solution calculation process. With the manual optimizaapproaches required by ex-
isting model weavers, it is typically too time-consuminget@aluate multiple solution
alternatives.

Mapping aspect weaving to a CSP and using a constraint dolderive a weaving
solution addresses Challenge 1 from Section 3.2. CSPs taratiaaccomodate both
dependency constraints and complex global constraint$, as resource or schedul-
ing constraints. With existing model weaving approacheglig@ers manually identify
and document solutions to the global weaving constraintth WCSP formulation of
weaving, conversely, a constraint solver can perform #e& tilutomatically as part of
the weaving process.

Manual approaches to create a weaving solution for a setmst@ints have nu-
merous points where errors can be introduced. When Aspeit¢scs used to derive a
weaving solution, the correctness of the resulting sofusassured with respect to the
weaving constraints. Moreover, in cases where there isate/solution, AspectScatter
will indicate that weaving is not possible.

A further benefit of mapping an aspect weaving problem to a S $trat extensive
prior research on CSPs can be applied to deriving aspectimgeaglutions. Existing
research includes different approaches to finding solstji@], incorporating soft con-
straints [40], selecting optimal solutions or approxiraas in polynomial time [11, 18,
39], and handling conflicting constraints. Conflict resimnthas been singled out in

model weaving research as a major challenge [49]. Numerxigsng techniques for
over-constrainted systems [10, 25, 46¢(CSPs with conflicting constraints), such as
using higher-order constraints, can be applied by mappiogaiweaving to a CSP.

5 The AspectScatter DSL

Manually translating an aspect weaving problem into a CSRguthe mapping pre-
sented in Section 4 is not ideal. A CSP model can accomodabaligtonstraints and
dependencies but requires a complex mapping that must feped correctly to pro-
duce a valid solution. Working directly with the CSP varibko specify a weaving
problem is akin to writing assembly code as opposed to JaZa-ercode.

AspectScatter provides a textual DSL for specifying wegvimoblems and can
automatically transform instances of the DSL into the egeint CSP model for a con-
straint solver. AspectScatter's DSL allows developers ¢okvat the advice/joinpoint
level of abstraction and use leverage a CSP solver for dey&iweaving solution.

The CSP formulation of an aspect weaving problem is not fipegoiany one par-
ticular type of joinpoint or advice. The construction andvsw of the CSP is a math-
ematical manipulation of symbols representing a set ofpjoints and advice. As such,
the joinpoints could potentially be Java method invocationmodel elements. In Sec-
tion 6, we discuss how these symbols are translated inttoplatspecific joinpoints and
advice. For this section, however, it is important to rementhat we are only declar-
ing and stating the symbols and constraints that are usadltbthe mathematical CSP
weaving problem.

For example, in the context of the cache weaving exampleg thiee two different
types of platform-specific joinpoints. First, there are jbimpoints used by C-SAW,
which are types of model elements in a GME model. Seconde they AspectJ type
joinpoints, which are the invocation of various methodstmndava implementations of
the Product DAO, Or der DAQ, etc. In the platform-independent model used by the CSP,
the joinpoint definitiorOr der DAOis merely a symbolic definition of a joinpoint. When
the platform-specific solution is translated into a platiespecific weaving solution,
O der DAO is mapped to a model element in the GME model used by C-SAW and a
invocation of a query method on the Java implementation@®tider DAO.

The basic format for an AspectScatter DSL instance is shaionb

ADVICE_1_ID

(DI RECTI VE;) *
}

ADVI CE_N I D

(DI RECTI VE;) *
}
JONPOINT 1 1D

(VARI ABLENANE=EXPRESSI ON;) *
}

JONPOINT_NID

(VARI ABLENAVE=EXPRESSI ON;) *
}

The JO NPO NT declaration specifies a joinpoint, an elemBpt_ 3, that ADVI CE
elements can be matched against. TRENPO NT_I D is the identifier, such as "Or-
derDAQO," that is given as a symbolic name for the joinpoirgcEIO NPO NT element
contains one or more property declarations in the forA&f ABLENAVE=EXPRESSI ON.
The columns for the joinpoint properties table are creatgdraversing all of the
JO NPQ NT declarations and creating columns for the sefAll ABLENAVES. The
EXPRESSI ON that aJO NPO NT specifies for aVARI ABLENAVE becomes the entry for
thatJO NPO NT’s row in the specifieARI ABLENAME column,PT;;.

EachADVI CE declaration specifies an advice element that can be matgzasa
the set ofJO NPO NT elements, an elemeAt C a. TheDl RECTI VES within the advice
element specify the constraints that must be upheld by tleviwg solution produced
by AspectScatter and the properties of &I CE element (values for thBA;; vari-
ables). The directives available in AspectScatter are shinwable 5.

As an example, the AspectScatter ADVICE definitions:

GenericCache

Excl udes: Fi shCache;
Def i neVar: CacheSi ze;

}
Fi shCache
{
}

defines two advice elements call€eneri cCache andFi shCAche. The DI RECTI VES
within theGener i cCache declaration (between "{..}") specify the constraints thratst

be upheld by the joinpoint it is associated with and the prigethe advice element
defines. The&zxneri cCache excludes the advice elemefitshCache from being ap-
plied to the same joinpoint as tigeneri cCache. TheGeneri cCache declaration also
specifies a property variable, calléacheSi ze, that the weaver must determine a value
for.

Assume that th€ener i cCache is A2 and theFi shCache is A;. The AspectScatter
specification would be transformed into: the mapping vaeishlyg. .. M2y, the advice
property variable®Ay0. .. PAy, an advice property table column fGacheSi ze, and
the CSP constraintB; C B,(M2j =1) — (M1j =0).

The final part of an AspectScatter DSL instance is an optiseiadf global variable
definitions and an optimization goal. The global variablérdiéons are defined in an
element named@ obal s. Within thed obal s element, properties can be defined that
are not specific to a singkbVl CE or JO NPO NT. Furthermore, th€oal directive key
word can be used within th@& obal s element to define the function that the constraint
solver should attempt to maximize or minimize.

DIRECTIVE

Applied To

Description

Requires ADVICE+

Required: (true|false)

Excludes ADVICE+

Select [MIN..MAX], ADVICE+

Target: CONSTRAINT

Evaluate:
(ocl|groovy),
FILTER EXPRESSION

DefineVar: VARIABLENAME
(= EXPRESSION?

