
Towards Adaptive and Reflective Middleware
For Network-Centric Combat Systems

 Douglas C. Schmidt
 schmidt@uci.edu

 Elec. & Comp. Eng. Dept.
 Uni. of California, Irvine, CA

 Richard E. Schantz
schantz@bbn.com
BBN Technologies

Cambridge, MA

Michael W. Masters
MastersMW@nswc.navy.mil
Naval Surface Warfare Center

Dahlgren, VA

Joseph K. Cross

joseph.k.cross@lmco.com
Lockheed Martin

Eagan, MN

David C. Sharp
david.sharp@boeing.com

The Boeing Company
St. Louis, MO

Louis P. DiPalma
Louis_P_DiPalma@raytheon.com

Raytheon
Portsmouth, RI

Abstract
Software is increasingly important to the development of effective network-centric DoD combat systems. Next-
generation combat systems, such as total ship computing environments, coordinated unmanned air vehicle systems,
and national missile defense, will use many geographically dispersed sensors, provide on-demand situational
awareness and actuation capabilities for human operators, and respond flexibly to unanticipated run-time
conditions. These combat systems will also increasingly run unobtrusively and autonomously, shielding operators
from unnecessary details, while communicating and responding to mission-critical information at an accelerated
operational tempo. In such environments, it’s hard to predict system configurations or workloads in advance. This
article describes how adaptive and reflective middleware systems (ARMS) are being developed to bridge the gap
between military application programs and the underlying operating systems and communication software in order
to provide reusable services whose qualities are critical to network-centric combat systems. ARMS software can
adapt in response to dynamically changing conditions for the purpose of utilizing the available computer and
communication resources to the highest degree possible in support of mission needs.

Motivation
New and planned DoD combat systems are inherently
network-centric distributed real-time and embedded
(DRE) “systems of systems.” Combat systems have
historically been developed via multiple technology bases,
where each system brings its own networks, computers,
displays, software, and people to maintain and operate it.
Unfortunately, not only are these “stove-pipe”
architectures proprietary, but by tightly coupling many
functional and quality of service (QoS) aspects they
impede DRE system
1. Assurability, which is needed to guarantee efficient,

predictable, scalable, and dependable QoS from
sensors to shooters

2. Adaptability, which is needed to (re)configure
combat systems dynamically to support varying
workloads or missions over their lifecycles and

3. Affordability, which is needed to reduce initial non-
recurring combat system acquisition costs and
recurring upgrade and evolution costs.

In recognition of the importance of enhancing
affordability, recent DoD programs, such as the Aegis
destroyer program [Holzer00], the New Attack Submarine
program [NAS94], the Weapons Systems Open
Architecture program [Loy01], and the Unmanned

Combat Air Vehicle (UCAV) program [Sha98] have
adopted strong open systems approaches to system design
and commercial-off-the-shelf (COTS) refresh strategies.
Ultimately, open systems approaches are more likely to be
robust with respect to change over the long life-cycles
typical of military systems. For example, the affordability
of certain types of DoD systems, such as logistics and
mission planning, has been improved by using COTS
technologies.

However, many of today’s procurement efforts aimed at
integrating COTS into mission-critical DRE combat
systems have largely failed to support life-cycle
affordability and assurability and adaptability effectively
since they focus mainly on initial non-recurring
acquisition costs and do not reduce recurring software
lifecycle costs, such as COTS refresh and subsetting
combat systems for foreign military sales [COTS98].
Likewise, many COTS products lack support for
controlling key QoS properties, such as predictable
latency, jitter, and throughput; scalability; dependability;
and security. The inability to control these QoS properties
with sufficient confidence compromises combat system
adaptability and assurability, e.g., a perturbation in the
behavior of a COTS product that would be acceptable in
commercial applications could lead to loss of life and
property in military applications.

Historically, conventional COTS software has been
unsuitable for use in mission-critical DRE combat
systems due to its either being:
1. Flexible and standard, but incapable of guaranteeing

stringent QoS demands, which restricts assurability
or

2. Partially QoS-enabled, but inflexible and non-
standard, which restricts adaptability and
affordability.

As a result, the rapid progress in COTS software for
mainstream business information technology (IT) has not
yet become as broadly applicable for mission-critical
DRE combat systems. Until this problem is resolved
effectively, DRE system integrators and warfighters will
be unable to take advantage of future advances in COTS
software in a dependable, timely, and cost effective
manner. Developing the new generation of assurable,
adaptable, and affordable COTS software technologies is
therefore essential for US national security.

