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ABSTRACT 
 
It is critical to evaluate the quality-of-service (QoS) properties of enterprise distributed 
real-time and embedded (DRE) system early in the software lifecycle—instead of waiting 
until system integration time—to minimize the impact of rework needed to remedy QoS 
defects. Unfortunately, enterprise DRE system developers and testers often lack the nec-
essary resources to support such testing efforts. This chapter discusses how test clouds 
(i.e., cloud-computing environments designed for testing) can provide the necessary test-
ing resources. When combined with system execution modeling (SEM) tools, test clouds 
provide the necessary toolsets to perform QoS testing earlier in the software lifecycle. A 
case study of design and implementing resource management infrasutrcture from the do-
main of shipboard computing environments is used to show how SEM tools and test 
clouds can be used to identify defects in system QoS specifications and enforcement 
mechanisms earlier in the software lifecycle. 
 
INTRODUCTION 
 
Current trends and challenges. Enterprise distributed real-time and embedded (DRE) 
systems, such as large-scale traffic management systems, supervisory control and data 
analysis (SCADA) systems, and shipboard computing environments, are becoming in-
creasingly ubiquitous. As these systems grow in scale and complexity they are becoming 
ultra-large-scale cyber-physical systems (Institute), which exhibit the following charac-
teristics: 
 
• Requirements for simultaneously satisfying competing and conflicting QoS proper-

ties, such as low latency, high reliability, and fault tolerance, in addition to meeting 
their functional requirements, 

 
• Heterogeneous in both their operating environment (e.g., target architecture and 

hardware resources) and technologies (e.g., programming language and middleware), 
and 

 
• Traditionally developed as monolithic, vertically integrated stove-pipes, which are 

brittle, and hard to implement, maintain, and evolve. 
 



These and other related characteristics not only increase enterprise DRE system complex-
ity, but also complicate their software lifecycle, resulting in elongated software lifecycles 
characterized by expensive project runs and missed delivery deadlines (Mann). 
 
Due to the increase in complexity and size of enterprise DRE systems and their compli-
cated software lifecycles, it is important to validate enterprise DRE system QoS proper-
ties early software lifecycle rather than waiting until complete system integration time 
(i.e., late in the software lifecycle), when they are expensive and time-consuming to fix. 
System execution modeling (SEM) tools (Smith and Williams) are one method for ena-
bling DRE system developers and testers to validate QoS properties during early phases 
of the software lifecycle. In particular, SEM tools provide enterprise DRE system devel-
opers and testers with the following capabilities:  
 
• Rapidly model behavior and workload of the distributed system being developed, in-

dependent of its programming language or target environment, e.g., the underlying 
networks, operating system(s), and middleware platform(s), 

 
• Synthesize a customized test system from models, including representative source 

code for the behavior and workload models and project/workspace files necessary to 
build the test system in its target environment, 

 
• Execute the synthesized test system on a representative target environment testbed to 

produce realistic empirical results at scale, and 
 
• Analyze the test system's QoS in the context of domain-specific constraints, e.g. as 

scalability or end-to-end response time of synthesized test applications, to identify 
performance anti-patterns (Smith and Williams), which are common system design 
mistakes that degrade end-to-end QoS. 

 
By using SEM tools to validate QoS properties throughout the software lifecycle, DRE 
system testers can locate and resolve QoS bottlenecks in a timely and cost-effective man-
ner. 
 
Although SEM tools facilitate early validation of enterprise DRE QoS properties, system 
testers may lack the necessary resources to support the testing efforts. For example, to 
support early integration testing of an enterprise DRE system, testers need hardware re-
sources that may not be readily available until later in the software lifecycle. Likewise, 
both software and hardware resources may change throughout the software lifecycle. The 
number of test that must execute also often exceeds the operational capacity of resources 
available in-house for testing (Porter, Yilmaz and Memon). DRE system testers therefore 
need improved methods to support early integration testing of enterprise DRE system ap-
plications. 
 
Solution approach →  Use test clouds to support early integration testing. Cloud 
computing (Vouk) is an emerging computing paradigm where computing resources are 
managed by external service providers. End-users then provision (or request) the cloud’s 



resources as needed to support their computational goals. Although cloud computing is 
primarily used for enterprise workloads, such as office applications, web servers, and da-
ta processing, the availability of the computing resources can also be provisioned to sup-
port testing efforts (i.e., test clouds). For example, DRE system testers can provision re-
sources available in the cloud to evaluate applications using resources that is not readily 
available in-house. Using test clouds is hard, however, without the proper infrastructure 
and tool support.  
 
For example, test clouds are typically designed to support general-purpose workloads, 
which implies that cloud resources are allocated without any knowledge of how they will 
be used because testing is typically a domain-specific task. It is therefore the responsibil-
ity of end-users (e.g., enterprise DRE system testers) to manage provisioned resources as 
follows: 
 
• Coordinate and synchronize testing efforts. Different testing efforts require differ-

ent testing methods. For example, when evaluating end-to-end response time, it is 
necessary to coordinate software running on many different machines for extended 
periods of time. It is also the responsibility of testers to supply the necessary frame-
work to support such needs, if the test cloud does not provide it. 
 

• Gather data collected from many networked machines. As the test is running, it 
generates metrics that can be used to analyze its behavior, e.g., worst cast end-to-end 
response time for the system at different execution times. Unless the test cloud pro-
vides such capabilities, end-users are responsible for  providing the necessary frame-
work to support these needs. 

 
• Correlate and analyze collected metrics. After metrics have been collected from 

many different networked machines, they must be correctly correlated to undergo 
analysis. Failure to correlate metrics can result in either false positive or false nega-
tive results. Unless the test cloud provides such capabilities, the end-users must do so 
themselves. 

 
Completing the actions above can be a daunting task for enterprise DRE system develop-
ers and testers. Moreover, if not done correctly, each task must be repeated for each new 
enterprise DRE system that undergoes QoS testing within a test cloud. To simplify these 
tedious and error-prone tasks, this chapter shows by example how SEM tools can be ex-
tended to support test clouds, and overcome the challenges outlined above. In particular, 
this chapter describes how to: 
 
• Create an instrumentation and logging framework to autonomously collect data from 

networked machines and store them in a central location while tests are executing. 
 
• Create a test management framework to coordinate and synchronize testing efforts 

that execute on many networked hosts in a test cloud. 
 