Define: VARIABLENAME
=EXPRESSION

Goal: (maximizéminimize,
VARIABLE EXPRESSION

one or more other ADVICE eleme|

an ADVICE element

Snsures that all of the

specified ADVICE elements are
applied to a JOINPOINT

if the enclosing ADVICE element is

The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

one or more other ADVICE elemen&nsures that none of the

a cardinality expression and
one or more other ADVICE

an ADVICE element

an ADVICE element

a weaving problem

a weaving problem

a weaving problem

specified ADVICE are
applied to the same JOINPOINT
as the enclosing ADVICE

Ensures that at least MIN

and at most MAX of the

specified ADVICE are

mapped to the same

JOINPOINT as the enclosing ADVICE

Requires that CONSTRAINT
hold true for the

ADVICE and JOINPOINT’s
properties if the

ADVICE is mapped

to the JOINPOINT

Requires that FILTER_EXPRESSION
defined in OCL or Groovy

hold true for the

ADVICE and JOINPOINT’s
properties if the

ADVICE is mapped

to the JOINPOINT

Defines a variable.

The final value for

the variable is bound

by the weaver and

must cause the optional
EXPRESSION to evaluate
to true

Defines a variable
and sets a constant
value for it

Defines an expression over the
properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

Table 5: AspectScatter DSL Directives

<|>|=p=|=<|>=) true in the final weaving solution.
VARIABLE EXPRESSIONCONSTANT

EXPRESSION (CONSTANTVARIABLE EXPRESSION |An expression
(+=[x)
(CONSTANTVARIABLE EXPRESSION
CONSTRAINT (VARIABLE EXPRESSIONCONSTANT | Defines a constraint that must hold
(
(

VARIABLE_EXPRESSION |(VARIABLEYV_EXPRESSIONONSTANT|An expression over a set of variables
(H[=1x)
(VARIABLEV_EXPRESSIONCONSTANT]

VARIABLE_V_EXPRESSION (Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)

on a ADVICE or JOINPOINT element.
Targetspecifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Sourcespecifies that the variable
should be resolved

against the enclosing

ADVICE element.

Table 6: AspectScatter DSL Expressions

The values for variables provided by the weaver are detedtiy labeling the CSP
for the weaving problem. For example, the global constsdimtthe Pet Store weaving
problem define the goal as the minimization of the respomse &f thel t enDAO and
Product DAQ, as can be seen below:
dobal s {

Define: Total Fi sh = 100;

Define: Total Birds = 75;

Define: Total Gt her Animal's = 19;
Constraint: Sour ces. CacheSi ze. Sum< 1024;

Goal : mi ni nize, ProductDAO. Request Percentage * Product DAO. ResponseTi ne +
| t enDAQ. Request Per centage * |t enDAO. ResponseTi ne;

EachDef i ne creates a variable in the CSP and sets its value. The vadedsdéed
by theDef i ne can then have a constraint bound to it. For example, a camistiauld be
created that leveraged tfiet al Bi r ds variable declared above. An example constraint
might be(3|_oMoj > 0) — (TotalBirds< 80). This simple constraint states that the
Oth advice element can only be applied to a joinpoint if tregeeless than 80 birds.
TheConstrai nt directive adds a constraint to the CSP. In the example altlose,
specification adds a constraint that the sum of the cachs sizst be less than 1024.
The statementSour ces. CacheSi ze. Suni' is a special AspectScatter language expres-
sion for obtaining a value from a properties table (the aglpioperties table), a column
(CacheSi ze), and an operation (summation). AssumiZagheSi ze is the Oth column
in the advice properties table, the statement adds theafisiipconstraint to the CSP:

n

VBj C B, (;(Mij * PAg) < 1029

Since no explicit values for each advice eleme@i#isheSi ze is set, these will be
variables that the solver will need to find values for as patihe CSP solving process.

Because the response times of the DAOs are dependent orz¢hef gach cache, the
CacheSi ze variables will be set by the weaver to minimize response.tibeelopers
can use the AspectScatter DSL to produce complex aspectivggawblems with both
global constraints and goals.

AspectScatter's DSL also includes support for the filteromgrations described
in Section 4.4. Filters to restrict the potential joinpsitihat an advice element can
be mapped to can be defined using an Object Constraint Laagi@@L) [47] or
Groovy [26] language expression that must hold true for thec/joinpoint mapping
(i.e., the choice of expression language is up to the user). §idez defined via the
Eval uat e directive. For example, a Groovy constraint can be usedsiicethe Fish-
Cache from being applied to any order related DAOs via a eegaxpression constraint:

Fi shCache {

Eval uat e: groovy, {!target. nane. contai ns("Order")};

}

An OCL constraint could be used to further restrict the Fistit to only be applied
to DAOs that receive requests from a category listing page:

Fi shCache {

Eval uat e: ocl, {target.requestsFrom >col | ect(x | x.nanme = 'ViewCategories.jsp')->size() > 0};

}

As described in Section 4.4, the filter expressions defingfwal uat e are used to
preprocess the weaving CSP and eliminate unwanted adiiggdint combinations.

6 AspectScatter Model Transformation Language

The result of solving the CSP is a platform-independent \wepsolution that sym-
bolically defines which advice elements should be mappedhichwjoinpoints. This
symbolic weaving solution still needs to be translated mtplatform-specific weav-
ing model, such as an AspectJ weaving specification. Théoptaispecific weaving
specification can then be executed to perform the actual coch®del weaving.

Each platform-independent weaving representation of teawag solution can
be transformed into multiple platform-specific weavingusians, such as AspectJ,
C-SAW, or AMW specific weaving specifications. Producing atfgrm-independent
weaving model of the solution and transforming it into immpkntations for specific
tools allows AspectScatter to eliminate much of the sigaiftananual effort required
to synchronize multiple weaving specifications across ardi set of models, model-
ing languages, and modeling tools. For example, when thesfaddequest distribution
changes for the Pet Store, the C-SAW, AspectJ, and GEMS ngapiecifications can
automatically be re-generated by AspectScatter, as sho®tep 4 of Figure 6.