Although the near-term use of COTS software in DRE
systems will be limited in scope and domain, the
prospects for the longer term are much brighter. Given the
proper advanced R&D context and an effective process
for transitioning R&D results, the COTS market can
adapt, adopt, and implement the types of robust hardware
and software capabilities needed for military applications.
This process takes a good deal of time to get right and be
accepted by user communities, and a good deal of
patience to stay the course. When successful, however,
this process results in standards that codify the best-of-
breed practices and technologies, and the patterns and
frameworks that reify the knowledge of how to apply
these practices and technologies.

Key Technical Challenges and Solutions

Today’s economic and organizational constraints—along
with increasingly complex requirements and competitive
pressures—make it infeasible to build complex distributed
real-time system software entirely from scratch. It has
long been accepted that the use of commercial operating
systems and communication support software is cost-
effective for all but the most resource-constrained DRE
systems. Increasingly, this same logic is being applied to
middleware, which is reusable service/protocol
component and framework software that services end-to-
end and aggregate combat systems needs [Sch01a].
Middleware bridges the gap between
1. Application-level requirements and mission doctrine

and
2. The lower-level underlying localized viewpoints of

the operating systems and communications support
mechanisms.

From the application perspective, when middleware and
the services it constitutes are combined with traditional
network and operating system components, it forms the
new infrastructure for developing modern network-centric
combat systems. In both commercial and military
systems, middleware performs functions that are essential

to meet application-level requirements. In military
systems, moreover, the qualities of the services provided
by the middleware are critical to the qualities of service
that are presented to the end users – the warfighters.

Thus, there is a pressing need to develop, validate, and
ultimately standardize a new generation of adaptive and
reflective middleware systems (ARMS) technologies that
will be readily available and able to support stringent
combat system functionality and QoS requirements. Some
of the most challenging computing and communication
requirements for new and planned DoD combat systems
can be characterized as follows:
• Multiple QoS properties must be satisfied in real-time
• Different levels of service are appropriate under

different configurations, environmental conditions,
and costs

• The levels of service in one dimension must be
coordinated with and/or traded off against the levels of
service in other dimensions to meet mission needs,
e.g., the security and dependability of message
transmission must be traded off against latency and
predictability, and

• The need for autonomous and time-critical application
behavior necessitates a flexible distributed system
substrate that can adapt robustly to dynamic changes
in mission requirements and environmental conditions.

Adaptive middleware [Loy01] is software whose
functional and QoS-related properties can be modified
either
• Statically, e.g., to reduce footprint, leverage

capabilities that exist in specific platforms, enable
functional subsetting, and minimize hardware and
software infrastructure dependencies or

• Dynamically, e.g., to optimize system responses to
changing environments or requirements, such as
changing component interconnections, power-levels,
CPU/network bandwidth, latency/jitter, and
dependability needs.

In DRE combat systems, adaptive middleware must make
these modifications dependably, i.e., while meeting
stringent end-to-end QoS requirements.

Reflective middleware [Bla99] goes a step further in
providing the means for examining the capabilities it
offers while the system is running, thereby enabling
automated adjustment for optimizing those capabilities.
Thus, reflective middleware supports more advanced
adaptive behavior, i.e., the necessary adaptations can be
performed autonomously based on conditions within the
system, in the system's environment, or in combat system
doctrine defined by operators and administrators.

The Structure and Functionality of
Middleware
Networking protocol stacks can be decomposed into
multiple layers, such as the physical, data-link, network,
transport, session, presentation, and application layers.

Similarly, middleware can be decomposed into multiple
layers, such as those shown in Figure 1.

Figure 1. Middleware Layers and Their

Surrounding Context

We describe each of these middleware layers below and
outline some of the COTS technologies in each layer that
are suitable (or are becoming suitable) to meet the
stringent QoS demands of DRE combat systems.