• Combine test clouds with continuous integration environments to execute integration 
tests that validate QoS properties in parallel with system development, with the goal 
of identifying and rectifying QoS-related defects during early phases of the software 
lifecycle. 

 
BACKGROUND 
 
Before beginning the discussion on using test clouds to evaluate enterprise DRE system 
QoS properties, we first examine the current state of testing with respect to cloud compu-
ting environments. In particular, Testing as a Service (TaaS) (Yu, Zhang and Xiang) is an 
emerging paradigm where testing processes, such as test data generation, test execution, 
and test analysis, is provided as a service to the end-user. This paradigm is opposed to 
always (re)inventing the test infrastructure for different application domains. Moreover, it 
tries to alleviate the overhead that is associated with testing, such as having dedicated 
human and computing resources. 
 
Many companies now provide TaaS, e.g., searching for TaaS on the Web locates a com-
pany named Sogeti (www.sogeti.com) that provides TaaS using a test cloud.1 Their busi-
ness model offers a pay-per-use software testing model that allows clients to perform 
both functional and performance testing on resources provisioned from their cloud. This 
model is similar to how the Amazon Cloud offers a pay-per-use model for their compu-
ting resources. In the Sogeti model, however, the services are test services that can be ac-
cessed via a web portal. 
 
Lu et al. (Yu, Tsai and Chen) explored the feasibility of TaaS by deploying unit testing 
web service over a cloud. Their feasibility study highlighted the main concerns of deploy-
ing such a service, including (1) clustering requests (since many request and testing needs 
are different), (2) scheduling resources for testing (which is similar to traditional cluster-
ing scheduling problems), (3) monitoring testing resources and the test progress, and (4) 
managing processes in the overall cloud.  
 
MOTIVATIONAL CASE STUDY: THE RESOURCE ALLOCATION 
CONTROL ENGINE (RACE)  
 
The Resource Allocation and Control Engine (RACE) (Shankaran, Schmidt and Chen) is 
an open-source distributed resource manager system developed using the CIAO (Deng, 
Gill and Schmidt) implementation of the Lightweight CORBA Component Model (CCM) 
(Lightweight CORBA Component Model RFP) over the past decade. RACE deploys and 
manages Lightweight CCM application component assemblies (i.e., called operational 
strings) based on resource availability/usage and QoS requirements of the managed oper-
ational strings. Figure 1 shows the architecture of RACE, which is composed of four 
components assemblies (Input Adapter, Plan Analyzer, Planner Manager, and Output 
Adapter) that collaborate to manage operational strings for the target domain.  
 

                                                
1 The authors of this chapter have no affiliation with Sogeti. 



 
Figure. 1: High-level overview of the RACE architecture. 

 
The initial implementation of RACE contained 26,644 lines of C++ code and 30 compo-
nents.  Subsequent enhancements to RACE (after 50 source code check-ins to the reposi-
tory) added 14,041 lines of code and 9 components, for a total of 40,685 lines of code and 
39 components.2 
 
RACE performs two types of deployment strategies—static and dynamic—for enterprise 
DRE systems. Static deployments are operational strings created offline by humans or 
automated planners.  RACE uses the information specified in a static deployment plan to 
map each component to its associated target host during the deployment phase of a DRE 
system.  A benefit of RACE's static deployment strategy is its low runtime overhead 
since deployment decisions are made offline; a drawback is its lack of flexibility since 
deployment decisions cannot adapt to changes at runtime.   
 
Dynamic deployments, in contrast, are operational strings generated online by humans or 
automated planners.  In dynamic deployments, components are not given a target host.  
Instead, the initial deployment plan contains component metadata (e.g., connections, 
CPU utilization, and network bandwidth) that RACE uses to map components to associ-
ated target hosts during the runtime phase of a DRE system.  A benefit of RACE's dy-
namic deployment strategy is its flexibility since deployment decisions can adapt to 
runtime changes (e.g., variation in resource availability); a drawback is its higher runtime 
overhead.   
 
The RACE baseline scenario.  The case study in this paper focuses on RACE's baseline 
scenario.  This scenario exercises RACE's ability to evaluate resource availability (e.g., 
CPU utilization and network bandwidth) with respect to environmental changes (e.g., 
                                                
2 The number of lines of code in RACE was computed via SourceMonitor 
(www.campwoodsw.com/sourcemonitor.html) and the number of components in RACE was 
counted manually. 
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node failure/recovery).  Moreover, it evaluates RACE's ability to ensure lifetime of high-
er importance operational strings deployed dynamically is greater than or equal to the 
lifetime of lesser importance operational strings deployed statically based on resource 
availability.  
 
Since RACE performs complex distributed resource management services we wanted to 
evaluate RACE’s QoS properties as early as possible in the software development lifecy-
cle. We believed this would help us overcome the serialized-phased development prob-
lem (Rittel and Webber) where the system is developed in different phases and tested 
functional, but QoS evaluation does not occur until complete system integration time. In 
particular, we wanted to know as early as possible if RACE could evaluate resource 
availability with respect to environmental changes to properly manage operational strings 
deployed dynamically versus those deployed statically.   
 
Because RACE is considered infrastructure components, we needed application compo-
nents to successfully evaluate its baseline scenario. Due to serialized-phasing develop-
ment, applications would not exist for several months after development started. We 
therefore relied on CUTS (see Sidebar 1) to provide the application-level components for 
evaluating RACE’s baseline scenario.  
 
Sidebar 1. The CUTS System Execution Modeling Tool 
CUTS (Hill, Edmondson and Gokhale) is a next-generation system execution modeling 
(SEM) tool that enables DRE system developers and testers to performance system inte-
gration tests that valid QoS properties during early phases of the software lifecycle. This 
is opposed to waiting to complete system integration time to perform such evaluation, 
which can be too late to resolve problems in a timely and cost-effective manner. DRE 
system developers and testers use CUTS via the following steps: 
1. Use domain-specific modeling languages (Ledeczi, Bakay and Maroti) to model be-

havior and workload at high-levels of abstraction (Hill, Tambe and Gokhale, Model-
driven Engineering for Development-time QoS Validation of Component-based 
Software Systems);  

2. Use code generation techniques (Hill and Gokhale, Using Generative Programming to 
Enhance Reuse in Visitor Pattern-based DSML Model Interpreters) to synthesize a 
complete test systems from constructed models that conform to the target architecture 
(i.e., the generate components look and feel like the real component in terms of their 
exposed attributes and interfaces); and  

3. Use emulation techniques (Hill, Slaby and Baker) to execute the synthesized system 
on its target architecture and validate its QoS properties in its target execution envi-
ronment.  