AspectScatter’s platform-independent weaving model canrénsformed into a
platform-specific model with a number of model transformiatools, such as ATL [28].
AspectScatter also includes a simple model transform#tiolrbased on pointcut gen-
eration templates that can be used to create the platfoetifgpveaving model. In this

section, we show the use of the built-in transformation leagge in the context of the
C-SAW weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecaccording to
a set of weaving directives specified in a weaving definititm fihe implementation
of the C-SAW weaving definition file that is used to merge cadht the architecture
model is produced from the platform-independent weavirgtem model. To trans-
form the platform-independent solution into a C-SAW weagvitefinition file, an As-
pectScatter model transformation is applied to the salutiocreate C-SAWtrategies
to update model elements with caches and C-S#$fdectso deduce the elements to
which the strategies should be applied. For each cacheéasiato the GME architec-
ture model, two components must be added to the C-SAW weafigition file. First,
the Strategyfor updating the GME model to include the cache and conndot tihe
correct component must be created, as shown below:

strategy Product DACAddGenericCache() {
decl are parent Mbdel : nodel;
decl are conponent, cache : atom
parent Mbdel : = parent();
conponent : = self;
cache : = parent Mbdel . addAt on(" Cache", "Generi cCacheFor Product DAC");
par ent Model . addConnect i on(" Cachel nstal | ati on", cache, conponent);

A root Aspect andStrat egy must also be created that matches the root element
of the GME model and invokes the weaving of the individual Dé&xhes. The root
definitions are shown below:

aspect Root Aspect ()
root Fol der (). nodel s() - >AddCaches() ;

}
strategy AddCaches()
{

decl are parentMbdel : nodel;
parent Model : = self;
par ent Model . at oms(" Conponent ™) - >sel ect (nf m nane() == "Product DAQ") - >Pr oduct DAOAddCener i cCache ();

For each advice/joinpoint combination, tBe at egy to weave in the cache must be
created. Moreover, for each advice/joinpoint combingteoweaving instruction must
be added to the rodtldCaches strategy to invoke the advice/joinpoint specific weaving
strategy.

To create the advice/joinpoint specific cache weaving esgsatan AspectScatter
template can be created, as follows:

#advi ce[*] (for-each[list=targets]){#
strategy ${val ue} Add${advi ce} Cache() {
decl are parentMbdel : nodel;
decl are conponent, cache : atom
parent Model : = parent();
conponent : = self;
cache : = parent Mdel . addAt on(" Cache", "${advi ce} CacheFor ${val ue}");
par ent Model . addConnect i on(" Cachel nstal | ati on", cache, conponent);

##

The template defines that for all advice elements matchedstgainpoints
"advicgx]", iterate over the joinpoints that each advice element dieg to
"for-each[list=targets]"”, and create a copy of the template code between "{#"
and "#}" for each target joinpoint. Moreover, each copy af template has the name
of the advice element and target element inserted into &eehblders "${advice}" and
"${value}", respectively. The "${advice}" placeholder filed with the symbolic name
of the advice element from i&DVI CE declaration in the AspectScatter DSL instance.

The "${value}" placeholder is the symbolic name of the jadint, also obtained
from its definition in the AspectScatter DSL instance, thatadvice element has been
mapped to. The properties of an advice element can also &eedfto using the place-
holder '${ PROPERTYNAME} ." For example, the propert§acheSi ze of the advice el-
ement could be referred to and inserted into the templatesiiyguhe placeholder
"${CacheSize}".

After deriving a weaving solution, AspectScatter uses gémeplates defined for C-
SAW to produce the final weaving solution for the GME modeloking the generated
C-SAW file inserts the caches into the appropriate pointseéretrchitecture diagram. A
final woven Pet Store architecture diagram in GME can be seEigure 8.

woven caches O

GenericCacheForCategoryDAO GenericCacheFRorProductDAO

+

Tl Fle Edt View Window Help FishCacheFotitemDAO
/i@ 2¢ avdawsmEneneg 2| - : ProduftDAO
p T Name N el [CachingModel I v Base: [N zoom [10fc ~] / 7
LS
B Y A) P
R
Z GengfricCacheForCategoryDAO GenericCacheR orProductDAC
) B
m{m s FishCacheFofitemDAQ
5ol ProduftDAD
RequestChdracteristics = ch P
; i
Category jsp CategoryDAO ..l I
- Product DB
roduc
\F ViewOrder jsp AccountDAO
Client -
Daa
)
‘ t ’— Order/Account DB

Fig. 8: The GME Architecture Model with Caches Woven in by BY6

With existing weaving approaches, each time the globalgnt@gs, such as request
distributions change, developers must manually deriveraweaving solution. When
the properties of the solution models change, however, &Sgpatter can automatically

solve for new weaving solutions, and then use model transition to generate the
platform-specific weaving implementations, thereby adsireg Challenge 2 from Sec-
tion 3.3. The CSP formulation of a weaving problem is basetthenveaving constraints
and not specific solution model properties. As long as thestraimt relationships do
not change, AspectScatter can automatically re-calcthateveaving solution and re-
generate the weaving implementations. For example, if reeuest distributions are
obtained, AspectScatter can re-calculate the weavingdisnlto accomodate the new
information. Automatically updating the weaving solutias the solution model prop-
erties change can save substantial development efforsacnaltiple solution model
refactorings.

7 Applying Constraint-based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effat@mplexity achieved by
applying AspectScatter to the Spring Java Pet Store to bagidbal constraints and
generate platform-specific weaving implementations. Bongarison, we also applied
the existing weaving platforms C-SAW and AspectJ to the saote base using a
manual weaving solution derivation process. The resultuioh@nt the manual effort
required to derive and implement a caching solution for taeJore’sl t enDAO and
Product DAC.

7.1 Manual Complexity Overview

It is difficult to directly compare the manual effort requdréo execute two different
aspect weaving processes. The problem is that there is nofweayrelating the relative
difficulty of the individual tasks of each process. Furthera) the relative difficulty of
tasks may change depending on the developer.

Although it is difficult to quantify the relative difficultyfathe individual steps, we
can define function®! (W P) andM’ (W P) to calculate the total number of manual steps
required for each process as a function of the size of the wgaroblem YW P) input.
That is, as more advice elements, joinpoints, and conséraine added to the weaving
problem, how is the number of manual steps of each procesacteg? What we can
show is that one process exhibits a better algorithmic O 8darthe number of manual
steps as a function of the input size.

Let's assume that each step in one process tisnes harder than the steps in the
second process. This gives the formula:

E * Mstep= Mep

Even if there is some unknown coefficidat representing the extra effort of each step
in the process yieldiniyl’ (W P), if M’(W P) posseses a better O bound, then there must
exist an inputwp € WP (WP is sorted in ascending order based on size), for which:

ExM (wp) < M(wp)

and for allwps C (Wpi1...Wphn):

Ex M (wpy) < M(wpy)

Once the size of the weaving problem reachessige 1, even though the steps M’
areE times more complicated than the step84(\W P), the faster rate of growth of the
functionM (W P) makes it less efficient. If we can calculate O bounds for thatmer of
manual steps required by each process as a function of thefdize weaving problem,
then we can definitively show that for large enough problehesprocess with the better
O bound will be better.