Host infrastructure middleware encapsulates and
enhances native operating system communication and
concurrency mechanisms to create portable and reusable
network programming components, such as reactors,
acceptor-connectors, monitor objects, active objects, and
component configurators [Sch00b]. These components
abstract away the accidental incompatibilities of
individual operating systems, and help eliminate many
tedious, error-prone, and non-portable aspects of
developing and maintaining networked applications via
low-level operating system programming application
program interfaces (APIs), such as Sockets or POSIX
Pthreads. Examples of COTS host infrastructure
middleware that are relevant for DRE combat systems
include:
• The ADAPTIVE Communication Environment (ACE)

[Sch01], which is a portable and efficient toolkit that
encapsulates native operating system network
programming capabilities, such as interprocess
communication, static and dynamic configuration of
application components, and synchronization. ACE
has been used in a wide range of DoD DRE systems,
including missile control, avionics mission computing,
software defined radios, and radar systems.

• Real-time Java Virtual Machines, which implement
the Real-time Specification for Java (RTSJ) [Bol00].
The RTSJ is a set of extensions to Java that provide a
largely platform-independent way of executing code
by encapsulating the differences between real-time
operating systems and CPU architectures. The key
features of RTSJ deal with memory management and
concurrency. Although RTSJ implementations are still

in their infancy, they have generated tremendous
interest in the DoD R&D and integrator communities
due to their potential for reducing software
development and evolution costs significantly.

Distribution middleware defines a higher-level
distributed programming model whose reusable
application program interfaces and mechanisms automate
and extend the native operating system network
programming capabilities encapsulated by host
infrastructure middleware. Distribution middleware
enables developers to program distributed applications
much like stand-alone applications, i.e., by invoking
operations on target objects or distributed components.
At the heart of distribution middleware are QoS-enabled
object request brokers, such as the Object Management
Group’s (OMG) Common Object Request Broker
Architecture (CORBA) [Omg00, Sch98]. CORBA is
distribution middleware that allows objects to interoperate
across networks without hard-coding dependencies on
their location, programming language, operating system
platform, communication protocols and interconnects, and
hardware characteristics. In 1998 the OMG adopted the
Real-time CORBA specification [Sch00a], which extends
CORBA with features that allow DRE applications to
reserve and manage CPU, memory, and networking
resources. Real-time CORBA implementations have been
used in dozens of DoD combat systems, including
avionics mission computing [Sha98], submarine combat
control systems [DiPalma99], signal intelligence and
C4ISR systems, software defined radios, and radar
systems.
Common middleware services augment distribution
middleware by defining higher-level, domain-
independent, reusable services that have proven necessary
in most distributed application contexts to deal with
multi-computer environments effectively. In addition,
these services provide components that allow application
developers to concentrate on programming application
logic, without the need to write the “plumbing” code
needed to develop distributed applications using lower
level middleware features directly. For example, whereas
distribution middleware focuses largely on managing end-
system resources in support of an object-oriented
distributed programming model, common middleware
services focus on allocating, scheduling, and coordinating
various end-to-end resources throughout a distributed
system using a component programming and scripting
model. Developers can reuse these services to manage
global resources and perform recurring distribution tasks
that would otherwise be reimplemented by each
application or integrator.
Examples of common middleware services include the
OMG’s CORBAServices [Omg98b] and the CORBA
Component Model (CCM) [Omg99], which provide
domain-independent interfaces and distribution
capabilities that can be used by many distributed
applications. The OMG CORBAServices and CCM
specifications define a wide variety of these services,

