Applying CORBA Fault Tolerant Mechanisms to Network Management

Aniruddha Gokhale
Shalini Yajnik
Bell Laboratories
Lucent Technologies

Douglas Schmidt
B. Natarajan, F. Kuhns, and C. O’Ryan
Distributed Object Computing Group
Washington University at St. Louis
Typical Telecommunications Applications

Common Requirements

- **Network Management**
 - QoS Monitoring
 - Network visualization and control

- **High Availability**
 - 99.999% typical
 - Achieved through monitoring and redundancy
Network Management - The Big Picture

- **Problems**
 - QoS Monitoring
 - Data collection, Control and Visualization

- **Solution**
 - DOVE
Fault Tolerance

• Problems
 1. Developing highly reliable software
 2. Emphasis on components and applications for telecom

• Forces
 1. Standard COTS middleware
 2. Rapid development cycles
 3. Multi-platform support (heterogeneity)

• Solution
 – ACE/TAO/DOORS integration
Integrated ACE/TAO/DOORS Platform

DOORS →
- A CORBA service that supports fault-tolerant CORBA Objects

TAO (The ACE ORB) →
- High-performance, real-time CORBA-compliant ORB

ACE →
- Portable OO framework for communications software
- Implements core patterns
Example Application: Load Balancing Service

Service Overview
- Improve overall application performance by balancing load
 - e.g., supports both random and round-robin strategies

Fault Tolerance Issues
- Single point of failure
- Replication for high availability
- Failure detection/recovery
Example Application Architecture: DOVE

Distributed Object Visualization Environment (DOVE)

1. QoS performance monitoring
2. Fault tolerance
3. Real-time processing
4. Multi-platform
Application Management with DOVE

Multimedia Service Management

1. Integrated application management
2. DOVE agent
 - Event propagation
3. DOVE Browser
 - Visualize server performance
 - Customizable visualization
4. Fault tolerance through DOORS
Fault Tolerance using DOORS

- **ReplicaManager**
 - Replica configuration and management

- **WatchDog and SuperWatchDog**
 - WatchDog - Local failure detection – *polling, heartbeat*
 - SuperWatchDog - Host-level detection
 - Failure notification

- **Client side failure handling**
 - Transparent switchover from Primary to Backup
Applying DOORS to Load Balancing Service

- Usage
 1. Application registered with RM
 2. RM registers appl. with WatchDog
 3. WD starts Appl. and polls
 4. RM generates IOR and binds to Name Service
 5. Client resolves IOR from Name Service
 6. Client talks to Primary
 7. Primary fails
 8. Client transparently talks to Backup
Performance Results

DIFFERENCE BETWEEN OPERATIONS 7 & 5

MIN = 830.426 ms
MAX = 2948.916 ms
AVG = 1501.811 ms
Ongoing and Future Work

- Systematic empirical benchmarks to measure impact of fault tolerance on efficiency and predictability
- Integrate DOORS/TAO with a variety of telecom applications
- Enhance DOORS and TAO to conform to forthcoming OMG CORBA fault tolerance spec (November 1999)
- Solicit feedback from Lucent Business Units
Overview Of CORBA Fault Tolerance

Objectives

- Wide range of fault tolerance
 - Simple low cost clients
 - Highly reliable servers
- Passive and Active replication
- Automatic and application-controlled FT mechanisms
- Strong replica consistency

www.omg.org/techprocess/meetings/schedule/Fault_Tolerance_RFP.html
Concluding Remarks

• Summary
 – Cost-effective reliability is important to next-generation telecom applications
 – Benefits of DOORS/TAO integrated framework
 * Provides the desired fault-tolerance
 * Enables rapid application development
 * Uses standards-based COTS CORBA middleware

• URLs
 – www.cs.wustl.edu/~schmidt/TAO.html
 – www.cs.wustl.edu/~schmidt/nmvc.html
 – www.cs.wustl.edu/~schmidt/dove.html