In order to compare the AspectScatter based approach torigimad C-SAW and
AspectJ approach, we provide an example weaving problewlvimg global con-
straints and optimization. We apply each process to thelgmolo show the manual
steps involved in the two processes. Next, we calculatetifumeM (W P) andM’ (W P),
for the traditional and AspectScatter processes resgdgtand show thatl’' (W P) ex-
hibits a superior O bound.

7.2 Experimental Setup

We evaluated both the manual effort required to use theiegisteaving solutions to
implement a potentially non-optimal caching solution alnel ¢ffort required to derive
and implement a guaranteed optimal caching solution. Bypasing the two different
processes using existing weavers, we determined how mubk afanual effort results
from supporting multiple weaving platforms and how muchukssfrom the solution
derivation process. Both processes with existing toolewleen compared to a process
using AspectScatter to evaluate the reduction in solutierivdtion complexity and
solution implementation effort provided by AspectScatter

7.3 Deriving and Implementing a Non-Optimal Caching Soluton with Existing
Weaving Techniques

The results for applying existing weavers to derive and énpnt a non-optimal caching
solution are shown in Figure 9. Each individual manual sesteps is associated with
an activity that corresponds to the process diagram shoWigirre 4. The results tables
contain minimum and maximum values for the number of stepdiaes of code. The
implementation of each step is dependent on the solutiosechd’he minimum value
assumes that only a single cache is woven into the Pet Sthereas the maximum
value assumes every possible cache is used.

The top table in Figure 9 shows the effort required to prodheeinitial caching
solution and implementation for the Pet Store. In the firgt $teps, developers identify
and catalog the advice and joinpoint elements. Developerspick a caching architec-
ture (which may or may not be good or optimal) that will be usegroduce a weaving
solution. In the next three steps, developers must impléthenveaving solution as a
C-SAW weaving definition file. Finally, developers must ufedidne Spring bean defini-
tion file with various directives to use AspectJ to weave thehes into the legacy Pet
Store code base.

Existing Model Weaving Approach w/o Optimization
Initial Implementation

Min Lines Max Lines Min Max

Activity Step of Code of Code Steps Steps
Create Aspects 1 1
Identify/Define Joinpoints 1 1
Derive Caching Strategy 1 1
Implement Weaving Specification for C-SAW Create AddCache Strategies 8 48 1 6
Implement Weaving Specification for C-SAW Create Root AddCaches Strategy 1 6 1 1
Implement Weaving Specification for Aspectd Add ProductDAO / ltemDAO Proxy 1 22 1 2
Implement Weaving Specification for Aspect Add Cache Beans 3 18 1 6
Apply Cache Beans to
Implement Weaving Specification for Aspectd ProductDAO/ItemDAO Methods 1 6 1 6
Totals 24 100 8 24
Ref: ing for Req Distribution Change

Derive New Caching Strategy

Implement Weaving Specification for C-SAW Remove Unused AddCache Strategies 0

Implement Weaving Specification for C-SAW Remove Unused AddCaches Strategy 0

Implement Weaving Specification for C-SAW Create AddCache Strategies 8 48
Implement Weaving Specification for C-SAW Create Root AddCaches Strategy 1

Implement Weaving Specification for Aspect) Remove Previous Proxies 0

Implement Weaving Specification for Aspectd Remove Previous Cache Beans 0

Remove Unused Cache Beans from

ON ===

Implement Weaving Specification for Aspectd ProductDAO/ItemDAO Methods 0 6 1 6

Implement Weaving Specification for Aspectd Add ProductDAO / ItemDAO Proxy bl 22 1 2

Implement Weaving Specification for Aspect) Add Cache Beans 3 18 1 6
Apply Cache Beans to

Implement Weaving Specification for Aspectd ProductDAO/ItemDAO Methods 1 6 1 6

Totals 24 200 11 43

Fig. 9: Manual Effort Required for Using Existing Model Wéay Techniques Without Caching
Optimization

The bottom table in Figure 9 documents the steps requiregdiate the caching
architecture and weaving implementation to incorporatieange in the distribution of
request types to the Pet Store. In the first step, the devetigreres a new caching
architecture. In the next 12 steps, developers remove ahyesdrom the original C-
SAW and AspectJ implementations that are no longer used éyéhv solution and
implement the new caching solution using C-SAW and AspectJ.

7.4 Deriving and Implementing an Optimal Caching Solution wth Existing
Weaving Techniques

Figure 10 presents the manual effort to derive and impleraerdptimal caching so-
lution for the Pet Store using existing weavers. The changhis experiment is that
it measures the manual effort required to derive an optirolitiozn for the Pet Store
by calculating the Pet Store’s response time using eachialteaching architecture
and choosing the optimal one. The steps for implementingwbaving solution are
identical to those from the results presented in Figure 9.

The steps labeleDerive Optimal Caching Stratedgg Figure 10 presents the man-
ual optimal solution derivation effort incorporated intas result set. First, develop-
ers must enumerate and check the correctness according ttmthain constraints, or
each potential caching architecture for both Bneduct DAO and| t enDAQO. Develop-
ers must then enumerate and check the correctness of thal@amhing architectures
produced from each unique combinationRobduct DAO andI t enDAO caching archi-
tectures. After determining the set of valid caching aettiires, developers must use

Existing Model Weaving Approach w/ Optimization

Activity

Create Aspects

Identify/Define Joinpoints

Derive Optimal Caching Strategy

Implement Weaving Specification for C-SAW
Implement Weaving Specification for C-SAW
Implement Weaving Specification for AspectJ
Implement Weaving Specification for AspectJ

Implement Weaving Specification for AspectJ
Totals

Initial Implementation

Min Lines Max Lines
Step of Code of Code
Arch
Create AddCache Strategies 8 48
Create Root AddCaches Strategy 1 6
Add ProductDAO / ItemDAO Proxy 11 22
Add Cache Beans 3 18
Apply Cache Beans to
ProductDAO/ItemDAO Methods 1 6
24 100

Min
Steps

Max
Steps
1

o

138

Fig. 10: Manual Effort Required for Using Existing Model Wezg Techniques With Caching

Optimization

the Pet Store’s modeled request distribution, memory caimés, and response time
goals to derive the optimal cache sizes and best possiljenss time of each caching
architecture. Finally, developers select the optimal aNarchitecture and implement

it using C-SAW and AspectJ.