DRE system developers and testers can also replace emulated portions of the system with 
its real counterpart as its development is completed. This allows DRE system testers to 
perform continuous system integration testing, i.e., the process of execution system inte-
gration test to validate QoS properties continuously throughout the software lifecycle.  
 
Although we used CUTS to provide the non-existing application-level components, we 
did not have enough physical resources in-house to conduct the desired testing efforts. 



We therefore decided to use a cloud environment for evaluating RACE’s baseline scenar-
io.  In particular, we leveraged a test cloud powered by Emulab software (Ricci, Alfred 
and Lepreau) to support our testing efforts. We selected Emulab because it allowed us to 
provision both host and network resources to create network topologies that emulate pro-
duction environments. This capability enabled us to create realistic experiments based on 
realistic networking conditions (i.e., we were not bound to the predefined network topol-
ogy and configuration of emerging TaaS paradigms built atop a test cloud). 
 
Like many clouds, Emulab provides the infrastructure support for managing its resources, 
but it does not provide readily available infrastructure that supports testing DRE systems. 
It was therefore our responsibility to develop the necessary infrastructure that allowed us 
to (1) coordinate and synchronize testing efforts, (2) gather data collected from many dif-
ferent nodes, and (3) execute many tests automatically.  
 
Since we were developing RACE, we could have easily created simple shell scripts (i.e., 
the traditional way of manage the test process of a DRE system) designed for RACE to 
manage the testing process in Emulab. This approach, however, would not be an ideal 
solution since we reduce the mobility of our solution. Moreover, it would be hard for us 
to leverage much of Emulab’s existing infrastructure (e.g., configuration and dynamic 
resource management) that requires stateful and interactive processes. 
 
The remainder of this chapter therefore discusses how we extended the CUTS SEM tool 
to support the Emulab test cloud. The goal of this extension is to provide the underling 
infrastructure above and beyond what Emulab provides so that testing DRE systems is 
not only an easy process, but also an automated one. 
 
COMBINING SYSTEM EXECTION MODELING TOOLS AND 
CLOUD COMPUTING ENVIRONMENTS 
 
This section discusses the extension we added to the CUTS SEM tool to support evaluat-
ing RACE in the Emulab test cloud. In particular, we describe the infrastructure and log-
ging infrastructure implemented to collect data for analyzing the RACE baseline scenar-
io. We also present the extensions added to CUTS to support managing testing exercises 
in Emulab and show how we integrated the test management extensions and the log-
ging/instrumentation extensions to create a complete framework for executing many test 
in the Emulab test cloud. 
 
Instrumentation and Logging Infrastructure for Test Clouds 
 
Enterprise DRE systems consist of many software components executing on many hosts 
that are connected via a network. When validating their QoS properties, e.g., end-to-end 
response time, scalability, and throughput, it is necessary to collect data about the sys-
tems behavior in the target environment. Such behaviors could be execution lifecycle 
events, the state of the system at different points in time, or data points needed to calcu-
late the end-to-end response of an event.   
 



Data (or metrics) in a distributed environment, such as a test cloud, is collected and ana-
lyzed either offline or online. In offline collection and analysis, data from each host is 
written to local persistent storage, e.g., a file, while the system executes in the test cloud.  
After the system is shutdown, the collected data in local storage on each host is combined 
and analyzed. The advantage of this approach is network traffic is kept to a minimum 
since collected data is not transmitted over the network until after the system is shut-
down. The disadvantage of this approach is collected data is not processed until the sys-
tem is shutdown, which can pose a problem for enterprise DRE systems with a long exe-
cution lifetime, or when trying to monitor and analyze a system in real-time.  More im-
portantly, once a system has shutdown, its resources are released back into the cloud, so 
there is a potential risk that data stored on local storage can be lost if it is not completely 
removed. 
 
In online collection and analysis, data is collected and transmitted via network to a cen-
tral host. The advantage of this approach is that it allows metric analysis to occur on a 
host that has little or no impact on system performance. The disadvantage of online col-
lection and analysis is that it is necessary to devise a strategy for efficiently collecting 
data and submitting it to a central location without negatively impacting the executing 
systems QoS – especially if the system generates heavy network traffic. Although online 
collection has it disadvantages, using online data collection a test cloud is more practical 
because it guarantees metrics are collected and archived periodically during execution 
(i.e., before resources are given back to the cloud). Moreover, online data collection can 
facilitate real-time feedback. 
 
Extending CUTS with logging and instrumentation infrastructure. Instrumentation 
and logging infrastructure should not be (re-)implemented for each application undergo-
ing testing in a test cloud. Moreover, it should not be a something that DRE system and 
developers must provide. Instead, it should be a service provided by the test cloud that 
DRE systems use to collect and archive metrics of interest. This way, DRE system testers 
and developers can focus on deciding what to collect and let the test cloud infrastructure 
determine the best method for collecting metrics from the DRE system under test.  
 
Figure 2 gives an overview of the how CUTS was extended with logging and instrumen-
tation infrastructure to support the Emulab test cloud. As shown in this Figure, each host 
provisioned in the test cloud executes a logging client. Likewise, the controller node for 
the provisioned assets executes a single logging server. The controller node for the provi-
sioned assets is not the same as the controller node for the cloud because each experiment 
executing in a test cloud has a controller node responsible for coordinating task on the 
different test nodes as described in the section titled Managing DRE System Tests in the 
Cloud. 
 



 
Figure 2. Overview of CUTS logging and instrumentation framework to support the 
Emulab test clouds. 
 
The logging client is responsible for collecting data from individual software components 
executing on its host. As the logging client receives data from software components, it 
submits it to the logging server for storage and analysis. The logging client does not 
know the physical location (i.e., IP address) of the logging server because it can change 
depending on what assets are provisioned by the test cloud for a given experiment. In-
stead, the logging client knows the test-specific hostname of the logging server and its 
listening port. Likewise, we can further loosen the coupling between the logging client 
and logging server by using a naming service to resolve the location of the logging server 
(i.e., request the logging server for a given test). 
 
In contrast to the logging client resolving the logging server, the process software com-
ponents use to resolve the logging client is straightforward. Since software components 
submit metrics to logging clients executing on their host machine, the software compo-
nents only need to know what port the logging client is listening. After a software com-
ponent opens a connection to the logging client’s port, it is able to submit data for collec-
tion and archiving. 
 
