Meeting the Challenges of Ultra-Large-Scale
Distributed Real-time & Embedded Systems
with QoS-enabled Middleware &
Model-Driven Engineering

Wednesday, March 20, 2013, Middleware 2007

Dr. Douglas C. Schmidt

d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt
- Institute for Software Vanderbilt University

Integrated Systems  Nashville, Tennessee

D -G




Evolution in Distributed Real-time & Embedded (DRE) Systems

The Past

Stand-alone real-time &
embedded systems
« Stringent quality of service
(QoS) demands
*e.g., latency, jitter, footprint
* Resource constrained

=)

Enterprise distributed real-time & embedded
(DRE) systems
* Network-centric “systems of systems”
« Stringent simultaneous QoS demands
*e.g., dependability, security, scalability, etc.
* Dynamic context

This talk focuses on technologies for enhancing DRE system QoS, productivity, & quality

2



Evolution of DRE Systems Development

Technology Problems
e Legacy DRE systems
often tend to be:

CLI

Nav_AMe L SM CM « Stovepiped
AP CLIR ss7 P * Proprietary
GPS - * Brittle & non-adaptive
* Expensive
* Vulnerable
Cyclic
Exec

Consequence: Small

Mission-critical DRE systems
changes to legacy

have historically been built

directl hard software often have M
irectly atop hardware big (negative) impact e
* Tedious on DRE system QoS & A

* Error-prone & maintenance
 Costly over lifecycles

3



http://www.takeourword.com/images/persistence-of-memory.jpg
http://www.airliners.net/open.file?id=934953&size=L&width=1026&height=696&sok=JURER%20%20%28nvepensg_trarevp%20%3D%20%27Obrvat%20747-400%20%28NY-1%29%27%29%20%20BEQRE%20OL%20cubgb_vq%20QRFP&photo_nr=5

Evolution of DRE Systems Development

DRE
Applications

Middleware
Services

Middleware

Operating Sys
& Protocols

DRE
Applications

Hardware &
Networks

Middleware
Services

Middleware

Operating Sys
& Protocols

Hardware &
Networks

* Middleware has effectively factored out
many reusable services from traditional
DRE application responsibility

*Essential for product-line architectures

* Middleware is no longer the primary DRE
system performance bottleneck

4



DRE Systems: The Challenges Ahead

*Limit to how much application
g_% ' functionality can be refactored into

s reusable COTS middleware
S *Middleware itself has become very
R o s Y hard to use & provision statically &
dynamically
- Load Balancer Workload &
Rgecr:\si)ge%A Sgrzvl\i/lcEes S%?\;Ii-csé]s FT CORBA I lgEIDIciJgaS I

Connections &

RT/DP CORBA + DRTSJ by
priority bands

RTOS + RT Java

CPU & memory
RT-CORBA J2ME DRTSJ
IntServ + Diffserv [ Network latency ]

& bandwidth
||

« Component-based DRE systerr_ls are
also very hard to deploy & configure

Networks

technologies to choose from

Middleware alone cannot solve large-scale DRE system challenges!

Hardware & * There are many middleware platform

5



Promising Solution: Model-based Software Development

* Develop, validate, &

g_ﬂ - Clpmves v & standardize generative software
QL%: F N ~,L technologies that:
\VANN SEAV A & . |
S =’ 1. Model
RT—CORB/-\Ethernet J2ME BETSJ = 2. An a|yze
Apps Apps Apps
3. Synthesize &
4. Provision
RT-CORBA J2ME DRTSJ _ _
<CONFIGURATION PASS> Services Services multiple layers of middleware &

<HOME>
<...>
<COMPONENT>
<ID> <...></ID>
<EVENT_SUPPLIER>
<...events this
component supplies...>
</EVENT_SUPPLIER>
</COMPONENT>
</HOME>
</CONFIGURATION_PASS>

erating System i : T
el =8 wow. . T —=| -Partial specialization is

essential for inter-/intra-layer
optimization & advanced
product-line architectures

application components that
require simultaneous control of
multiple QoS properties end-to-
end

Hardware &
Networks

Goal is to enhance developer productivity & software quality by providing
higher-level languages & tools for middleware/application developers & users




Technology Evolution (1/4)

uonoe.ssqy Jo [9AaT

Programming Languages
& Platforms

Model

I
Generated
Code

y

Model-Driven Engineering (MDE)

[ Platform
2 O
xS
&
(\9
<<
Operating C/Fortran
Systems Assembly
Hardware Machine code

