
Binding, Migration, and Scalability in CORBA

Michi Henning
michi@dstc.edu.au

CRC for Distributed Systems Technology (DSTC)
University of Queensland, Qld 4072, Australia

Abstract

This article explains how CORBA binds requests to object implementations with the help of
an implementation repository. The design of the implementation repository has profound
influence on the flexibility, performance, scalability, and fault tolerance of an ORB, and we
illustrate some of the trade-offs involved in various repository designs. Implementation
repositories play an important role in building scalable object systems; we point out some
issues that CORBA will need to address in the future to continue to scale and remain at the
forefront of distributed object technology.

One Repository to register them all, One Repository to find them,
One Repository to start them all, and with IIOP bind them

In the land of CORBA where the Objects lie.

1 INTRODUCTION

CORBA’s object model [4] relies to a large degree on the semantics ofobject references. An object
reference uniquely identifies a local or remote object instance—clients can only invoke an operation on an
object if they hold a reference to the object. Object references can be converted into a string and
transmitted via arbitrary means (such as e-mail or even smoke signals). The receiver of a string can convert
it back into an object reference and invoke operations on the object.

Apart from the ability to denote remote objects and to convert to and from strings, CORBA references have
semantics that are very similar to those of C++ class pointers: references can dangle (point at a nonexistent
or unreachable object) and they can be nil (contain a special value that indicates a reference pointing
nowhere).

Object references are opaque. Application code is not allowed to look inside a reference or to make any
assumptions about its internals. The details of how an object reference identifies an object and how
requests are dispatched to their correct destination are carefully hidden away in the ORB’s run-time
support. The opacity of references provides important transparencies to applications, such as language,
transport, and protocol independence. These transparencies in turn are the foundation of CORBA’s
interoperability in heterogeneous networks [11].

The semantics of object references have profound implications on the design of an ORB, in particular its
ability to support object migration and to scale to very large numbers (millions) of objects. This article
explains some of the mechanisms and design trade-offs involved, and speculates how CORBA should
evolve to meet the need for ever larger distributed systems.



2

2 ANATOMY OF AN OBJECT REFERENCE

Conceptually, anInteroperable Object Reference (IOR) has the structure shown in Figure 1 (some details
are omitted since they are not relevant to this discussion):

Figure 1: Major components of an Interoperable Object Reference (IOR).

An IOR contains three items of information:

• Type Name

The type name, also known as arepository ID, identifies the most derived type of the object
associated with the IOR at the time the IOR was created. The repository ID serves as an index into
theInterface Repository (IFR), which allows the IDL definition for an interface to be retrieved at run
time. The repository ID can also be used by an ORB to implement run-time type checking.

• Protocol and Address Details

This field specifies a protocol and the addressing information appropriate for that protocol. In the
case of theInteroperable Inter-ORB Protocol (IIOP), the addressing information consists of a host
name and a TCP port number.

• Object Key

This information is an opaque piece of binary data, proprietary to the ORB that created the IOR. It is
usually referred to as theobject key because it identifies which particular object is pointed to by the
IOR. The object key itself consists of two components: theobject adapter name and theobject
name. The object adapter name identifies the particular object adapter in a server that accepts
requests for this object. The object name identifies which particular object within the adapter is
pointed to by the IOR.

CORBA permits a single reference to contain several pairs of protocol and object key—that way, a single
object reference can support multiple protocols or contain different addresses for the same object (for
example, to provide fault tolerance).

3 REQUEST BINDING

When a client invokes a request via an IOR, the ORB run time is responsible for sending the request to the
correctservant. A servant is whatever construct is used by a specific programming language to represent a
CORBA object. (If the implementation language is object-oriented, servants typically are programming
language objects.) The process of associating a request with its servant is known asbinding.

Binding is protocol-specific—the remainder of this article assumes that the Internet Inter-ORB Protocol
(IIOP) is used. IIOP is a TCP/IP-specific instance of CORBA’sGeneral Inter-ORB Protocol (GIOP).
GIOP is not a complete protocol itself, but a specification for defining protocols such as IIOP. GIOP
assumes that the underlying transport provides a reliable byte stream abstraction and is
connection-oriented.