On data formatting and archiving. Since a DRE system is distributed in nature—and 
its metrics can range from structured to unstructured data and binary to text data—there 
are many way to store data. We therefore extended CUTS to support both a text and bina-
ry methods for archiving metrics. In the text method, metrics are archived in string for-
mat—similar to log files of an execution trace stored in a database.  
 
void Input_Adapter_Component::handle_input (Input_Event * ev) { 
  CUTS_CLIENT_LOGGER->log (”begin processing input %s at %d”, 
                           ev->input_name (), 
                           ACE_OS::gettimeofday ().msec ()); 
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  // make call to planner manager component 
 
  CUTS_CLIENT_LOGGER->log (”ending processing input %s at %d”, 
                           ev->input_name (), 
                           ACE_OS::gettimeofday ().msec ()); 
} 

 
Listing 1. Example source code for collecting software data from a software compo-
nent using text formatting. 
 
Listing 1 shows how CUTS collects text-based data from the Input Adapter component in 
RACE. The advantage of this approach is that data values can be viewed just by viewing 
the contents of the archive (i.e., the database where metrics are stored). The disadvantage 
of this approach is that all metrics must be converted to string format, and vice versa, 
which can result in unwanted overhead—especially when collecting metrics from real-
time software components. 
 
In the binary method, data is stored in its raw binary representation. The advantage of this 
approach is that there is no extra overhead associated with packaging the data. The disad-
vantage of this approach is that special care needs to be taken when packing and unpack-
ing the data if the endian-ness of the host used for data analysis is different than the host 
where the data originated. Likewise, it is almost impossible to see the contents of the data 
just by viewing the archive since the data will appear to be encrypted. This inherent char-
acteristic, however, can add a layer of security to the data when many test execute in the 
same test cloud. 
 
From our experience, the text-based format for collecting and storing metrics is easier to 
integrate into an existing application than the binary method when using intrusive data 
collection (i.e., modifying the source code to collect metrics of interest). This simplicity 
occurs because the binary format method requires a special framework to manage pack-
aging and unpackage the data, which can add unwanted complexity to the solution. In 
contrast, the text-based format, can be achieved using simple string-formatting semantics 
as shown in Listing 1.  
 
When performing non-intrusive data collection (i.e., collecting data without modifying 
the original source code) within the test cloud, then either binary- or text-based data col-
lection suffices because the collection mechanisms are hidden from the client. For exam-
ple, many DRE systems will use a logging framework for collecting text-based log mes-
sages. It is therefore possible to intercept those messages and pass them to the CUTS log-
ging server—assuming the log messages contain metrics of interest.  
 
Framework: log4j 
Language: Java   
How to integrate: Update log4j.properties (or similar file)   
Illustrative example:   
 
# define the loggers  



log4j.rootCategory=ALL, C, A   
 
# console appender   
log4j.appender.A=org.apache.log4j.ConsoleAppender  
log4j.appender.A.layout=org.apache.log4j.PatternLayout  
log4j.appender.A.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n   
 
# CUTS appender  
log4j.appender.B=cuts.log4j.LoggingClientAppender  
log4j.appender.B.LoggerClient=corbaloc:iiop:localhost:20000/LoggingClie
nt  

 
Framework: ACE Logging Facilities  
Language: C++  
How to integrate: Update svc.conf (or similar file)   
Illustrative example:  
 
dynamic CUTS_ACE_Log_Interceptor Service_Object * \  
  CUTS_ACE_Log_Interceptor:_make_CUTS_ACE_Log_Interceptor() active \   
  “--client=corbaloc:iiop:localhost:20000/LoggingClient”  

 
Listing 2. Using interceptors to non-intrusively collect log messages in the log4j and 
ACE logging framework. 
 
Listing 2 shows how CUTS can intercept log messages of the ACE logging framework 
(Schmidt), which is a C++ logging framework used in many enterprise DRE systems. 
The listing also shows how CUTS can intercept log message of the log4j logging frame-
work (logging.apache.org), which is a Java framework used by many existing Java appli-
cations. As shown in this listing, the configuration files define what interceptors to load. 
When the CUTS interceptors are loaded into their respective framework, the interceptor 
receives log messages and forwards them to the CUTS Logging Server. 
 
For the binary case, it is possible to use dynamic binary instrumentation tools to re-write 
the binary program and inject instrumentation points into the program as it executes. Sim-
ilar to the logging framework interceptor discussed above, the callback methods collect 
data of interest and forward it to the CUTS logging server. 
 
Summary. Whether using text- or binary-based formatting, or intrusive vs. non-intrusive, 
when collecting metrics in a test cloud, the approach must seamlessly extract metrics 
from each host and store them in a central location. Failure to do so can result in metrics 
being lost after provisioned resources are released back to the test cloud. Since the Emu-
lab test cloud does not provide such functionality out-of-the-box, we extended the CUTS 
SEM tool with a logging and instrumentation framework to support our testing efforts of 
RACE in the Emulab test cloud.  
 
Managing DRE System Tests in the Cloud 
 
Enterprise DRE system testing and execution environments, such as the Emulab test 
cloud, consist of many nodes. Each node in the target environment is responsible for exe-



cuting many different processes that must support the overall goals of the execution envi-
ronment. For example, nodes in the execution environment may host processes that man-
age software components, processes that synchronize clocks with a central server, and 
processes that collect instrumentation data. 
 
When dealing with many processes that must execute on a given node, the traditional 
testing approach is to create a script that launches all processes for that given node. For 
example, in Unix environments, Bash scripts can be used to launch a set of processes. 
The advantage of using such scripts is that it provides a lightweight and repeatable ap-
proach for ensuring that all process for a given node are launched, and done so in the cor-
rect order. Moreover, the script can be easily updated to either add or remove processes 
as needed.   
 
Although scripts are sufficient when working in a distributed testing environment, its ap-
proach adds more complexity to the testing process in a test cloud. First, scripts are only 
repeatable after manually invoking the script. This means that enterprise DRE system de-
velopers much manually connect to each host in the test cloud to (re)start the script. If it 
is possible to remotely connect to the host via automation to (re)start the script, then it is 
hard to know what processes are associated with a given script if multiple scripts start 
similar processes. 
 
Secondly, such scripts do no easily support injection/removal of processes on the fly. It is 
assumed in the script used to configure the host before the test is executed. At that point, 
all processes injected/removed from the host are assumed to be part of all the processes 
on that machine. Lastly, it is hard to switch between different execution environments 
where an execution environment is set of environment variables and a set of processes 
that are needed for a test to execute correctly in the test cloud. 
 