. {| ................. | | ............. ] | L | | V\’txp[ mmmmmm | m_.,[.......,i | ||..ml=.-.¢ u-r].u
................... et | Lk ke | Tlamah_iitimed_Unpided
,,,,,,, | ‘ ‘m;_ mrw
| T U I I |
e R I ==
X & N, |,’,.u a M-';‘Uﬂ,—'_[J ’]'Tm" F— T" "
_______ s s |
A ‘ Ld ,,,,,,, B
P et L u
] |
) ~N » State chart
« Data & process flow
Large « Petri Nets
Semantic
Gap

=




Technology Evolution (2/4)

uonoe.ssqy Jo [9AaT

Programming Languages
& Platforms

in args
CLIENT o—
operation()
T outargs + reurn
70

o—{ oW

COMPONENT
©| Exgcuror |2

CALL
(SERVANT)  |BacKks

| 77 o

CONTAINER

REAL-TIME ORB CORE (TN

Components
Frameworks

ESIOPs

Class Libraries C++/Java
Operating C/Fortran
Systems Assembly
Hardware Machine code

*Newer 3'd-generation languages &

platforms have raised abstraction level

significantly

*“Horizontal” platform reuse
alleviates the need to redevelop
common services

Application Code

Framework
Pattern Language

Platform

*There are two problems, however:

 Platform complexity evolved faster

than 3"d-generation languages

*Much application/platform code still

(unnecessarily) written manually

=



Technology Evolution (3/4)

uonoe.ssqy Jo [9AaT

Programming Languages
& Platforms

e Domain-specific
= modeling languages
« ESML

Manual |=w=
translation ...

Saturation!!!!
Components
Frameworks
Class Libraries C++/Java
Operating C/Fortran
Systems Assembly
Hardware Machine code

Model-Driven Engineering (MDE)

““:"“"% — H * PICML

A = . = = « Mathematica
“i:ﬂ ] — ° EXCeI
e _ . Metamodels

Domain-independent
modeling languages

» State Charts
* Interaction Diagrams

_ * Activity Diagrams
Semi-automated

Telecom
>

=



Technology Evolution (3/4)

uonoessqy Jo [9Aa7

Programming Languages
& Platforms

Price $1.50

Aug.4,1986 THE

NEW YORRER

Model-Driven Engineering (MDE)

Camporart

Domain-specific
modeling languages
s ESML

K

= «PICML

Wij ==

 Mathematica

Manual ‘ ——

=] e

- eEXxcel

 Metamodels

PSIG

translation ...
A #u/“ Domain-independent
R H}gﬁﬂé;ﬂmg_,;wmodelmg languages
= tecture -3
L Qe A « State Charts
b  Ee a1 . .
e T _«  eInteraction Diagrams
_ wor. * Activity Diagrams
Semi-automated

* OMG is standardizing MDE via MIC

* mic.omg.org

=



Technology Evolution (3/4)

uonoe.ssqy Jo [9AaT

Programming Languages
& Platforms

Model §

I
@ Generated Code
Framework
Pattern Language

Platform
Components
Frameworks
Class Libraries C++/Java
Operating C/Fortran
Systems Assembly
Hardware Machine code

T T Domain-specific
' modeling languages

Manual |lee==
translation ...

Model-Driven Engineering (MDE)

= « ESML
z 5 = | « Mathematica
I = . ;:‘ }; = S — | EXC6|

| = | : ° MetamOdeIS

Domain-independent
modeling languages

« State Charts
* Interaction Diagrams
or * Activity Diagrams

Semi-autométed

* OMG is standardizing MDE via the
MIC PSIG
* mic.omg.org

=

11



Technology Evolution (4/4)

uonoe.ssqy Jo [9AaT

Programming Languages
& Platforms

Model

I
I
g I

Generated Code

Needs

% Automation ||
=

Model-Driven Engineering (MDE)

Needs |.
Automation ...

Platform
Components
Frameworks
Class Libraries| | C++/Java |™
Operating C/Fortran
Systems Assembly
Hardware Machine code

Needs Automation

Domain-specific
modeling languages
s ESML
_ | *PICML
* Mathematica
» Excel
* Metamodels

Domain-independent

-.modeling languages

« State Charts
* Interaction Diagrams
* Activity Diagrams

Research is needed to automate
DSMLs & model translators

See February 2006 IEEE Computer special issue on MDE techniques & tools




Crossing the Chasm

Software
Factories

Assembling
Applications

with Patterns,

Models, 1

F lamewmks

and Tools /

J ck Greenfield a dK |h$hrl
h'ﬁmolmk d\

» Software Factories go beyond “models as documentation” by
 Using highly-tuned DSL & XML as source artifacts &