As shown in Figure 11, refactoring the weaving solution tocscodate the solution
model change in request type distributions forces devesdpeepeat the entire process.
First, they must go back and perform the optimal solutiorivdéon process again.
After a new result is obtained, the existing solution impéerations in C-SAW and
AspectJ must be refactored to mirror the new caching strectu

Existing Model Weaving Approach w/ Optimization

Refactoring for Request Distribution Change

Activity

Derive Optimal Caching Strategy

Implement Weaving Specification for C-SAW
Implement Weaving Specification for C-SAW
Implement Weaving Specification for C-SAW
Implement Weaving Specification for C-SAW
Implement Weaving Specification for AspectJ
Implement Weaving Specification for AspectJ

Implement Weaving Specification for AspectJ
Implement Weaving Specification for AspectJ
Implement Weaving Specification for AspectJ

Implement Weaving Specification for AspectJ
Totals

Min Lines Max Lines

Step of Code of Code
Remove Unused AddCache Strategies 0 48
Remove Unused AddCaches Strategy 0 6
Create AddCache Strategies 8 48
Create Root AddCaches Strategy 1 6
Remove Previous Proxies 0 22
Remove Previous Cache Beans 0 18

Remove Unused Cache Beans from
ProductDAO/ItemDAO Methods 0 6

Add ProductDAO / ItemDAO Proxy 11 22

Add Cache Beans 3 18

Apply Cache Beans to

ProductDAO/ItemDAO Methods 1 6
24 200

Steps

115

O = O =0

o N o

6
157

Fig. 11: Manual Effort Required for Using Existing Model Wagg Techniques to Refactor Op-

timal Caching Architecture

7.5 Deriving and Implementing an Optimal Caching Solution wsing

AspectScatter

Figure 12 contains the steps required to accomplish botmiti@ implementation of
the Pet Store caching solution and the refactoring cost vihemequest distribution

Aspect Scatter

Initial Implementation

Min Lines Max Lines Min Max

Activity Step of Code of Code Steps Steps

Create Aspects 12 12 6 6

Identify/Define Joinpoints 12 12 2 2

Derive Optimal Caching Strategy Define Weaving Goal 1 1 1 1

Implement Weaving Specification for C-SAW Create AddCache Model Transformation 8 8 d 1
Create Root AddCaches Model

Implement Weaving Specification for C-SAW Transformation 6 6 1 1
Create ProductDAO / ItemDAO Proxy

Implement Weaving Specification for Aspect) Model Transformation 22 22 2 2
Create Cache Beans Model

Implement Weaving Specification for Aspect) Transformation 18 18 6 6

Create Cache Beans to
ProductDAO/ItemDAO Methods Model

Implement Weaving Specification for Aspect Transformation 1 1 1 1

Implement Weaving Specification Invoke AspectScatter i) 1 1 1

Totals 81 81 21 21
Refactoring for Request Distribution Change

Identify/Define Joinpoints Update Request Distribution Properties 1 2 1 2

Implement Weaving Specification Invoke AspectScatter 1 1 1 1

Totals 2 3 2 3

Fig. 12: Manual Effort Required for Using AspectScatterW@taching Optimization

changes. In steps 1 and 2, developers use AspectScattdr'sopecify the caches,
joinpoints, and constraints for the weaving problem. Depels then define the weav-
ing goal, the response time of the application in terms optiogerties of the joinpoints
and advice elements woven into a solution. The goal is laded by AspectScatter to
ensure that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to createdelntransforma-
tion, using AspectScatter’s transformation templatedessribed in Section 6, to spec-
ify how to transform the platform-independent weaving sioluinto a C-SAW imple-
mentation. The approach thus represents a higher-oraesforanation where C-SAW
transformations are generated from more abstract transtion rules. The subsequent
three steps define a model transformation to produce thecAspaplementation. Fi-
nally, AspectScatter is invoked to deduce the optimal sauand generate the C-SAW
and AspectJ implementations.

The bottom of Figure 12 presents the steps required to mefdet solution to acco-
modate the change in request distributions. Once the asgesing problem is defined
using AspectScatter’s DSL, the change in request distabsitrequires updating one or
both of the request distribution properties of the two jaimgs (.e., the Pr oduct DAO
andl t enDAQ) in the AspectScatter DSL instance. After the propertiesugdated, As-
pectScatter is invoked to recalculate the optimal cachiolgitecture and regenerate the
C-SAW and AspectJ implementations using the previouslynédfimodel transforma-
tions.

7.6 Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown indigs 9-12) required to
implement the caching solution using each of the three igcies, the initial cost of

defining an AspectScatter problem and solution model toansitions can be derived.
AspectScatter initially requires 81 lines of code versusveen 24 and 100 for the
approach based on existing techniques. The number of linesde required to imple-
ment the initial weaving specification grows at a ratedgh), wheren is the number
of advice and joinpoint specifications, for both Aspect&radnd existing approaches.
The more advice and joinpoint specifications, the largeh @aaving specification.

The benefit of AspectScatter’'s use of model transformati@me®mes most appar-
ent by comparing the refactoring results. AspectScatter mguires the developer to
change between 1-2 lines of code before invoking AspecdtSciat regenerate the C-
SAW and AspectJ implementations. Using the existing wapajpproaches, the devel-
oper must change between 24-200 lines of code. Moreovsmtanual effort required
by the existing approaches is incurnger solution model changdhus, AspectScat-
ter requires a constant @(1) number of changes per refactoring while existing ap-
proaches requir®(n) changes per refactoring.

For a single aspect weaving problem without optimizatioat is implemented
and solved exactly once, both AspectScatter and the marealimg approach exhibit
roughly O(n) growth in lines of code with respect to the size of the weayrablem.
The more caches that need to be woven, the larger the wegvauifisations have to
be for both processes. Forsangle weavingn this scenario, we cannot directly show
that AspectScatter provides an improvement since it hagjawaent big O bound.

If we calculate the weaving cost ov&r refactorings, however, we see that As-
pectScatter exhibits a bound 62K +n) = O(K + n) lines of code. ApsectScatter
requires an initial setup cost @(n) lines of code and then each of thkerefactor-
ings requires manually changing 1-2 lines of code. The mapgoach require®(n)
lines of code changes for each of terefactorings because the developer may have
to completely rewrite all of the joinpoint specificationsvédK refactorings, the man-
ual process requiré®(Kn+ n) = O(Kn) lines of code changes. Thus, AspectScatter
provides a better boun@(K + n) < O(Kn) on the rate of growth of the lines of code
changed over multiple refactorings.

When optimization is added to the scenarios, AspectS&ategtuction in manual
complexity becomes much more pronounced. With existingaaaghes, each time the
weaving solution is implemented, the developer must cateithe optimal cache weav-
ing architecture. Ley be the number of manual steps required to calculate the aptim
cache weaving architecture, then the cost of implemenkiagritial weaving solution
with an existing approach 8(n+y). The developer must implement ti¢n) lines of
code for the weaving specification and derive the optimdliggcture.