CORBA distinguishes betweentransient andpersistent IORs:

Type Name
(Repository ID)

Object Key
(Adapter & Object Name)

CORBA Interoperable Object Reference (IOR)

...Protocol and
Address Details



3

• A transient IOR continues to work only for as long as its associated server process remains
available. Once the server shuts down, a transient reference becomes permanently nonfunctional (it
never works again, even if the server is restarted).

• A persistent IOR continues to denote the same CORBA object even if the server shuts down and is
restarted, possibly on a different machine. Many ORBs can transparently start a server process when
a client uses a persistent reference and shut the server down again after some period of idle time.

Whether an IOR is transient or persistent is determined at IOR creation time by the server application
code. An ORB binds transient references differently from persistent references.

3.1 Binding of Transient References

Figure 2 illustrates binding of transient references.

Figure 2: Binding of a transient reference. The server with ID OA9 runs on machine bobo at port 1805.

Binding of transient references relies on the server being available at the time a client invokes an operation:

1. The client-side ORB run time opens a connection to the host and port specified in the IOR and sends
a request message to the server process (some ORBs send alocate request message instead—see
Section 4). A request message contains:

• the size of the message,

• a uniquerequest identifier,

• the object key (which contains the adapter name and object name),

• the name of the operation being invoked,

• any in andinout parameters that need to be transmitted to the operation.

The client-side run time then waits for areplymessage to be returned on the connection on which it
sent the request.

2. The server uses the adapter name and object name inside the object key to locate the correct servant
for the request. The adapter name identifies a data structure known as theactive object map. For
each object adapter in a server, the active object map stores the object name and the memory address
at which the corresponding servant can be found. The object name serves as an index into the active
object map and therefore identifies the servant for a request.

3. The server sends a reply message back to the client. The reply message contains the request
identifier sent in the corresponding request. This allows the client to associate a request with its
reply so it can have several requests outstanding. A reply message also indicates success or failure.
For success, the reply contains the results of the operation. For failure, it contains exception
information that explains why the request failed.

Binding of transient references can encounter one of the following scenarios:

• The server is running at the host and port indicated by the reference.

In this case, binding succeeds. The server uses the object key to determine which servant should
handle the request and eventually returns a reply to the client.

OA9
obj_971
obj_979
obj_983

Server at bobo:1805

IDL:MyObject:1.0 bobo:1805 OA9, obj_979

Object Reference

Client

① ②

③

op() [OA9, obj_979]

reply for op()



4

• No process is listening at the specified address.

No connection can be opened and the client-side run time raises a TRANSIENT exception in the
application code.

• The original server that created the reference has shut down and a different server is now listening
on the same host and port.

In this case, the client sends the request to the wrong server, so the request must fail with
OBJECT_NOT_EXIST.

• The original server that created the reference has shut down, but was restarted again later and
happened to get the same port number.

In this case, the client sends the request to the correct server. However, because the reference is
transient, the request must fail withOBJECT_NOT_EXIST.

The last two scenarios require cooperation from the receiving server. There are two relevant cases:

• The IOR contains an object key created by another vendor’s ORB.

• The IOR contains an object key created by the same vendor’s ORB (possibly by a previous instance
of the same server process).

Both cases are dealt with by ensuring that object keys are unique for all transient IORs:

• IORs can carry avendor-specific tag. The server examines the tag to see if a request is made via
another ORB’s IOR. If so, the IOR does not identify an object in this server. Vendor-specific tags are
part of what is properly known asmulti-component profiles[1]. The OMG maintains a registry of
tags reserved for use by each vendor.

• When a server creates a transient reference, the ORB run time adds the server’sidentityto the object
key by assigning a pseudo-random identifier to the adapter name (in Figure 2, the server uses the
identifier OA9). The server identity can be any unique identifier, such as aUniversally Unique
Identifier (UUID) [7]. The ORB run time assigns a new identity to a server whenever the server
starts up, so if the server receives a request that contains another server’s identity, the request does
not denote an object in this server (or denotes an object in a previous incarnation of the same server).