including event notification, naming, security, and fault
tolerance. Not all of these standard services are
sufficiently refined today to be usable off-the-shelf for
DRE combat systems. However, the form and content of
these common middleware services will continue to
mature and evolve to meet the expanding requirements of
DRE.
Domain-specific middleware services are tailored to the
requirements of particular combat system domains, such
as avionics mission computing, radar processing, weapons
targeting, or command and decision systems. Unlike the
previous three middleware layers—which provide broadly
reusable “horizontal” mechanisms and services—domain-
specific middleware services are targeted at vertical
market segments. From a COTS perspective, domain-
specific services are the least mature of the middleware
layers today. This immaturity is due in part to the
historical lack of distribution middleware and common
middleware service standards, which are needed to
provide a stable base upon which to create domain-
specific middleware services. Since they embody
knowledge of a domain, however, domain-specific
middleware services have the most potential to increase
the quality and decrease the cycle-time and effort that
DoD integrators require to develop particular classes of
DRE combat systems.
A mature example of domain-specific middleware
services appears in the Boeing Bold Stroke architecture
[Sha98]. Bold Stroke uses COTS hardware and
middleware to produce a non-proprietary, standards-based
component architecture for military avionics mission
computing capabilities, such as navigation, data link
management, and weapons control. A driving objective of
Bold Stroke was to support reusable product-line
applications, leading to a highly configurable application
component model and supporting middleware services.
The domain-specific middleware services in Bold Stroke
are layered upon common middleware services (the
CORBA Event Service), distribution middleware (Real-
time CORBA and the TAO ORB [Sch98]), and
infrastructure middleware (ACE), and have been
demonstrated to be highly portable for different COTS
operating systems (e.g., VxWorks), interconnects (e.g.,
VME), and processors (e.g., PowerPC).

Recent Progress
Significant progress has occurred during the last five
years in DRE middleware research, development, and
deployment within the DoD, stemming in large part from
the following trends:
• The maturation of standards – Over the past decade,

middleware standards have been established and have
matured considerably with respect to DRE
requirements. For example, the OMG has adopted the
following DRE-related specifications recently:
o Minimum CORBA, which removes non-essential

features from the full OMG CORBA specification to

reduce footprint so that CORBA can be used in
memory-constrained embedded systems.

o Real-time CORBA, which includes features that
allow applications to reserve and manage network,
CPU, and memory resources predictably end-to-end.

o CORBA Messaging, which exports additional QoS
policies, such as timeouts, request priorities, and
queueing disciplines, to applications.

o Fault-tolerant CORBA, which uses entity
redundancy of objects to support replication, fault
detection, and failure recovery.

 Robust and interoperable implementations of these
CORBA capabilities and services are now available
from multiple vendors. Moreover, emerging standards
such as Dynamic Scheduling Real-Time CORBA,
Real-time CORBA publish-subscribe services, the
Real-Time Specification for Java, and the Distributed
Real-Time Specification for Java are extending the
scope of open standards for a wider range of DoD
applications.

• The dissemination of patterns and frameworks – A
substantial amount of R&D effort during the past
decade has also focused on the following means of
promoting the development and reuse of high quality
middleware technology:
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software
problems that arise in particular contexts [Gam95].
Patterns can simplify the design, construction, and
performance tuning of DRE applications by
codifying the accumulated expertise of developers,
architects, and systems engineers who have already
confronted similar problems successfully.

o Frameworks are concrete realizations of related
patterns [John97] that provide an integrated set of
components that collaborate to provide a reusable
architecture for a family of related applications.
Middleware frameworks include strategized
selection and optimization patterns so that multiple
independently-developed capabilities can be
integrated and configured automatically to meet the
functional and QoS requirements of particular DRE
applications.

Historically, the knowledge required to develop
predictable, scalable, efficient, and dependable
mission-critical DoD DRE combat systems has existed
largely in programming folklore, the heads of
experienced researchers and developers, or buried
deep within millions of lines of complex source code.
Moreover, documenting complex systems with today’s
popular software modeling methods and tools, such as
the Unified Modeling Language (UML), only capture
how a system is designed, but do not necessarily
articulate why a system is designed in a particular way,
which complicates subsequent software evolution and
optimization.

Middleware patterns and frameworks help address
these problems by systematically capturing combat
system design expertise in a readily accessible and
reusable format, thereby raising the level at which
systems engineers and application developers
approach the decision making and implementation of
their systems. Two efforts to provide suitable guidance
for the development of military systems are the New
Attack Submarine (NAS) [NAS94] and the Aegis
Shipbuilding Program. NAS developed a guidance
document detailing allowable standards for the NAS
C3I system, and the Aegis program developed a
guidance document for Baseline 7 phase I [Aegis7].
These documents were instrumental in guiding the
design of these systems.