Since we are doing a big O analysis, we will ignore any coeffits or differences
in difficulty between a step to implement a line of code andea & the derivation of
the optimal caching architecture. We will say thdihes of code requira manual steps
to implement. The next question is how the number of syegg®w as a function of the
size of the weaving problem. The caching optimization peobivith constraints is an
instance of a mixed integer optimization problem, whicmi$lP, and thus has roughly
exponential complexity. Thug,= 6", wheref is a constant

The overall complexity of the existing approach for the oytiation scenario is
O(n+8"). Note, this complexity bound is for solving a single instaid the weaving

problem. OverK refactorings, the complexity bound is even worseOah + K(n+
8")). With AspectScatter, the solver performs the optimizasitap on the developer’s
behalf and théd" manual steps are eliminated. When optimization is incluatediK
refactorings are performed, AspectScatter shows a significbetter bound on manual
complexity than existing approaches:

O(n+K) <O(n+K(n+08M)

One might argue that a developer would not manually derieeofitimal caching
architecture by hand but would instead use some automaiedVe note, however, that
this is essentially arguing for our approach, since we argen external tool to derive
the caching architecture and then using code generatiandonatically implement the
solution. Thus, even using an external tool would still iegja developer to rewrite the
weaving specification after each refactoring and would aldd setup cost for speci-
fying the weaving problem for the external tool and transtathe results back into a
weaving solution. Our approach automates all of these stepghalf of the developer.

A final analysis to consider is the effect of the number of vilegyplatforms on the
complexity of the weaving process. For both processes sbhead of the initial setup
of the weaving solution is linearly dependent on the numberaving platforms used.
In the experiments, AspectJ and C-SAW are used as the weplatfigrms. GiverP
weaving platforms, both processes exhibit an initial sepplexity ofO(Pn).

With existing processes, whétirefactorings are performed, the number of weav-
ing platforms impacts the complexity of each refactoringthr than simply incurring
O(n) complexity for each refactoring, developers in€{Pn) per refactoring. This
leads to an overall complexity bound ©{Pn-+ KPn) for existing processes versus a
bound ofO(Pn-+ K) for AspectScatter. As we showed in the previous analyses, fer
a single weaving platform, such as AspectJ, AspectScattkroes complexity. How-
ever, when numerous weaving platforms are used Aspecegshibws an even further
reduction in complexity.

7.7 Weaving Performance

There is no definitive rule to predict the time required toveahn arbitrary CSP. The
solution time is dependent on the types of constraints, tireber of variables, the
degree of optimality required, and the initial variableues provided to the solver.
Furthermore, internally, the algorithms used by the scéwet solver’s implementation
language can also significantly affect performance.

Our experience with AspectScatter indicated that the weppiocess usually takes
10ms to a few seconds. For example, to solve a weaving prahlesiving the optimal
weaving of 6 caches that can be woven into any of 10 differemtponents with fairly
tight memory constraints requires approximately 120msroingel Core 2 Duo pro-
cessor with 2 gigabytes of memory. If a correct—but not neaely optimal solution
is needed—the solving time is roughly 22ms. Doubling thdlakike cache memory
budget essentially halves the optimal solution derivatiime to 64ms. The same prob-
lem expanded to 12 caches and 10 components requires a rang@4ms to 2,302ms
depending on the tightness (1.e., amount of slack memoryjeofesource constraints.

In practice, we found that AspectScatter quickly solves tmasaving problems.
It is easy to produce synthetic modeling problems with paafgrmance, but realis-
tic model weaving examples usually have relatively limitediability in the weaving
process. For example, although a caching aspect couldetieadly be applied to any
component in an application, this behavior is rarely desitestead, developers nor-
mally have numerous functional and other constraints tband the solution space
significantly. In the Pet Store, for example, we restricthtag to the four key DAOs
that form the core of the middle-tier.

In cases where developers do encounter a poorly performatiygom instance, there
are a number of potential courses of action to remedy that&itu One approach is to
relax the constraint®.g, allow the caches to use more memory. Developers can also
improve solving speed by accepting less optimal solutier, solving for a cache
architecture that produces an average response time bet@stain threshold rather
than an optimal response time. Finally, developers candggrihmic changes, such as
using different solution space search algoritheng, simulated annealing [39], greedy
randomized adaptive search [39], and genetic algorith®is [3

8 Related Work

This section compares our research on AspectScatter tedelark. Section 8.1 com-

pares and constrasts AspectScatter to other model we&exton 8.2 compares the
CSP-based model weaving approach to other aspect-oriemaédling techniques. Fi-

nally, Section 8.3 compares AspectScatter to other appesdor incorporating appli-

cation requirements into aspect-oriented modeling.

8.1 Model Weaving

Reddy et al. [38] propose a technique that uses model elesigmatures and com-
position directives to perform model weaving. Reddy’s aagh focuses on different
challenges of model weaving and is complementary to thet@insbased weaving ap-
proach used by AspectScatter. AspectScatter focuses orpmmating and automating
the solution and optimization of global weaving constraifiReddy’s approach, how-
ever, is targeted towards the difficulties of identifyingnjooints and correctly modify-
ing the structure of a model to perform a merger. First, metkzhent signatures can
be incorporated as a CSP filtering step, as described inodBet#. Second, the com-
position directives developed by Reddy can be used to imgtéthe platform-specific
weaving model produced by AspectScatter. In contrast, é&t§watter can derive and
optimize the global weaving solution, which Reddy’s tecfuss are not designed to
do.

Cottenier et al. [14] have developed a model weaver calledvtbtorola WEAVR.
The WEAVR provides complex weaving and aspect visualirediapabilities for mod-
els. Although WEAVR has numerous capabilities, it is desiyior a different part
of the model weaving process than AspectScatter. AspeiteBaits above multiple
weaving platforms to manage the overall global weavingtsmiu Motorola WEAVR,
in contrast, is a specific weaving platform used to merge itscated visualize model

weaving results. The two tools are synergistic. MotoroalAVR is a weaving platform
that provides numerous analytic and modeling capabiliispectScatter is a high-level
weaver that can be used to produce weaving specification¥/EAVR. Furthermore,
WEAVR is not designed to model and solve the complex globattraints that repre-
sent the strength of AspectScatter.