» Capturing life cycle metadata to support high-fidelity model

transformation, code generation & other forms of automation
www.softwarefactories.com

* The Graphical Modeling Framework (GMF) forms

[EAIN I T PracTicAL Reunbie

Model Drlven
Software
Development

Technology,
Engineering,
Management

=l
=
=3
=

a generative bridge between EMF & GEF, which
= = linkes diagram definitions to domain models as
“*m i input to generation of visual editors
B 3 (] « GMF provides this framework, in addition to tools
i for select domain models that illustrate its
_J capabilities www.eclipse.org/gmf/

» openArchitectureWare (0AW) is a modular MDA/MDE generator
framework implemented in Java

* It supports parsing of arbitrary models & a language family to check &
transform models, as well as generate code based on them

www.openarchitectureware.org

»



New Challenges: Ultra-Large-Scale (ULS) Systems

P
Key ULS problem space challenges
e o . . . .
=" i = =% +Highly dynamic & distributed
] — development & operational
£ ¢ environments
» Stringent simultaneous quality of
ervice (QoS) demands
diverse & complex network-
t lication domains
tions| Lo heater
. OxIRpan licati ands
Key ULS solution space ch N S’ _
_ _ _ 2 (IR . A
« Enormous accidental & inherent s — - = Sonemons
complexities s R A, T S GV A
. . - % oad™ RBA_Nrackig Tra g
« Continuous evolution & change L i\ S e [Sosrerfiangl Pl F=e
* Highly heterogeneous platform, language, -y e NSM I e O
. act - 1% i essage
tool environments Nk e ool | S quee [
oEnsI se s Ho -
Mapping problem space requirements Development = Mesaage 3 ‘o ISIAPPC
to solution space artifacts is very hard Noper g zoa fion
- Systems =

14



Key R&D Challenges for ULS Systems

Developers & users of ULS systems face
challenges in multiple dimensions

Logical Process
View View
Use Case
View
Physical Development
View View

Of course, developers of today’s large-scale DRE systems also face
these challenges, but they can often “brute force” solutions...

15




Key R&D Challenges for ULS Systems

Logical
View

Physical
View

Developers & users of ULS systems face
challenges in multiple dimensions

Process
View

Development
View

Solving these challenges requires much more than simply
retrofitting our current tools, platforms, & processes!

16



Key R&D Challenges for ULS Systems

Developers & users of ULS systems face
challenges in multiple dimensions

Process
View

Physical
View

17



Serialized Phasing is Common in ULS Systems

~ > l_—\ [ [—
System sensor \l | ‘Aror recovery effector
Iggﬁqstl;gﬁ{se r——/ planner planner \J_—_ [——
dev elgp ed fi I’St sensor configuration effector
C L
S Application components
5 | _R — developed after infrastructure
S S edhuree roo LN i is sufficiently mature
< __—
B L / Rw Layer v
— || |- . . e
o
>
)
-

Development Timeline

.




Serialized Phasing iIs Common in ULS Systems

-

[— —

Level of Abstraction

System integration & | =
testing is performed sepsor | — error gecovery sffector
after application ‘ /m nner  platner S / —
\development Is finished _
S/ 7(sor configuration effector
Domain
— A
\\\“\._ \\I / / / // /
o\ \,]ie urce P /W/ 4
\‘T. \\ ! / // 7 Z ‘
 J R Cg L
fr— " Y '_‘ Integration
}y/ // Surprises!!!
R 4/, /
:-'/// =

Development Timeline

19 E.Mthh




Complexities of Se

rialized Phasing

o . ‘
[ Still in development —_— \l

[— [—

sensor

Ready for testing W

Domaln Layer

. I
Iiesburce Pool Layer \ A
rm—— —

;ouﬁ Layer v _
l‘ P .. . e

Level of Abstraction

i | Aror recovery offactor

l__h/ planner  planner \r__ |

configuration effector

Complexities

» System infrastructure cannot be
tested adequately until applications
are done

v

Development Timeline

20




Complexities of Serialized Phasing

[ System bottleneck?