In either of the preceding cases, the server returns a reply containing anOBJECT_NOT_EXIST exception to
the client and binding fails as it should.

3.2 The Implementation Repository

A persistent IOR survives server shut-down, that is, it continues to denote the same persistent CORBA
object across server instantiations. A persistent object has a life cycle quite independent of that of its
servant. The servant is created and destroyed whenever the server starts and shuts down, respectively,
whereas the CORBA object denoted by a reference continues to exist until it is explicitly deleted.

Persistent IORs need to work even if the server starts on different hosts at different times, or if the server’s
port number is dynamically assigned. This means that, for persistent IORs, embedding the host name and
port number of the server into the IOR is not an option—the IOR would stop working as soon as the server
moved to a different port or host.

To bind persistent IORs, ORBs provide animplementation repository.

3.2.1 Standards Conformance of the Implementation Repository

We need to note here that the CORBA specification [1] does not standardize the implementation repository
and only suggests a few functions that vendors may choose to implement. The reasons are:



5

• The implementation repository is intimately related to its underlying platform. For example, it needs
to deal with details such as process creation and termination, threads, and signals. This makes
implementation repositories nonportable.

• The CORBA specification permits ORB implementations for environments ranging from embedded
systems to global enterprise systems. Implementation repositories need to provide functionality that
must be tailored for each environment, and it is not feasible to write a specification that covers all
possible environments.

• Object migration, scalability, performance, and fault tolerance all depend on the implementation
repository. The repository therefore provides a major point at which vendors can add value to their
ORB.

Despite the lack of standardization, interoperability between different vendors’ ORBs is still guaranteed.
CORBA strictly specifies how an implementation repository interacts withclients, so a client using
vendor A’s ORB can interoperate with an implementation repository from vendor B. Proprietary
mechanisms only exist betweenserversand their respective implementation repositories. This means that a
server written for vendor A’s ORB requires an implementation repository from the same vendor. However,
the interactions between servers and their repositories are not visible to other clients and servers and so do
not compromise interoperability.

The explanations that follow describe the implementation repository and binding process as currently
implemented (with minor variations) by a number of commercial ORBs.

3.2.2 Implementation Repository and Server Interactions

The implementation repository has several responsibilities:

• It maintains a registry of known servers.

• It records which server is currently running at what host and port number.

• It starts servers on demand if they are registered for automatic activation.

The implementation repository is typically implemented as a process that runs at a fixed address (host
name and port number). If a server creates persistent IORs, the server’s host must be configured with the
address of the implementation repository. Hosts that are configured to use the same implementation
repository are said to be in a singlelocation domain (this implies that the implementation repository need
not run on the same host as a CORBA server).

The implementation repository maintains a data structure such as the following table:

The adapter name and command columns of the table are populated by an administrative tool when a
server is installed.

The adapter name column identifies the object adapter in the server that processes requests. Servers still
using the (now deprecated)Basic Object Adapter (BOA)have exactly one BOA. Servers using thePortable
Object Adapter (POA)[2][8][9][10], may have several POAs (see Section 6.1).

The start-up command records how the server can be started on demand when a client attempts to contact
an object provided by the corresponding object adapter. Note that the preceding example relies on the
remote shell to start a server remotely. This is for illustration purposes only—instead ofrsh, some other,

Adapter Name Start-up Command Address

Fred rsh bobo “/usr/local/bin/fred -x” bobo:1799
Joe /usr/local/bin/joe
Mike foxtail:3333



6

more secure mechanism can be used equally well. If no start-up command is recorded for a server, this
indicates that the server is expected to be started manually (and will probably run continuously).

The address field records the host and port number at which a server is currently running (an empty address
field indicates that the server is stopped).

A server that wants to create persistent references must be registered with the implementation repository.
Sometime during start-up (typically just before the event loop is entered), the server sends its adapter name
and its host and port number to the implementation repository. (The server knows how to find the
implementation repository from its local machine configuration.) If the server’s object adapter is not
registered, the implementation repository returns an exception that is propagated back to the client
application code (usually as aBAD_PARAM or OBJ_ADAPTER exception).