8.2 Aspect-Oriented Modeling

Lahire et al. [29] motivate the need for and describe a p@tesolution for incorpo-
rating variability into AOM. Their work motivates some ofetichallenges addressed in
this paper, namely the challenge of managing variabilithom advice can be applied
to joinpoints. AspectScatter offers an implementation eblver designed to: (1) han-
dle the solution variability presented by Lahire et al.,i(®orporate global constraints
to ensure that individual variable solution weaving dexisiproduce an overall correct
solution, and (3) optimally choose values for points of abifity when multiple solu-
tions are possible. Lahire et al. initially explore and dixsera potential solution for
capturing and handling AOM variability. AspectScatter\gdes a concrete approach
to handling numerous facets described by Lahire et al.

Morin et al. [36] have also developed a generic model of aspeented model-
ing. Their technique generalizes joinpoints to model seip@nd pointcuts to model
templates. AspectScatter also adopts a generalized vigwinfcuts and joinpoints.
AspectScatter provides global weaving constraints anidnigztion, whereas the tech-
niques developed by Morin et al. are for situations wherestieeno ambiguity in which
potential joinpoints a template should be matched agahsgtectScatter automates part
of the weaving design process, the derivation of the glolewing solution, whereas
Morin et al. propose techniques to generically model how avivey solution is applied.
Each technique is geared towards a different phase of theimgearocess. AspectScat-
ter solves the weaving solution derivation challenges awodiivet al.’s techniques ad-
dress the platform-specific weaving solution implemeaotati

8.3 Models and Constraints

Lengyel et al. [33] present a technique for validating ther@ttness of model trans-
formations by tying constraints to transformation rulesngyel’s technique provides
a method for identifying cross-cutting constraints anchcedring them into aspects.
These techniques for capturing transformation consgastaspects is complemen-
tary to AspectScatter. Whereas Lengyel’s techniques asiged to help maintain the
correctness of model transformations, AspectScattersigded to automatically main-
tain the correctness of model weaving. Moreover, AspectSce designed to derive
solutions to constraints but Lengyel’s techniques are li@c&ing constraints and iden-
tifying aspects. Lengyel’s techniques could be used to yefpantee the correctness of
the transformations that AspectScatter uses to producpl#éti®rm-specific weaving
implementations.

Baniassad et al. [7] have developed an approach to helgfigdaspects in designs
and trace the relationship between aspects and requirsniérdir approach is related

to AspectScatter’s incorporation of global system requeats and goals into the as-
pect weaving specification. Baniassad et al.'s technigegstb identify and trace the
aspects and their relationship with requirements wherepeétScatter is designed to
capture andgolverequirements guiding the placement of aspects into a sysibos,
although the approaches are both related to understandihgnanaging how require-
ments affect aspects, the challenges that Baniassad eldabss i(e., identification
and tracing of aspects) are different than AspectScatfiee’s capture and solving of
weaving requirements and goals).

9 Concluding Remarks

A significant amount of manual effort is incurred by the inipito encode the global
application requirements into the model weaving speciboaand honor them dur-
ing the weaving process. This gap in existing model weavece@ages developers to
manually derive and maintain solutions to the global wegnd@onstraints as the under-
lying solution models evolve. Moreover, developers maydrteemplement the global
weaving solution in the pointcut languages of multiple madeavers.

This paper describes how providing a model weaver with kedgé of the entire
set of joinpoints used during the weaving process aheadnef thakes it possible to
map model weaving to a CSP and use a constraint solver toederiveaving that can
incorporate global, dependency, and expression-basetraoris. From our experience
using AspectScatter’s approach of mapping model weavirrgG@&P, we have learned
that CSP-based model weaving reduces manual effort by:

1. Capturing and allowing the weaver to solve the global iappbn constraints re-
quired to produce a weaving solution

2. Informing the weaver of the overall solution goals so thatweaver can derive the
best overall weaving solution with respect to a cost fumcéind

3. Encoding using model transformations to automaticadiyegate implementations
of the global weaving solution for each required weavingfpfan.

By capturing and leveraging this critical set of domain kiemnige, AspectScatter
can automate the complex process of deriving weaving solsitind maintaining them
as solution models change. By applying Aspect Scatter tdatie Pet Store case study,
we showed that the CSP-based weaving approach scaledcagtiifibetter than exist-
ing approaches in terms of the number of manual weaving .sédffeugh this paper
has focused on cache weaving, the same techniques coulgledap other domains,
such as optimally configuring applications for mobile degic

AspectScatter is an open-source tool available from hitpaw.eclipse.org/gmt/gems.

10 Acknowledgements

This work was supported in part by the National Science Fatiod under NSF CA-
REER CCF-0643725.

References

O b wWN P

»

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Apache Foundation’s JMeter, http://jmeter.apache.org

. AspectJ, http://www.eclipse.org/aspectj/.

. HyperJ, http://www.alphaworks.ibm.com/tech/hyperj.

. .NET Pet Store, http://msdn2.microsoft.com/en-usdlifyms978487.aspx.
. Sun Microsystem’s Java Pet Store Sample Application,

http://java.sun.com/developer/releases/petstore/.

. The Spring Framework, http://www.springframework/atgput.
. E. Baniassad and S. Clarke. Theme: an Approach to Aspiectted Analysis and Design.

In Proceedings of the 26th International Conference on Saé\kagineering pages
158-167, Scotland, UK, May 2004.

. J. Bézivin. From Object Composition to Model Transforim@atvith the MDA. In

Proceedings of TOOL $ages 350—354, Santa Barbara, CA, USA, August 2001.

. J. Bézivin, F. Jouault, and P. Valduriez. First Experitaevith a ModelWeaver. In

Proceedings of the OOPSLA/GPCE: Best Practices for ModeleD Software
Development Workshop, 19th Annual ACM Conference on G@jeented Programming,
Systems, Languages, and Applicatiovesncouver, Canada, March 2004.

S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. &ghand G. Verfaillie.
Semiring-based CSPs and Valued CSPs: Basic Propertiesangatison.
Over-Constrained Systesl 06:111-150, 1996.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-Bh€onstraint Satisfaction and
Optimization.Journal of the ACM44(2):201-236, 1997.

F. Budinsky.Eclipse Modeling FrameworkAddison-Wesley Professional, New York, NY,
USA, 2003.

J. Cohen. Constraint logic programming languaggsnmunications of the ACM
33(7):52-68, 1990.

T. Cottenier, A. van den Berg, and T. Elrad. The MotorolBAVR: Model Weaving in a
Large Industrial Context. IRroceedings of the International Conference on
Aspect-Oriented Software Development, Industry Trelakcouver, Canada, March 2006.
K. Czarnecki and S. Helsen. Feature-based Survey of Mwodesformation Approaches.
IBM Systems Journalt5(3):621-646, 2006.