Extending CUTS with test management infrastructure. Because of the shortcomings 
of existing approaches for managing DRE system tests, which are used heavily in the 
Emulab test cloud, we extended CUTS with test management infrastructure. More specif-
ically, we added the following entities to CUTS: 
 
The CUTS Node Manager is a daemon that manages processes executing on its respec-
tive node, similar to a traditional task manager. The difference between a traditional task 
manager and the CUTS Node Manager is that the CUTS Node Manager exposes an inter-
face that is used by the Node Manager Client (explained next) to remotely spawn new 
processes on the node, or terminate existing processes executing on the node.  
 
The CUTS Node Manager also provides mechanisms for remotely starting all process 
under its control without having to physically restart the machine in the test cloud. The 
CUTS Node Manager accomplishes this using a concept called virtual environments, 
which is a set of environment variables and processes that define a self-contained execu-
tion environment for testing purposes. Listing 3 shows an example configuration for the 
CUTS Node Manager. 
 



<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<cuts:node> 
  <environment id="RACE.HEAD" inherit="true" active="true"> 
    <!-- environment variables for this environment --> 
    <variable name="NameService" 
        value=">${TAO_ROOT}/orbsvcs/Naming_Service/Naming_Service" /> 
    <variable name="RACE_ROOT" 
        value=">/opts/RACE" /> 
 
    <startup> 
      <!-- NamingService --> 
      <process id=”dance.naming.service”> 
        <executable>${NameService}</executable> 
        <arguments>-m 0 –ORBEndpoint  
          iiop://localhost:60003 -o ns.ior</arguments> 
      </process> 
 
      <!-- DAnCE node manager --> 
      <process id="dance.nodemanager.pingnode"> 
        <executable>${DANCE_ROOT}/bin/dance_node_manager</executable> 
        <arguments>-ORBEndpoint iiop://localhost:30000  
          -s ${DANCE_ROOT}/bin/dance_locality_manager  
          -n PingNode=PingNode.ior -t 30  
          --instance-nc corbaloc:rir:/NameService</arguments> 
        <workingdirectory>../lib</workingdirectory> 
      </process> 
 
      <!-- //... --> 
    </startup> 
  </environment> 
 
  <environment id="RACE.Baseline" inherit="true" active="false"> 
    <!-- environment variables for this environment --> 
    <variable name="NameService" 
        value=">${TAO_ROOT}/orbsvcs/Naming_Service/Naming_Service" /> 
    <variable name="RACE_ROOT" 
        value=">/opts/RACE-baseline" /> 
 
    <startup> 
      <!-- NamingService --> 
      <process id=”dance.naming.service”> 
        <executable>${NameService}</executable> 
        <arguments>-m 0 –ORBEndpoint  
          iiop://localhost:60003 -o ns.ior</arguments> 
      </process> 
 
      <!-- DAnCE node manager --> 
      <process id="dance.nodemanager.node1"> 
        <executable>${DANCE_ROOT}/bin/dance_node_manager</executable> 
        <arguments>-ORBEndpoint iiop://localhost:30000  
          -s ${DANCE_ROOT}/bin/dance_locality_manager  
          -n Node1=Node1.ior -t 30  
          --instance-nc corbaloc:rir:/NameService</arguments> 
        <workingdirectory>../lib</workingdirectory> 
      </process> 
 



      <!-- //... --> 
    </startup> 
  </environment> 
</cuts:node> 

 
Listing 3. Example configuration for the CUTS Node Manager illustrating the usage 
of virtual environments to manage different execution configurations. 
 
As shown in this listing, there are 2 different virtual environments defined in the configu-
ration where the main difference is the value of the variable named RACE_ROOT. The 
environment named RACE.HEAD is the active virtual environment when the CUTS Node 
Daemon is first launched. At runtime, however, it is possible to switch between the 
RACE.HEAD and RACE.Baseline virtual environments.  
 
This runtime flexibility is beneficial when testing many different configurations that re-
quire different execution environments, e.g., different versions of RACE that have differ-
ent software dependencies, because DRE system developers and testers do not have to 
physically reset (or restart) the machine to switch configurations. Moreover, DRE system 
developers and testers do not have to manually terminate existing process and execute a 
different script just to switch configurations. Instead, the CUTS Node Manager can man-
age all the processes for each execution environment, and can quickly swap between 
them. 
 
The CUTS Node Manager Client is an application that allows end-users to remotely con-
trol a CUTS Node Manager. The CUTS Node Manager Client therefore prevents end-
users from having to manually log into each machine in the test cloud to modify its con-
figuration. For example, DRE system developers and testers can remotely switch between 
different virtual environments, spawn new processes on remote host, or terminate an ex-
isting process on a remote host. The CUTS Node Manager Client is mainly used by the 
CUTS Test Manager (explained next) to inject behaviors into the execution environment 
at runtime. For example, the CUTS Test Manager can use to CUTS Node Manager Client 
to terminate a remote process hosting software components to evaluate the robustness of 
the system under testing during faults. 
 
The CUTS Test Manager is an application that executes for a user-specified amount of 
time and is responsible for managing the testing exercise of a DRE system in the test 
cloud. The CUTS Test Manager application achieves this by first, wrapping itself around 
the deployment tools for the system under test. For example, when evaluating the RACE 
baseline scenario, the CUTS Test Manager wraps itself around DAnCE, which is a de-
ployment and configuration engine for CORBA Component Model (CCM) applications. 
Listing 4 highlights a portion of the CUTS Test Manager configuration that defines what 
tool to use to deploy the system under testing into the test cloud. 
 
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<cuts:test> 
  <startup> 
    <executable>${DANCE_ROOT}/bin/dance_plan_launcher</executable> 



    <arguments>-x RACE.cdp -k file://EM.ior</arguments> 
  </startup> 
 
  <shutdown> 
    <executable>${DANCE_ROOT}/bin/dance_plan_launcher</executable> 
    <arguments>-x RACE.cdp -k file://EM.ior -s</arguments> 
  </shutdown> 
 
  <!-- // remainder of test script --> 
</cuts:test> 

 
Listing 4. Snippet of the CUTS Test Manager configuration illustrating the use of 
DAnCE to deploy RACE into the test cloud. 
 