Much of the pioneering R&D on middleware patterns,
frameworks, and standards for DRE combat systems has
been conducted in the DARPA Information Technology
Office (ITO) Quorum program [DARPA99], which played
a leading role in:
• Demonstrating the viability of host infrastructure

middleware and distribution middleware for DoD
combat systems by providing the foundation for
managing key QoS attributes, such as real time
behavior, dependability and system survivability, from
a network-centric middleware perspective

• Transitioning a number of new middleware
perspectives and capabilities into DoD acquisition
programs [Sha98, AegisOA] and commercially
supported products and

• Establishing the technical viability of collections of
systems that can dynamically adapt [Loy01] their
collective behavior to varying operating conditions, in
service of delivering the appropriate application level
response under these different conditions.

The Quorum program focused heavily on CORBA open
systems middleware and yielded many results that
transitioned into standardized service definitions and
implementations for the Real-time [Sch98] and Fault-
tolerant [Omg98a] CORBA specification and
productization efforts. Quorum is an example of how a
focused government R&D effort can leverage its results
by exporting them into, and combining them with, other
on-going public and private activities by using a common
open middleware substrate. Prior to the viability of
standards-based COTS middleware platforms, these same
R&D results would have been buried within custom or
proprietary systems, serving only as an existence proof,
rather than as the basis for realigning the DoD R&D and
integrator communities.

Successful DoD technology transition most often results
from a partnership between technology developers and
technology users. One of the most successful examples of
such partnerships is the joint DARPA/Aegis High
Performance Distributed Computing program (HiPer-D).
Through the use of prototyping and system-scale
experiments, this program has demonstrated the

effectiveness of a number of DARPA and standards-based
COTS technologies for building DRE combat systems
that are efficient, scalable, fault tolerant, and flexible in
their design and operation.

Looking Ahead

Due to advances in COTS technologies outlined earlier,
host infrastructure middleware and distribution
middleware have now been demonstrated and deployed in
a number of mission-critical DRE combat systems. Since
off-the-shelf middleware technology has not yet matured
to cover the realm of large-scale, dynamically changing
systems, however, COTS DRE middleware has been
applied to relatively small-scale and statically configured
embedded systems. To satisfy the highly application- and
mission-specific QoS requirements in network-centric
“system of system” environments, DRE middleware must
therefore be enhanced to support common and domain-
specific middleware services that can manage the
following resources effectively:

• Communication bandwidth, e.g., network level status
information and management services, scalability to
102 subnets and 103 nodes, and dynamic connections
with reserved bandwidth to enhance real-time
predictability.

• Distributed real-time scheduling and allocation of
DRE system artifacts (such as CPUs, networks, UAVs,
missiles, torpedoes, radar, illuminators, etc), e.g., fast
and predictable behavior of widely dispersed
components using managed communication
capabilities and bandwidth reservations.

• Distributed system dependability, e.g., policy-based
selection of replication options.

• Distributed system security, e.g., dynamically variable
object access control policies and effective, combined
real-time, dependability, and security interactions.

Ironically, there is little or no scientific underpinning for
QoS-enabled resource management, despite the demand
for it in most distributed systems [Narain01]. Today’s
system designers develop concrete plans for creating
global, end-to-end functionality. These plans contain
high-level abstractions and doctrine associated with
resource management algorithms, relationships between
these, and operations upon these. There are few
techniques and tools, however that enable users, i.e.,
commanders, administrators, and operators, developers,
i.e., systems engineers and application designers, and/or
applications to express such plans systematically, reason
about and refine them, and have these plans enforced
automatically to manage resources at multiple levels in
network-centric combat systems.

To address this problem, the R&D community needs to
discover and set the technical approach that can
significantly improve the effective utilization of networks
and endsystems that DRE combat systems depend upon
by creating middleware and distributed resource

management technologies and tools that can automatically
allocate, schedule, control, and optimize customizable—
yet standards-compliant and verifiably correct—software-
intensive systems. To promote a common technology
base, the interfaces and (where appropriate) the protocols
used by the middleware should be based on established or
emerging industry or DoD standards that are relevant for
DRE combat systems. However, the protocol and service
implementations should be customizable—statically and
dynamically—for specific DoD DRE combat system
requirements.