With this mechanism, the implementation repository always knows the latest address details of each
running server, and only registered servers can create persistent references (servers that only generate
transient references need not be registered with the repository). Most implementation repositories also
include mechanisms to recover from failures, such as detecting a crashed server. However, the details are
not relevant to this discussion.

The communication between the server and its repository can use any proprietary protocol it likes. In
practice, however, servers contact the repository on a normal IDL interface via IIOP.

3.3 Binding of Persistent References

Persistent references created by a server contain the following information:

• the repository ID of the most derived interface (as for transient IORs),

• the host name and port number of the implementation repository,

• the object adapter name (embedded in the object key),

• the object name (also embedded in the object key).

For persistent references, the adapter name, instead of being a random identifier, is controlled by the server
application code. The server code uses a fixed adapter name for each of its objects. The object name is also
supplied by the server application code and associates the IOR with a particular servant within a particular
adapter. The server application code registers each servant with the same adapter and object name it used
for previous instantiations of that servant. The object name is a unique piece of state such as a database row
identifier, social security number, or whatever else is suitable to provide object identity. The object name
links a particular servant to the CORBA object represented by that servant and therefore supplies object
identity. Note that persistent references contain an address that points at the implementation repository
instead of the actual server.

To bind a persistent IOR, the client behaves exactly as for a transient one. It opens a connection to the
address in the IOR and sends the request (or a locate request—see Section 4) via that connection. Of
course, for persistent references, the connection leads to the implementation repository, which unpacks the
object adapter name from the object key and uses it as an index into its server table:

• If the server is not registered, the repository returns anOBJECT_NOT_EXIST exception (which is
propagated back to the client application code).

• If the server is registered for manual start-up but is not running, the repository returns aTRANSIENT
exception.

• If the server is registered for start-up but is not running, the repository starts the server and waits for
a message from the server that provides the server’s address details.



7

• If the server is running (possibly after being started first), the repository returns alocation-forward
reply to the client.

A location-forward reply indicates to the client-side run time that it sent the request to the wrong process
and should try again elsewhere. The forwarding location is returned with the reply in form of another IOR.
The implementation repository constructs that IOR by extracting the address details of the server from its
table.

The client-side run time (transparently to the application code) sends the request a second time via the IOR
returned by the repository, and the request ends up at the correct server.

Once the request arrives in the server, binding is identical for transient and persistent references:

• The server verifies that the object adapter name in the IOR matches its own adapter name. If not, the
server sends anOBJECT_NOT_EXIST reply.

• The server uses the object name as an index into its active object map. If the server can find a servant
in the map, the request succeeds. If the server cannot find a servant, it replies with
OBJECT_NOT_EXIST.

Figure 3 shows the sequence of interactions for the successful binding of a persistent reference with
automatic server start-up:

1. The client invokes operationop, sending the request to the implementation repository.

2. The implementation repository starts the server.

3. The server informs the implementation repository of its current address details.

4. The repository returns the server address to the client in a location-forward reply.

5. The client re-issues the request to the new location.

6. The server uses the object key sent with the request to locate the servant.

7. The server returns the results ofop to the client.

Figure 3: Binding of a persistent reference with automatic server start-up. The implementation repository runs on
machine foxtail at port 1801, and server Fred runs on machine bobo at port 1799.

Fred
obj_971
obj_979
obj_983

Fred
Joe
Mike

bobo:1799

foxtail:3333

rsh bobo “/usr/local/bin/fred -x”
/usr/local/bin/joe

Server at bobo:1799

Implementation Repository at foxtail:1801

Server Table

IDL:MyObject:1.0 foxtail:1801 Fred, obj_979

Object Reference

Client

②

①

⑤

④

③

⑥

⑦

fork/exec(rsh bobo “/usr/local/bin/fred -x”); my_address(bobo:1799);

location-forward(bobo:1799);

op() [Fred, obj_979]

op() [Fred, obj_979]

reply for op()



8

All messages to and from the client are normal IIOP requests. Message (3), in which the server informs the
implementation repository of its location, can be sent using either IIOP or a proprietary protocol without
compromising interoperability.