As shown in the listing above, the CUTS Test Manager uses the <startup> section to 
determine how to launch the system under test (i.e., RACE in the example above). The 
<shutdown> section determines how to stop the current system under testing. Because 
the startup and shutdown sections are generic, the CUTS Test Manager can wrap any de-
ployment tool. 
 
While the CUTS Test Manager is active (i.e., the test is executing in the test cloud), the 
CUTS Test Manager can execute test actions. A test action is an operation that occurs 
independently of the system under test, but can have an effect on the system under test. 
For example, the CUTS Test Manager can use the CUTS Node Manager Client to send a 
command to the CUTS Node Manager to terminate an existing process on the machine. 
 
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<cuts:test> 
  <!-- // startup/shutdown commands removed from script --> 
 
  <actions> 
    <action delay=’30’ waitforcompletion=’true’> 
      <executable>${CUTS_ROOT}/bin/cutsnode</executable> 
      <arguments>-ORBInitRef  
        NodeManager=node1.isislab.vanderbilt.edu:50000/CUTS/NodeManager 
        --reset</arguments> 
    </action> 
 
    <!-- // more test actions go here -->  
  </actions> 
</cuts:test> 
 

 
Listing 5. Snippet of the CUTS Test Manager configuration illustrating the use of 
test actions to alter the behavior to the test environment at runtime. 
 
Listing 5 shows a snippet of the CUTS Test Manager configuration for sending com-
mands to nodes throughout the test execution. As shown in this listing, the CUTS Test 
Manager sleeps for 30 seconds. After the sleep delay, it resets the CUTS Node Manager 



running on node1.isislab.vanderbilt.edu (i.e., forces all its managed pro-
cesses to restart). 
 
Summary. When evaluating an enterprise DRE system in a test cloud, such as Emulab, it 
is necessary for the test cloud to have infrastructure support for managing the complete 
testing operation. As discussed in this section, this support mainly involves having infra-
structure manage processes executing on remote machines (i.e., the CUTS Node Manager 
and CUTS Node Manager Client) and infrastructure for managing different test scenarios 
(i.e., the CUTS Test Manager). Without such infrastructure in place, it is hard for DRE 
system testers to leverage a test cloud to for their testing exercises because they will 
spend significant time and effort trying to manage many remote resources, which is an 
daunting task. 
 
Coordinating Logging, Instrumentation, and Testing Management In-
frastructure in the Test Cloud 
 
The previous two sections discussed topics related to (1) logging and instrumentation in-
frastructure for collecting test data from a DRE system and (2) test management infra-
structure for coordinate the testing effort across different nodes in the test cloud. The dis-
cussion in each section and resulting artifacts, however, are disjoint in that the logging 
and instrumentation infrastructure does not know about the test management infrastruc-
ture.  
 
A disjoint solution has both its advantages and disadvantages. For example, one ad-
vantage of a disjoint solution is that the loose coupling between the two allows either one 
to be used without the other. For example, it is possible to use the CUTS Node Manager 
to manage virtual environments and processes without including the CUTS Test Manag-
er. Likewise, it is possible to use the CUTS Test Manager to manage different test scenar-
ios without ever using the CUTS Logging Client and CUTS Logging Server. 
 
One disadvantage of having a disjoint solution is that it is hard to ensure that data collect-
ed by the logging and instrumentation infrastructure is associated with the correct test. 
This association is not problematic if only one enterprise DRE system is instrumented for 
a given test. If there are multiple systems being instrumented that use the same logging 
infrastructure and want their data associated with different tests, however, then having a 
disjoint solution is not ideal. The problem is that there is no easy way to ensure the test 
data is associated with the correct test without introducing some form of compiling that 
permits data to be associated with a given test. 
 
Integrating logging and test management infrastructure in CUTS. Since there is oc-
casional need associate collected data with a given test, we allow the CUTS Test Manger 
to support testing services. A testing service is an entity that adds domain-specific behav-
ior based on the lifetime of the testing exercise. The main motivation for supporting test-
ing services is that it is hard to know in advance all the needs of a testing exercise that 
must be associated with the testing lifecycle. For example, some testing exercises may 
need to associate data with a given test, and other testing exercises may not. Testing ser-



vices therefore will allow both needs to be supported without compromising any needs, 
or the flexibility of CUTS extensions for testing DRE systems in test clouds. 
   
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<cuts:test> 
  <!-- // startup/shutdown commands and test actions removed --> 
  <services> 
    <service id="daemon"> 
      <location>CUTS_Testing_Server</location>  
      <entryPoint>_make_CUTS_Testing_Server</entryPoint>  
      <params>-ORBEndpoint iiop://localhost:50000</params>  
    </service> 
 
    <service id="logging"> 
      <location>CUTS_Testing_Log_Message_Listener</location>  
      <entryPoint>_make_CUTS_Testing_Log_Message_Listener</entryPoint>  
      <params>-ORBInitRef 
       LoggingServer= 
         corbaloc:iiop:localhost:20000/LoggingServer</params>  
    </service> 
  </services> 
</cuts:test> 

Listing 6. Snippet of CUTS Test Manager configuration illustrating services to be 
loaded into the test manager. 
 
Listing 6 shows a portion of the CUTS Test Manager configuration that loads the CUTS 
Logging Server as a service (i.e., logging in Listing 6) into the CUTS Test Manager. It 
also loads a service that exposes an external endpoint (i.e., daemon in Listing 6) for re-
motely connecting to the CUTS Test Manager. Because the CUTS Logging Server is 
loaded in the CUTS Test Manager, it has access to the CUTS Test Manger attributes, 
such as test id and test lifecycle events (e.g., start, stop, and pause). 
 
The CUTS Testing Service also exposes an interface that allows clients to query infor-
mation about the current test, such as test id. When the DRE system is deployed into the 
test cloud, the loggers use the interface provided by the CUTS Test Manager to query for 
a new test id. The loggers then associated the returned test id with the data that it submits 
to the CUTS Logging Client and CUTS Logging Server.  
 
Summary. Although separating the logging and instrumentation infrastructure from the 
test management infrastructure has advantages, there are cases when the two need should 
be coupled. Infrastructure for the test cloud should therefore support both needs. Other-
wise, it can be hard to associate data with a given test.  
 