End-to-end |
performance of — \h

- [r— i
critical path? -
/pl nner plariner ; s

SOI'

_ _— 7/ 7/ Complexities
el , « System infrastructure cannot be
- \ T’ i a"y/ /L / tested adequately until applications
f Y are done
— — jfm — » Entire system must be deployed &

configured (D&C) properly to meet
end-to-end QoS requirements

 EXxisting tools & platforms have poor
support for realistic “what if”
evaluation

Level of Abstraction

Development Timeline

QoS needs of components in ULS systems often unknown until late in lifecycle



Unresolved QoS Concerns with Serialized Phasing

Meet QoS [—
requirements? T \[ )

'/pl nner plariner

SOI'

Domaln Layer Key QOS concerns
\~_ * Which D&C’s meet the QoS

ﬁ T ctpurce Poo ay“"r/ ,L% requirements?
/

v ce La/ v

Level of Abstraction

rraly

v

Development Timeline

22




Unresolved QoS Concerns with Serialized Phasing

Performance ;—-—\
metrics? sensor \[ '

/pl nner plariner

SOI'

Domain Layer 7/74 Key QOS concerns
[R— r—'—“* _
\~_ * Which D&C’s meet the QoS

r_li T ciburce Poo ay“"r/ VYA requirements?
/ .

i =7 i » What is the worse/average run-time
[ — —— for various workloads under various
D&C’s & processing models?

Level of Abstraction

, ¥

v

Development Timeline

23




Unresolved QoS Concerns with Serialized Phasing

—

sensor \|—  —
System /pl nner  plariner

overload? sor

'J\ Kvam Layer 7/7/ Key QOS concerns
[— :
\~_ i  Which D&C’s meet the QoS
h\ fr—Y\ \‘;"‘" EVW / requirements?

— / i » What is the worse/average run-time
s \\’_\\TA\ - for various workloads under various

A D&C’s & processing models?
 How much workload can the system

handle until its end-to-end QoS
requirements are compromised?

=

Level of Abstraction

»
»

Development Timeline

It can take a long time (years) to address QoS concerns with serialized phasing



Related ULS System Development Problems

Release X Release X+1
F' ] F n— planner 2 - .
\ /‘ sensor 1 [ error recovery effector 1
sensor \F—-’_ error recovery effector _(mam) i /planne” \C‘jﬂfguratlon (main)
F'/ planner planner \F P' sensor 2 1 effector 2
sensor configuration effector L e '
sensor 3 planner 3 effector 3

S Domaln Layer Domain Layer

© ~ 7
43 \.Ii s*urce Pool Layer \ A ResourNool Layer /
_Q P P’ Pw F 1 ( 1
<

"6 ;ouﬁ Layer | v |

>

)

-l

/

New hardware,
networks, operating
systems, middleware,

Development

application

components, eftc. J

v

25




Related ULS System Development Problems

Release X Release X+1
> amer2 T —
1 ) ) ~ planner
N\ P, Evolution = T rseney ot
sensor \‘ | error '8 y = mnc--i-a s confguraflon _(mai”)
I Surprises!! :
r—"—/ planner  planner = H o oty g
sensor configurs o -
. er3 effector 3
-
(@) Domain Layer | Domain Layer
-6 [R— P . . | )
E T | e A
"(T) \.&esburce Pool Layer | Resour&ool Layer / _
< ,/ N
q6 M Layer | Rgsolrce Layer N
F) ! |} l—»] |
>
()
-

New hardware,
networks, operating
systems, middleware,
application

Deve|0pmenl components, eftc. J

26

v




Promising Approach for ULS System Challenges:
System Execution Modeling (SEM) Tools

Tools to express & validate design
rules

* Help applications & developers
adhere to system specifications at
design-time

Tools to ensure design rule

conformance Express &
Validate

* Help properly deploy & configure Design

applications to enforce design rules Rules
throughout system lifecycle Conduct
_ _ “What if”
Tools to conduct “what if” analysis Analysis

* Help analyze QoS concerns prior to
completing the entire system, i.e.,
before system integration phase

SEM tools should be applied continuously when developing software elements



SEM Tool Example: Component Deployment & Configuration

Deployment & configuration (D&C) Goals

% % * Promote component reuse —
» Build complex applications by assembling U
SW SW icti
Creator  Creator, existing components
t { » Automate configuration of common services

—— » Declaratively inject QoS policies into Infrastructure
A2 applications Interfaces

» Dynamically deploy components to target
heterogeneous domains

Implementations

Deployment « Optimize systems via global component | &
requirements configuration & deployment settings L

Shipping ﬂ Q/U
Deployment chaﬁla?%/arggg : Deployment
Tools (generic) Infrastructure