Note that the client knows nothing about the implementation repository or automatic server start-up.
Instead, it simply waits for a reply to its request. The reply either returns the results of the operation,
indicates an exception, or contains an IOR via which to retransmit the request. Of course, a retransmitted
request may be answered with yet another location-forward reply. (GIOP places no limit on the number of
times a request may be forwarded.) If a server needs to be started first, the client’s request is transparently
delayed until the server is ready.

Binding returnsOBJECT_NOT_EXIST only either if the server is completely unknown to the repository, or
if the server itself has determined that no servant matches the object name. In other words,
OBJECT_NOT_EXIST is an authoritative reply indicating that the object does not exist. In contrast, if the
server cannot be reached, the repository replies with aTRANSIENT exception.TRANSIENT simply
indicates a failure to reach the server and does not imply anything about object existence.

With the preceding design, the implementation repository knows about servers, and servers know about
their own objects. The implementation repository does not accumulate information about each individual
object, which makes it unlikely that state piles up in any one place and causes scalability problems.

The POA specification also permits a server application to arrange for a callback if the server-side run time
cannot locate a servant in the active object map. This mechanism allows a server to bring objects into
memory on demand instead of permanently having all servants in memory.

4 SCALABILITY AND PERFORMANCE

Clients need to contact the implementation repository to get the first request for an object to the correct
process (once an IOR is bound, further requests do not involve the repository because the client already
knows how to contact the object). The problem with this is two-fold:

• The additional overhead incurred by retransmission of requests following a location-forward reply
can be noticeable, particularly if requests carry large amounts of data (all of the data needs to be
retransmitted).

• There is an upper limit of the number of servers that can use the same repository. As the number of
servers and objects grows, more client requests need to be forwarded.

CORBA provides some features to mitigate these problems:

• Instead of an actual operation invocation, the client-side run time can send alocate request to the
repository. A locate request does not contain any parameter values, so the client can avoid redundant
transmission of parameters. Of course, this optimization is worthwhile only for large requests.

• If the client-side run time encounters an IOR it has not yet bound, it can look at the vendor tag to
determine whether the IOR was created by the same ORB as used by the client. If so, the client
knows how the object key is encoded and can extract the object adapter name from the IOR. If the
client has previously bound an IOR to the same server, it already knows how to contact that server
and need not involve the implementation repository.

This optimization works if client and server use the same ORB, but does not apply if the client holds
an IOR created by a different ORB. This is because the client-side run time cannot decode the object
key of another ORB’s IOR.



9

• Some ORBs use the object key to cache the address at which the server originally created a
reference (known as theserver birth address). If the client holding an IOR uses the same ORB as the
server, it can extract the server birth address from an IOR and attempt to connect to that address first.
There is a chance that the server may still be running at the same host and port—if so, the client
avoids contacting the implementation repository.

• Several implementation repositories can be used. This reduces the size of each location domain, and
therefore the number of requests sent to the repository.

5 FAULT TOLERANCE

The binding algorithm shown in Section 3.3 relies on contacting the implementation repository. This
creates a single-point-of-failure scenario: if the repository is down, none of the objects in the repository’s
location domain can be bound. The GIOP protocol offers a mechanism that can be used to mitigate the
problem: instead of using a single address, an ORB can embed multiple addresses in an IOR, each of
which denotes a redundant instance of the same repository. This can be used to provide fault tolerance as
well as load-sharing to improve performance. However, commercial ORB implementations currently do
not use the feature. (The OMG has made initial moves to standardize fault tolerance [5].)

Another approach to making applications more robust against repository failure is to reduce the size of
location domains. Instead of sharing a repository among a number of hosts, each host can run its own
repository. If a host crashes, only objects implemented on that host become inaccessible. This approach
also improves performance because each repository does less work.