One concern not discussed in this section is when new software components are deployed 
during the middle of a test. If there is only one test executing, then the solution is trivial 
(i.e., request the id of the currently executing test). If there are multiple tests executing 
(i.e., multiple test ids), then it can be hard to determine what test the new components 
should be associated with. One solution to address this problem is to pre-assign test ids 
before the system is deployed into the test cloud. This way, when new components come 
online they know which test to associate its data. Otherwise, if you rely on auto-generated 



test ids (as discussed above), then you need some mechanism in place that can determine 
which groups of test ids belong to the same overarching test. This, however, can be hard 
to do if the testing exercise is dynamic (i.e., has many software components that are de-
ployed and destroyed throughout the testing lifecycle). 
 
EXPERIMENTAL RESULTS: USING TEST CLOUDS TO EVALU-
ATE THE RACE BASELINE SCENARIO 
 
This section shows the design and results of experiments that applied the extended ver-
sion of CUTS, which we call CiCUTS from henceforth, to evaluate the RACE’s baseline 
scenario in the Emulab test cloud. These experiments evaluated the following hypotheses:  
• H1: CiCUTS allows developers to understand the behavior and performance of infra-

structure-level applications, such as RACE, within a test cloud, such as Emulab, be-
fore system integration; and 

• H2: CiCUTS allows developers use test clouds for continuously evaluating QoS 
properties of infrastructure-level applications throughout its development lifecycle. 

 
Experiment Design 
 
To evaluate the two hypotheses in the context of the RACE baseline scenario, we con-
structed 10 operational strings using CUTS. Each string was composed of the same com-
ponents and port connections, but had different importance values and resource require-
ments to reflect varying resource requirements and functional importance between opera-
tional strings that accomplish similar tasks, such as a primary and secondary tracking op-
eration. Figure 3 shows a PICML3 model for one of the baseline scenario's operational 
strings consisting of 15 interconnected components represented by the rounded boxes. 
This operational string was replicated 10 times to create the 10 operational strings in the 
baseline scenario. 
 

                                                
3 The Platform Independent Component Modeling Language (PICML) (Gokhale, 
Balasubramanian and Balasubramanian) is a domain-specific modeling language for modeling 
compositions, deployments, and configurations of Lightweight CCM applications. 
 



 
 
Figure 3. Graphical model of the replicated operational string for the baseline sce-
nario. 
 
The four components on the left side of the operational string in Figure 3 are sensor com-
ponents that monitor environment activities, such as tracking objects of importance using 
radar. The four components in the top-middle of Figure 3 are system observation compo-
nents that monitor the state of the system. The four linear components in the bottom-
center of Figure 3 are planner components that receive information from both the system 
observation and sensor components and analyze the data, e.g., determine if the object(s) 
detected by the sensor components are of importance and how to (re)configure the system 
to react to the detected object(s). The planner components then send their analysis results 
to the three components on the right side of Figure 3, which are effector components that 
react as stated by the planner components, e.g., start recording observed data. 
 
To prepare RACE's baseline scenario for CiCUTS usage, we used PICML to construct 
the 10 operational strings described above. We then used the CUTS to generate Light-
weight CCM compliant emulation code that represented each component in the opera-
tional string managed by RACE (see Figure 3) in the baseline scenario. We also used 
PICML to generate the operational strings' deployment and configuration descriptors for 
RACE. 
 

Table 1. The importance values of the baseline scenario operational strings. 
Operation String Importance Value 

A – H  90 
I – J 2 

  
The deployment of each operational string used the strategy specified in Table 1. The im-
portance values4 assigned to each operational string reflects its mission-critical ranking 
                                                
4 These values are not OS priorities; instead, they are values that specify the significance 
of operational strings to each other 



with respect to other operational strings. We chose extreme importance values because 
RACE was in its initial stages of development and we wanted to ensure that it honored 
importance values when managing operational strings. It is worth noting that we can easi-
ly change the importance values to evaluate RACE’s ability to handle operational strings 
with closely related importance values. This, however, was outside the scope of our ex-
periments. Finally, we annotated RACE's source code with the logging messages so that 
the CUTS Logging Client and CUTS Logging Server can collect data about the test, such 
as time of operational string deployment/teardown or time of node failure recognition. 
 
To run the experiments using CiCUTS, we create configuration scripts for the CUTS Test 
Manager that captured the serialized flow of each experiment. The configuration scripts 
contained commands that (1) signaled RACE to deploy/teardown operational strings, (2) 
sent commands to individual nodes to cause environmental changes, and (3) queried the 
logging database for test results. Finally, we created a custom graphical display that ana-
lyzed the log messages to show whether the lifetime of dynamic deployments exceed the 
lifetime of static deployments based on resource availability with respect to environmen-
tal changes.  
 
Experiment Results 
 
This section presents the results of experiments that validate H1 and H2 in context of the 
RACE baseline scenario. 
 
Using CiCUTS to understand the behavior and performance of infrastructure-level 
applications when testing in a test cloud. H1 conjectured that CiCUTS assists in under-
standing the behavior and performance of infrastructure-level applications, such as 
RACE, using a test cloud well before system integration. Figure 4 shows an example re-
sult set for the RACE baseline scenario (i.e., measuring the lifetime of operational strings 
deployed dynamically vs. operational strings deployed statically) where 2 hosts were tak-
en offline to simulate a node failure. 

                                                                                                                                            
 



 
 
Figure 4. Graphical analysis of static Deployments (bottom) vs. dynamic deploy-
ments (top) using RACE. 
 
The graphs in Figure 4, which are specific to RACE, were generated from the log mes-
sages stored in the database via the CUTS Logging Client and CUTS Logging Server de-
scribed in the previous section. The x-axis in both graphs is the timeline for the test in 
seconds and each horizontal bar represents the lifetime of an operational string, i.e., oper-
ational string A-J.  
 
The graph at the bottom of Figure 7 depicts RACE's behavior when deploying and man-
aging human-generated static deployment of operational string A-J. The graph at the top 
of Figure 4 depicts RACE's behavior when deploying and managing RACE-generated 
dynamic deployment of operational string A-J. At approximately 100 and 130 seconds 
into the test run, the CUTS Test Manager killed 2 nodes hosting the higher importance 
operational strings, which is highlighted by the “node failures” callout. This was accom-
plished by sending a kill command to the corresponding CUTS Node Manager. 
 
As shown in the static deployment (bottom graph) of Figure 4, static deployments are not 
aware of the environmental changes. All operational strings on failed nodes (i.e., opera-
tional string A-G) therefore remain in the failed state until they are manually redeployed. 
In this test run, however, we did not redeploy the operational strings hosted on the failed 
nodes because the random “think time” required to manually create a deployment and 
configuration for the 7 failed operational strings exceeded the duration of the test. This 
result signified that in some cases it is too hard to derive new deployments due to strin-
gent resource requirements and scarce resource availability. 
 