To achieve these goals, middleware technologies and
tools need to be based upon some type of layered
architecture along with QoS adaptive middleware
services, such as the one shown in Figure 2 and based on
empirical investigations of this type of capability [Loy01].
The Quality Objects (QuO) [ZBS97] project is an
example of such a layered architecture designed to
manage and package adaptive QoS capabilities as
common middleware services. The QuO architecture
decouples DRE middleware and applications along the
following two dimensions:
• Functional paths, which are flows of information

between client and remote server applications. In
distributed systems, middleware ensures that this
information is exchanged efficiently, predictably,
scalably, dependably, and securely between remote
peers. The information itself is largely application-
specific and determined by the functionality being
provided (hence the term “functional path”).

• QoS attribute paths, which are responsible for
determining how well the functional interactions
behave end-to-end with respect to key DRE system
QoS properties, such as
1. How and when resources are committed to

client/server interactions at multiple levels of
distributed systems

2. The proper application and system behavior if
available resources are less than the expected
resources and

3. The failure detection and recovery strategies
necessary to meet end-to-end dependability
requirements.

In next-generation combat systems, the middleware—
rather than operating systems or networks in isolation—
will be responsible for separating DRE system QoS
attribute properties from the functional application
properties. Middleware will also coordinate the QoS of
various DRE system and application resources end-to-
end. The architecture in Figure 2 enables these properties
and resources to change independently, e.g., over different
distributed system configurations for the same
application.

The architecture in Figure 2 is based on the expectation
that QoS attribute paths will be developed, configured,
monitored, managed, and controlled by a different set of
specialists (such as systems engineers, administrators,
operators, and perhaps someday automated agents) and

tools than those customarily responsible for programming
functional paths in DRE systems. The middleware is
therefore responsible for collecting, organizing, and
disseminating QoS-related meta-information that is
needed to
1. Monitor and manage how well the functional

interactions occur at multiple levels of DRE systems
and

2. Enable the adaptive and reflective decision-making
needed to support QoS attribute properties robustly in
the face of rapidly changing mission requirements
and environmental conditions.

Researching and developing these middleware
capabilities is crucial to ensure that the aggregate
behavior of future network-centric combat systems is
dependable, despite local failures, transient overloads, and
dynamic functional or QoS reconfigurations.

Figure 2. Decoupling Functional and QoS

Attribute Paths in QuO

To simultaneously enhance assurability, adaptability, and
affordability, the middleware techniques and tools
developed in future R&D programs increasingly need to
be application-independent, yet customizable within the
interfaces specified by a range of open standards, such as
• The OMG Real-time CORBA specifications and The

Open Group’s QoS Task Force
• The Java Expert Group Real-time Specification for

Java (RTSJ) and the emerging Distributed RTSJ and
• The IEEE Real-time Portable Operating System

(POSIX) specification.

Concluding Remarks
As a result of much previous R&D and transition
experience, network-centric systems today are constructed
as a series of layers of intertwined technical capabilities
and innovations. The main emphasis at the lower layers is
in providing the core computing and communication
resources and services that drive network-centric
computing: the individual computers, the networks, and

the operating systems that control the individual host and
the message level communication.

At the upper layers, various types of middleware are
starting to bridge the previously formidable gap between
the lower-level resources and services and the abstractions
that are needed to program, organize, and control systems
composed of coordinated, rather than isolated,
components. Key capabilities in the upper layers include
common and domain-specific middleware services that
• Enforce real-time behavior across computational

nodes
• Manage redundancy across elements to support

dependable computing and
• Control end-to-end adaptive behavior as responses to

changes in operating conditions.
These new middleware services make the coordinated use
of multiple computing elements feasible and affordable
by controlling the hardware, network, and endsystem
mechanisms that affect mission, system, and application
QoS delivery and tradeoffs.

Adaptive and reflective middleware systems (ARMS) are
a key emerging paradigm that will help to simplify the
development, optimization, validation, and integration of
DRE middleware in DoD combat systems. In particular,
ARMS will allow researchers and system integrators to
develop and evolve complex combat systems assurably,
adaptively, and affordably by:
• Devising optimizers, meta-programming techniques,

and multi-level distributed dynamic resource
management protocols and services for ARMS that
will enable DoD DRE systems to configure standard
COTS interfaces, without the penalties incurred by
today’s conventional COTS software product
implementations. Many network-centric DoD combat
systems require these DRE middleware capabilities.