6 OBJECT MIGRATION AND SCALABILITY

Reducing the size of location domains improves reliability and performance, but it also limitsobject
migration. Object migration refers to the ability to move an object from one address space to another
(change its physical location) without breaking references to that object currently held by clients.

Consider the binding scenario presented in Section 3.3. If several hosts share a repository, a server can be
moved to any host within the repository’s location domain. This is possible because all IORs produced by
servers in that domain share the same repository address. However, there are two limitations:

• All objects implemented in a server need to move at once.

This limitation arises because the implementation repository uses the object adapter name as a key
into the location table. If an object moves, all objects in the same server need to move with it
because all references to objects in the server contain the same object adapter name.

• A server cannot move into a different location domain.

Moving across a location domain boundary implies that a server now depends on two repositories,
one to bind references created while the server was in the old domain, and one to bind references
created in the new domain.

6.1 Granularity of Object Migration

Ideally, an ORB would permit free movement of objects, including movement of a single object from one
server to another. This is possible, but only at a cost: the implementation repository needs to know about
individual objects instead of servers. This in turn compromises scalability, because more state needs to be
externalized (stored in the repository). A server may implement millions of individual objects, and it is
difficult to maintain performance of a repository if it stores millions of object locations. In addition, it is
hard to maintain consistency between the servers’ view and the repository’s view of object locations.



10

Alternatively, instead of storing a registration for each individual object, the repository can communicate
with servers during binding to dynamically acquire the addressing information for objects. This avoids the
problem of storing large numbers of object locations, but requires more messages and so reduces
performance.

One compromise approach uses multiple POAs. A physical server can contain a number of named POAs,
each of which acts as a scope for object names. As before, IORs still contain a single POA name as part of
the object key. However, by using multiple POAs, the server can maintain different naming scopes for its
object names. The implementation repository contains a separate registration for each POA and therefore
can locate objects at the grain of a POA instead of a whole server process. This permits some objects to be
moved out of a server to a different location while other objects can remain at the original location.
However, all objects using the same POA must migrate together. This approach scales well and provides
more flexibility, but in practice only works well if the number of POAs is small because registrations need
to be maintained manually.

Commercial implementations use different approaches to object migration. Some ORBs have
implementation repositories that can locate an individual object instance, whereas others can only locate
objects at the granularity of a server process or a POA. The various approaches are subject to the
performance and scalability trade-offs mentioned previously.

6.2 Migration Across Location Domains

It is possible to migrate servers across location domain boundaries, but this again reduces performance and
scalability. There are two approaches:

• When a server migrates to a new domain, it registers itself with its new implementation repository as
well as all repositories it has used in the past.

The idea is that all repositories a server has ever used know the current location of the server and
therefore can continue to bind requests arriving via an IOR generated at a previous location. This
works, but has the drawback that, over time, more and more server registrations accumulate in
repositories. This in turn compromises scalability, because it increases the amount of externalized
state and raises consistency issues.

• When a server migrates to a new domain, an administrator changes the registration in the old
repository to create location-forward replies to the repository in the new domain.

The idea here is to leave a “footprint” in the old repository that forwards binding requests to the new
repository, which knows about the actual location of the server. Again, the problem is that the
forwarding footprints accumulate over time. In addition, a bind from a client via an IOR created at a
previous location must be forwarded from repository to repository until it finally arrives at the
server. The binding chain gets longer with every migration, so this approach does not scale if servers
migrate more than a few times.

Hybrids of the these two basic ideas are possible. For example, repositories can be arranged into domain
hierarchies to reduce the length of forwarding chains, and repositories can be combined into redundant
groups to gain performance and fault tolerance. However, all approaches are subject to the basic trade-offs
between flexibility, scalability, performance, and fault tolerance. No commercial implementations
currently offer inter-domain migration.

7 GARBAGE COLLECTION

Object migration is complicated by the need to externalize location information in implementation
repositories. It would be nice if one could “fade” such information once it is no longer required by clients.
Unfortunately, it is generally impossible to know when that time has arrived.