The behavior of dynamic deployment (top graph) is different than the static deployment 
(bottom graph) behavior. In particular, when the CUTS Test Manager kills the same 



nodes at approximately the same time (i.e., section highlighted by the “node failure” 
callout), RACE's monitoring agents detect the environmental changes. RACE then quick-
ly tears down the lower importance operational strings (i.e., the section highlighted by the 
“operational string swapout”) and redeploys the higher importance operational strings in 
their place (e.g., the regions after the “node failure” regions). 
 
The test run shown in Figure 4, however, does not recover the failed nodes to emulate the 
condition where the nodes cannot be recovered (e.g., due to faulty hardware). This failure 
prevented RACE from redeploying the lower importance operational strings because 
there were not enough resources available. Moreover, RACE must ensure the lifetime of 
the higher importance operational strings is greater than lower importance operational 
strings. If the failed nodes were recovered, however, RACE would attempt to redeploy 
the lower importance operational strings. Figure 4 also shows the lifetime of higher im-
portance operational strings was ~15% greater than lower importance operational string. 
This test case showed that RACE could improve the lifetime of operational strings de-
ployed and managed dynamically vs. statically. 
 
The results described above validate H1, i.e., that CiCUTS enables developer to under-
stand the behavior and performance of infrastructure-level applications in Emulab. With-
out CiCUTS, we would have used ad hoc techniques, such as manually inspecting execu-
tion trace logs distributed across multiple hosts in the test cloud, to determine the exact 
behavior of RACE. By using CiCUTS, however, we collected the necessary log messages 
in a central location and used them to determine the exact behavior of RACE.  
 
If we did not use CiCUTS to validate RACE within Emulab, we would have had to man-
ually execute the different actions required to emulate different scenarios, such as deploy-
ing each operational strings and killing/\-recovering nodes. Moreover, each action in the 
scenario requires precise timing of execution, which would have been difficult and ineffi-
cient to do manually. Because CiCUTS uses an automated approach to testing via the 
CUTS Test Manager, it is clear that CiCUTS can simplify validating the QoS of large-
scale DRE systems within a test cloud, such as Emulab. This result, however, is for a sin-
gle experiment run. To fully determine if CiCUTS can simplify validating the QoS of 
large-scale DRE systems within test clouds, we need to run large numbers of tests, i.e., 
validate H2. 
 
Using CiCUTS to ensure performance is within QoS specification. H2 conjectured 
that CiCUTS would help developers use test clouds to ensure the QoS of infrastructure-
level applications is within its performance specifications throughout the development 
lifecycle. The results described above, however, represent a single test run of the baseline 
experiment. Although this result is promising, it does not show conclusively that CiCUTS 
can ensure RACE is within its QoS specifications as we develop and release revisions of 
RACE. We therefore integrated CiCUTS with the CruiseControl.NET 
(ccnet.thoughtworks.com), which is a continuous integration system (Fowler) we used to 
continuously execute variations of the experiment previously discussed while we evolved 
RACE. Figure 5 highlights the maximum number of tests we captured from the baseline 
scenario after it was executed approximately 427 times over a 2-week period. 



 

 
Figure 5. Overview analysis of continuously executing the RACE baseline scenario. 
 
The number of executions corresponds to the number of times a modification (such as a 
bug fix or an added feature to RACE) was detected in the source code repository at 30-
minute intervals. The vertical bars in Figure 5 represent the factor of improvement of dy-
namic deployments vs. static deployments. The lower horizontal line was the acceptable 
measured improvement and the upper horizontal line was the target improvement (i.e., 
10%). 
 
The heights of the bars in this figure are low on the left side and high on the right side, 
which stem from the fact that the initial development stages of RACE had limited capa-
bility to handle dynamic (re-)configuration of operational strings. As RACE's implemen-
tation improved – and the modified code was committed to the RACE source code re-
pository – CruiseControl.NET updated the testing environment with the latest version of 
RACE, and then executed the CUTS Test Manager. The CUTS Test Manager then exe-
cuted a test scenario in the Emulab test cloud. Finally, the circle portion in Figure 5 is 
where we located an error in the specification because the measured improvements were 
not correlating correctly with what we were seeing in the graphs produced by the system 
execution traces (see Figure 4). At this point, we learned that the equation for measuring 
RACE’s improvement was incorrect due to a misunderstanding of the system’s behavior 
and semantics in the target environment. After correcting the equation, with permission 
from the managers, we were able to meet the 10% target improvement. 
 
The results in Figure 5 show how CiCUTS allowed developers to run test in Emulab and 
keep track of RACE's performance throughout its development. As the performance of 
RACE improved between source code modifications, the vertical bars increased in 
height. Likewise, as the performance of RACE decreased between source code modifica-
tions, the vertical bars decreased in height. Lastly, since each vertical bar corresponds to 
a single test run, if the performance of RACE changed between tests runs, developers 
could look at the graphical display for a single test run (see Figure 4) to further investi-
gate RACE's behavior. These results therefore validate H2, i.e., that CiCUTS helps de-
velopers ensure the QoS of infrastructure-level applications is within its performance 
specifications throughout the development lifecycle. As modifications where checked 
into the source code repository, the CruiseControl.NET detected the modifications and 
reran the CiCUTS tests for RACE.  
 
 



CONCLUDING REMARKS 
 
This chapter presented an approach for using test clouds to evaluate QoS properties of 
DRE system during early phases of the software lifecycle. Although it is possible to use 
test clouds for early QoS testing, test clouds alone do not always provide the necessary 
infrastructure to support such tasks. As shown throughout this chapter, we had to extend 
the CUTS SEM tool with logging and test management infrastructure to evaluate the 
RACE baseline scenario in the Emulab test cloud.  
 
Although we put in time and effort to implement the necessary infrastructure to support 
our testing needs in the Emulab test cloud, the payoff was worth it because (1) we did not 
have to purchase the resources to meet our testing needs and (2) we were able to locate 
errors in RACE’s specification and resolve them during its early stages of development. 
These results do not prove definitively that test clouds are the solution to all testing prob-
lems, similar to what we experienced with RACE. The results do show, however, that test 
clouds have the potential to address key needs in the testing domain if the correct infra-
structure is available to support the testing requirements. 
 
The CUTS SEM tool presented in this chapter is freely available in open-source format 
for download from URL http://cuts.cs.iupui.edu. 
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