M. Del Fabro, J. Bézivin, and P. Valduriez. Weaving Madgith the Eclipse AMW plugin.
In Eclipse Modeling Symposium, Eclipse Summit Eur&sslingen, Germany, October
2006.

T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented Minde Bridging the Gap between
Implementation and Design. @enerative Programming and Component Engineering
(GPCE) pages 189-201, Pittsburgh, PA, USA, October 2005.

R. FletcherPractical Methods of OptimizationViley-Interscience, New York, NY, USA,
1987.

R. France, |. Ray, G. Georg, and S. Ghosh. An Aspect-@defipproach to Early Design
Modeling. IEE Proceedings-Softwaré51(4):173-185, 2004.

H. GomaaDesigning Concurrent, Distributed, and Real-time Apgdiicas with UML
Addison-Wesley, Reading, MA, USA, 2000.

J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling CraésgLConstraints in
Domain-specific ModelingCommunications of the ACM4(10):87-93, 2001.

J. Hannemann, G. Murphy, and G. Kiczales. Role-baseacReing of Crosscutting
Concerns. IrProceedings of the 4th International Conference on Aspédetted Software
Developmentpages 135-146, Chicago, lllinois, USA, March 2005.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

E. Hilsdale and J. Hugunin. Advice Weaving in AspectJPloceedings of the 3rd
International Conference on Aspect-oriented Softwaredimmentpages 2635,
Lancaster, UK, March 2004.

S. HolznerAnt: The Definitive GuideO’Reilly, Sebastopol, CA, USA, 2005.

M. Jampel, E. Freuder, and M. Mah@ver-Constrained SystemSpringer-Verlag
London, UK, 1996.

D. Konig, A. Glover, P. King, G. Laforge, and J. SkeBtoovy in Action Manning
Publications, 2007.

V. Kumar. Algorithms for Constraint-Satisfaction Pleris: A Survey Al Magazine
13(1):32-44, 1992.

I. Kurtev, K. van den Berg, and F. Jouault. Rule-basedWoization in Model
Transformation Languages lllustrated with ATL. Pmoceedings of the 2006 ACM
Symposium on Applied Computjmages 1202-1209, Dijon, France, April 2006.

P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard, O. &ayrand J.-M. Jézéquel.
Introducing variability into Aspect-Oriented Modeling pmaches. Iin Procedings of
ACM/IEEE 10th International Conference on Model Driven Eegring Languages and
SystemsNashville, TN, USA, October 2007.

A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. NordstrpJ. Sprinkle, and G. Karsai.
Composing Domain-specific Design Environmer@e@mputer 34(11):44-51, 2001.

W. Li, W. Hsiung, D. Kalshnikov, R. Sion, O. Po, D. Agrawahd K. Candan. Issues and
Evaluations of Caching Solutions for Web Application Aegation. InProceedings of the
28th International Conference on Very Large Data Bagegies 1019-1030, Hong Kong,
China, August 2002.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Wod,iBdsay, and J. Naughton.
Middle-tier Database Caching for E-businessPhoceedings of the ACM SIGMOD
International Conference on Management of Dadages 600—611, Madison, Wisconsin,
June 2002.

H. C. Laszl6 Lengyel, Tihamér Levendovszky. Identifmabf Crosscutting Concerns in
Constraint-Driven Validated Model Transformations.Aroceedings of the Third Workshop
on Models and Aspects at ECOOP 208grlin, Germany, July 2007.

L. Michel and P. V. Hentenryck. Comet in context.A@K50: Proceedings of the Paris C.
Kanellakis Memorial Workshop on Principles of Computing &dvledge pages 95-107,
San Diego, CA, USA, 2003.

C. Mohan. Caching Technologies for Web ApplicationsPioceedings of the 27th
International Conference on Very Large Data Bagesge 726, Rome, Italy, September
2001.

B. Morin, O. Barais, J.-M. Jézéquel, and R. Ramos. Tosvar@eneric Aspect-Oriented
Modeling Framework. IMModels and Aspects Workshop, at ECOOP 2@¥tlin,
Germany, July 2007.

J. Nelder and R. Mead. A Simplex Method for Function Miiziation. Computer Journal
7(4):308-313, 1965.

Y. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman, N. k&g E. Song, and G. Georg.
Directives for Composing Aspect-Oriented Design Class &&drransactions on
Aspect-Oriented Software Developme3880:75-105, 2006.

C. ReevesModern Heuristic Techniques for Combinatorial Problerdehn Wiley & Sons,
Inc., New York, NY, USA, 1993.

T. Schiex. Possibilistic Constraint Satisfaction Feots or How to Handle Soft
Constraints. IrProceedings of the Eighth Conference on Uncertainty infiéiail
Intelligence pages 268-275, San Mateo, CA, USA, 1992.

S. Shavor, J. D’Anjou, P. McCarthy, J. Kellerman, and&rhfother.The Java Developer’s
Guide to EclipsePearson Education, Upper Saddle River, NJ, USA, 2003.

42.

43.
44,

45.

46.

47.

48.

49.

Software Composition and Modeling (Softcom) Labomat@onstraint-Specification
Aspect Weaver (C-SAW). www.cis.uab.edu/gray/resear®®V, University of Alabama
at Birmingham, Birmingham, AL.

T. Valesky.Enterprise JavaBeans#Addison-Wesley, Reading, MA, USA, 1999.

P. Van HentenryckConstraint Satisfaction in Logic ProgramminilIT Press Cambridge,
MA, USA, 1989.

M. Voelter, I. Groher, and G. Heidenheim. Product Lin@lementation using
Aspect-Oriented and Model-Driven Software Developmen®roceedings of the 11th
International Software Product Line Conferenpages 233-242, Kyoto, Japan, September
2007.

R. Wallace and E. Freuder. Heuristic Methods for Overst@ined Constraint Satisfaction
Problems.Over-Constrained Systenkl06:207-216, 1996.

J. Warmer and A. Klepp&.he Object Constraint Languag@ddison-Wesley, Reading,
MA, USA, 2003.

J. White, D. C. Schmidt, and S. Mulligan. The GenericjisgdiModeling System. In
Proceedings of the Model-Driven Development Tool Impléarer-orum at TOOLS 2007
Zurich, Switzerland, June 2007.

J. Zhang, T. Cottenier, A. van den Berg, and J. Gray. Aspemposition in the Motorola
Aspect-Oriented Modeling Weavejournal of Object Technolog(7).