11

7.1 The Pacific Ocean Problem

Consider the following scenario: You are stranded on an island in the Pacific Ocean, with a CORBA server
as your only link to the rest of the world (you can reply to CORBA messages, but you cannot send them).
Being desperate to get home, you decide to create a persistent SOS-object in your CORBA server (the
server is properly registered with its implementation repository). You write the stringified IOR for your
object on a piece of paper, put it into a bottle, and, having carefully inserted the cork, you toss the bottle
into the ocean.

The bottle floats around for a few months and eventually washes ashore in Australia, where it is found by
someone strolling along the beach. Luckily, the finder of your bottle knows all about CORBA, destringifies
the object reference, contacts your object to learn about your predicament, and comes to the rescue.

Contrived as this example is, it illustrates an important point: because CORBA permits persistent
references to propagate by uncontrollable means, there is no way of knowing whether or not an IOR is still
of interest to some client. In the preceding scenario, the IOR continues to be of interest while it is floating
in the Pacific Ocean, and the finder of the bottle has every right to expect a CORBA invocation via the IOR
to reach your SOS-object.

These semantics make it impossible to “fade” orgarbage collect a forwarding registration in an
implementation repository without running the risk of leaving a client with a dangling IOR.

7.2 Garbage Collection of CORBA Objects

Garbage collection issues arise not only for implementation repositories, but also apply to CORBA in
general. For example, CORBA relies extensively on thefactory pattern[1][3]. A factory is an object that
creates other objects. To create a new object, a client invokes an operation on the factory. The factory
operation creates a new object and returns its IOR to the client. To delete the object, the client invokes an
operation on the object that instructs it to destroy itself.

GIOP has no session concept and does not permit servers to distinguish between orderly and disorderly
client shut-down. If a client crashes or loses connectivity before it gets around to destroying an object, the
server has no means to detect this, and the object simply hangs around forever (or, if it is a transient object,
continues to exist until its server shuts down). If too many persistent objects are left behind over time, the
object garbage can accumulate to the point where performance is severely compromised.

CORBA currently does not offer garbage collection as a platform feature and forces applications to deal
with the problem. Garbage collection can be quite easy to implement for a specific application scenario;
the most common approach is to destroy objects if they have not been accessed for some time. However,
application-level garbage collection requires additional development effort.

7.3 Referential Integrity

The flip-side of losing an IOR is losing an object. This happens if a client decides to delete an object while
other clients still hold references to that object. Once the object is gone, the references held by other clients
dangle. The problem is similar to that of broken links on Web pages.

Dangling references fall under the broader topic ofreferential integrity. A system of CORBA objects and
their IORs has referential integrity if there are no dangling references (references without objects) and
there are no orphaned objects (objects that cannot be contacted via a reference). As an analogy, the Web
would exhibit referential integrity if there were no broken links, and every page could be reached from
some starting point by traversing some sequence of links. Clearly, it is very difficult to maintain referential
integrity in a heterogeneous distributed system that spans enterprise and administrative boundaries;
random failures that compromise referential integrity are unavoidable.

Garbage collection is one way to address referential integrity. It can be used both to prevent deletion of
objects that are still of interest and to guarantee deletion of objects that are no longer wanted. Another way



12

to guarantee integrity is to usetransactions. CORBA already includes a transaction specification [3], and
the OMG is in the process of addressing garbage collection [6].

7.4 Dealing with Lack of Referential Integrity

One way to deal with lack of referential integrity is to live without it. In real life, we cope with lack of
referential integrity all the time. For example, when people dial a telephone number and get a “no such
number” message (the equivalent of a dangling reference), they do not throw up their hands in despair.
Instead, they have a number of fall-back behaviors to recover from the problem (such as using the phone
book or calling directory assistance).

In CORBA, the equivalent fall-back behavior is not to rely on references to work at all times, but to
dynamically re-acquire them when they fail. Implementation repositories provide fall-back behavior
through their location-forward mechanism. However, fall-back behaviors are useful not only for repository
registrations but also for application objects. For application objects, fall-back behavior is substantially
easier to implement if transactions and garbage collection are available as platform features.