• Standardizing COTS at the middleware level, rather
than just at lower hardware/networks/operating system
levels. The primary economic benefits of middleware
stem from their extending standardization up several
levels of abstraction so that DRE middleware
technology is readily available for COTS acquisition
and customization.

As COTS implementations of middleware standards
mature in their functional quality and quality of service,
they are helping to lower the total ownership costs of
combat systems. For example, Real-time and Fault-
tolerant CORBA implementations are creating a common
base of COTS technology that enables complex DRE
middleware capabilities to be reconfigured and reused,
rather than re-invented repeatedly or reworked from
proprietary “stove-pipe” architectures that are inflexible
and expensive to evolve and optimize. Additional
information on middleware for DRE systems is available
at http://www.ece.uci.edu/~schmidt/TAO.html.

About the Authors
Dr. Schmidt is an Associate Professor in the Electrical and
Computer Engineering Department at the University of
California, Irvine. He currently serves as a Program
Manager at DARPA ITO, where he leads the national
effort on distributed object computing middleware R&D.
His research focuses on design patterns, implementation,
and experimental analysis of object-oriented frameworks
that facilitate the development of high-performance, real-
time distributed object computing systems on parallel
processing platforms running over high-speed networks
and embedded system interconnects.

Dr. Schantz is a Principal Scientist at BBN Technologies
in Cambridge, Massachusetts. His research has been
instrumental in defining and evolving the concepts
underlying middleware since its emergence in the early
days of the Internet. He was directly responsible for
developing the first operational distributed object
computing capability and transitioning it to production
use. More recently, he has led research efforts toward
developing and demonstrating the effectiveness of
middleware support for adaptively managed QoS control,
as Principal Investigator on a number of key DARPA ITO
projects.

Michael W. Masters serves as Chief Scientist for the U.S.
Navy’s High Performance Distributed Computing
program (HiPer-D), a joint effort between the Aegis
shipbuilding program and several DARPA ITO programs.
HiPer-D is defining a new distributed real-time
computing architecture for shipboard use. Mr. Masters is
co-inventor of a technology called dynamic resource
management, an enterprise-wide system control capability
that allows large-scale real-time systems to dynamically
reconfigure themselves to adapt to varying environments,
changing mission demands and current resource
availability.

Dr. Cross is a Senior Staff System Engineer at Lockheed
Martin Tactical Systems, Eagan. He is currently serving
as Principal Investigator of the Meta-Interfaces for
Embedded Real-time Systems (MINERS) project in
DARPA ITO. His other activities focus on middleware for
Navy standard products and mechanisms for automatic
configuration of complex communication systems.

David Sharp is a Technical Fellow at Boeing Phantom
Works in St. Louis, MO, USA. As Lead Architect and
Core Architecture Team Leader for Boeing's Bold Stroke
product line avionics software initiative, David
spearheaded the development, documentation, and
presentation of the Bold Stroke Software Architecture, a
reusable product-line software architecture used as the
basis for avionics program work on a range of Boeing
production and experimental aircraft programs, and as the
foundation for several highly influential US government-
sponsored R&D programs. David serves as Principal
Investigator for a number of DARPA ITO and AFRL
programs.

http://www.ece.uci.edu/~schmidt/TAO.html

Mr. DiPalma is the Manager of the SubSurface
Warfighter Information Center Systems Engineering
Department of the Portsmouth, RI Headquarters of the
Naval & Maritime Integrated Systems Operation of the
Raytheon Electronic Systems Company. Lou has been
involved in the design and development of Submarine
Combat Control Systems including the New Attack
Submarine (NSSN) CC, the Combat Control System
(CCS) Mk 2 and AN/BSG-1 Weapon Launching System
Programs. He has been actively involved with the
infusion of new technology into the aforementioned
systems, including CORBA and RT-CORBA.

References
[Aegis7] Guidance Document for Aegis Baseline 7 Phase
1 and II Specification Development: Information Archi-
tecture and Baseline Applicability, Version 1.0, 20 March
1998.

[AegisOA] Guidance Document for Aegis Open Archi-
tecture Baseline Specification Development, Version 2.0
(Draft), 5 July 2001.

[Bla99] Blair, G.S., F. Costa, G. Coulson, H. Duran, et al,
“The Design of a Resource-Aware Reflective Middleware
Architecture”, Proceedings of the 2nd International
Conference on Meta-Level Architectures and Reflection,
St.-Malo, France, Springer-Verlag, LNCS, Vol. 1616,
1999.

[Bol00] Bollella, G., Gosling, J. “The Real-Time
Specification for Java,” Computer, June 2000.

[COTS98] Clapp J., Taub A., “A Management Guide to
Software Maintenance in COTS-Based Systems,” MP
98B0000069, The MITRE Corporation, Bedford, MA,
November 1998.

[DARPA99] DARPA, The Quorum Program, www.darpa
.mil/ito/research/quorum/index.html, 1999.

[DiPalma99] DiPalma, L., “The Infusion of CORBA into
the U.S. Navy’s Submarine Fleet”, Software Technology
Conference, May 1999.

[Gam95] Gamma E., Helm R., Johnson R., Vlissides J.,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[Holzer00] Holzer R., “U.S. Navy Looking for More
Adaptable Aegis Radar,” Defense News, 18 September
2000.

[John97] Johnson R., “Frameworks = Patterns + Com-
ponents”, Communications of the ACM, Volume 40,
Number 10, October, 1997.

[Loy01] Loyall JL, Gossett JM, Gill CD, Schantz RE,
Zinky JA, Pal P, Shapiro R, Rodrigues C, Atighetchi M,
Karr D. “Comparing and Contrasting Adaptive Middle-
ware Support in Wide-Area and Embedded Distributed
Object Applications”. Proceedings of the 21st IEEE
International Conference on Distributed Computing

Systems (ICDCS-21), April 16-19, 2001, Phoenix,
Arizona.

[Narain01] Narain S., Vaidyanathan R., Moyer S.,
Stephens W., Parameswaran K., and Shareef A., “Middle-
ware For Building Adaptive Systems via Configuration,”
ACM Optimization of Middleware and Distributed
Systems (OM 2001) workshop, Snowbird, Utah, June,
2001.

[NAS94] New Attack Submarine Open System Imple-
mentation, Specification and Guidance, August 1994.

[Omg98a] Object Management Group, “Fault Tolerance
CORBA Using Entity Redundancy RFP”, OMG
Document orbos/98-04-01 edition, 1998.

[Omg98b] Object Management Group, “CORBA-
Servcies: Common Object Service Specification,” OMG
Technical Document formal/98-12-31.

[Omg99] Object Management Group, “CORBA
Component Model Joint Revised Submission,” OMG
Document orbos/99-07-01.
[Omg00] Object Management Group, “The Common
Object Request Broker: Architecture and Specification
Revision 2.4, OMG Technical Document formal/00-11-
07”, October 2000.
[Sch98] Schmidt D., Levine D., Mungee S. “The Design
and Performance of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on
Building Quality of Service into Distributed Systems,
21(4), 1998.

[Sch00a] Schmidt D., Kuhns F., “An Overview of the
Real-time CORBA Specification,” IEEE Computer
Magazine, June, 2000.

[Sch00b] Schmidt D., Stal M., Rohnert H., Buschmann F.,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Wiley and Sons,
2000.

[Sch01] Schmidt D., Huston S., C++ Network Program-
ming: Resolving Complexity with ACE and Patterns,
Addison-Wesley, Reading, MA, 2001.

[Sch01a] Schantz R. and Schmidt D., “Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley & Sons, 2001.

[Sha98] Sharp, David C., “Reducing Avionics Software
Cost Through Component Based Product Line Develop-
ment”, Software Technology Conference, April 1998.

[ZBS97] Zinky JA, Bakken DE, Schantz RE. "Archi-
tectural Support for Quality of Service for CORBA
Objects", Theory and Practice of Object Systems
(TAPOS), Volume 3, Number 1, April 1997.

	Abstract
	Motivation
	Key Technical Challenges and Solutions
	The Structure and Functionality of Middleware
	Recent Progress
	Looking Ahead
	Concluding Remarks
	About the Authors