8 SUMMARY

This article has explained how the implementation repository binds persistent IORs. The design of the
repository has profound influence on the performance, scalability, flexibility, and fault tolerance of an
ORB. CORBA intentionally leaves vendors with considerable freedom in repository design. Even though
implementation repositories are not typically seen as a central point of interest, their capabilities determine
at least in part how well an application will perform, scale, and evolve over time. This makes the features
provided by an implementation repository an important consideration when choosing an ORB.

Garbage collection and referential integrity are areas where CORBA offers only partial solutions.
Forthcoming revisions of the specification need to address these issues for CORBA to remain at the
forefront of distributed object technology.

9 ACKNOWLEDGEMENTS

I am indebted to Keith Duddy, David Jackson, Michael Neville, Jocelyn Thompson, and Steve Vinoski,
who commented on drafts of this article.

Portions of this article have been excerpted from the forthcoming bookAdvanced CORBA Programming
with C++ by Michi Henning and Steve Vinoski. Copyright 1999, Addison Wesley Longman, Inc.

The work reported in this article has been funded in part by the Cooperative Research Centre Program
through the Department of Industry, Science, and Tourism.

10 APOLOGIES

Apologies to J.R.R. Tolkien.

11 ABOUT THE AUTHOR

Michi Henning is a Senior Research Scientist at DSTC, where he spends much of his time providing
CORBA consulting and training to international customers. He has contributed to a number of OMG
specifications, is involved in ongoing CORBA-related research, and is a member of the OMG’s C++
Revision Task Force. Currently, he is working with Steve Vinoski on a book about CORBA programming
with C++. When he is not doing computer-related things, he desperately tries to improve his golf
handicap—hope springs eternal…



13

12 REFERENCES

[1] Gamma E., Helm R., Johnson R. and Vlissides J.Design Patterns. Addison Wesley, Reading, Mass., 1995.

[2] Object Management Group,The Common Object Request Broker: Architecture and Specification. Object
Management Group, Framingham, Mass., 1998.

[3] Object Management Group,CORBAservices: Common Object Services Specification. Object Management
Group, Framingham, Mass., 1997.

[4] Object Management Group,A Discussion of the Object Management Architecture. Object Management Group,
Framingham, Mass., 1997.

[5] Object Management Group,Fault Tolerant CORBA. Draft RFP; ftp://ftp.omg.org/pub/docs/orbos/98-03-05.pdf,
Object Management Group, Framingham, Mass., 1998.

[6] Object Management Group,Garbage Collection of CORBA Objects. Draft RFP;
ftp://ftp.omg.org/pub/docs/orbos/97-08-08.pdf, Object Management Group, Framingham, Mass., 1997.

[7] The Open Group,DCE 1.1: Remote Procedure Call. CAE Specification C706, The Open Group, Cambridge,
Mass., 1997.

[8] Schmidt D. and Vinoski S. Object Adapters: Concepts and Terminology.C++ Report 9,11 (Nov. 1997).

[9] Schmidt D. and Vinoski S. Using the Portable Object Adapter for Transient and Persistent CORBA Objects.
C++ Report 10,4 (April 1998).

[10]Schmidt D. and Vinoski S. Developing C++ Servant Classes Using the Portable Object Adapter.C++ Report
10,6 (June 1998).

[11]Vinoski S. CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments.IEEE
Communications 14,2 (Feb. 1997).


	1 Introduction
	2 Anatomy of an Object Reference
	3 Request Binding
	3.1 Binding of Transient References
	3.2 The Implementation Repository
	3.3 Binding of Persistent References

	4 Scalability and Performance
	5 Fault Tolerance
	6 Object Migration and Scalability
	6.1 Granularity of Object Migration
	6.2 Migration Across Location Domains

	7 Garbage Collection
	7.1 The Pacific Ocean Problem
	7.2 Garbage Collection of CORBA Objects
	7.3 Referential Integrity
	7.4 Dealing with Lack of Referential Integrity

	8 Summary
	9 Acknowledgements
	10 Apologies
	11 About the Author
	12 References