SW Deployer




SEM Tool Example: Component Deployment & Configuration

Specification & Implementation
* Defining, partitioning, & implementing app functionality as

standalone components ool Chan ‘==
“Packaging Speciicaion ftt | 0 R
- Bundling a suite of software binary modules & metadata | P s || o
___representing app components I+ | e :
Installation Instaliztion |yl T,
__+Populating a repository with packages required by app cﬂnri_._qur. H—ts ‘f;}ff—b
Configuration = v
- Configuring packages with appropriate parameters to satisfy| ™" *‘-‘*‘ﬂ
functional & systemic requirements of an application without | |- -1l | —
constraining to physical resources SRS R T
Planning | e o
R T " Barichmarking
» Making deployment decisions to identify nodes in target NS
environment where packages will be deployed ' | | 'Sy_nmﬁ . |
“Preparation s |
* Moving binaries to identified entities of target environment Example D&C specifications

Launching include | |
» Triggering installed binaries & bringing app to ready state * OMG Lightweight CORBA

: Component Model (CCM) &
QoS Assurance & Adaptation + IBM Service Component

* Runtime (re)configuration & resource management to Architecture (SCA)
maintain end-to-end QoS

29




Challenge 1: The Packaging Aspect

sensor \[— i A ror recovery effector

— / planner  planner \[— o=

sensor configuration effector

Mediurn Size, Single Processor Scenaria (1 Hz)

* Application components are bundled
together into assemblies

* Different assembilies tailored to

.| deliver different end-to-end QoS
and/or using different algorithms can
be part of a package

* ULS systems will require enormous #
(10°-107) of components

» Packages describing assemblies can
be scripted via XML descriptors

30




Packaging Aspect Problems (1/2)

Inherent Complexities

®

Ad hoc techniques for ensuring component
syntactic & semantic compatibility

.

J
°rs

Container

Distribution &
deployment done in
ad hoc manner

-

Ad hoc means to
determine pub/sub
mechanisms




Packaging Aspect Problems (2/2)

ACCIdentaI COmpleXItleS (Existing practices
: . involve handcrafting
<I— Associate components with impls --> XML descriptors

<assemblylmpl>
<instance xmi:id="Sensor">
<name>Sensor Subcomponent</name>
<pack href="Sensor.cpd"/>
/XMLﬁlein \//_pac age href="Sensor.cpd"/
excess of 3,000 \_'nStance> .
lines, even for [Kinstance xmi:id="Planner">
medium sized | <name>Planner Subcomponent</name>

\Scenanios <package href="Planner.cpd"/>

\ </instance>
<instance xmi:id="Effector">

<name>Effector Subcomponent</name> S
Modifications to the

<package href="Effector.cpd"/> assemblies requires
</instance> modifying XML file

</assemblylmpl|> |

32




SEM Tool Approach for Packaging Aspect

Approach:

* Develop the Platform-
Independent Component

to address complexities of
assembly packaging

 Capture dependencies visually o
» Define semantic constraints using 3%
Constral ntS ':tfhz:f Q;T"i::dnw = dParadigm - [C: 1 Q_@i
* e.g., Object Constraint Language S o e L ——=
s e e
(OCL) : L [/ L iEE
e Generate domain-specific artifacts | & e -
from models S| [ [ [
* e.g., metadata, code, simulations,  |— = S —
etc.
» Uses Generic Modeling Environment
(GME) to meta-model & program

PICML helps to capture & validate design rules for assemblies




Example Metadata Generated by PICML

* Component Interface Descriptor (.ccd)

—Describes the interface, ports, properties of a single
component

* Implementation Artifact Descriptor (.iad)

—Describes the implementation artifacts (e.g., DLLs, OS, etc.)
of one component

» Component Package Descriptor (.cpd)

—Describes multiple alternative implementations of a single
component

» Package Configuration Descriptor (.pcd)
—Describes a configuration of a component package
» Top-level Package Descriptor (package.tpd)

—Describes the top-level component package in a package
(-cpk)

Component
Packaging

Component &
Home Properties

 Component Implementation Descriptor (.cid)

—Describes a specific implementation of a component
interface

—Implementation can be either monolithic- or assembly-based

—Contains sub-component instantiations in case of assembly
based implementations

—Contains inter-connection information between components

« Component Packages (.cpk)
—A component package can contain a single component
—A component package can also contain an assembly

Implementation
/ Component e
DLLs i Descriptors
(.iad)
Packaging
Tools
Component Cgr:Cpkoaréznt
Interface \
Descriptors DES(CCrI[()jt)ors
(.ccd) .cp
y
Assembly Component
Tools Implementation
Descriptor
H (*.cid)
A 4
Component
Packages
(*.cpk)
Component & Application
Home Properties Assembly

Based on OMG (D&C)
specification (ptc/05-01-07)

www.cs.wustl.edu/~schmidt/PDF/RTAS-PICML.pdf




Example Output from PICML Model

A Component
Implementation
Descriptor (*.cid) file

» Describes a specific
Implementation of a

component interface i B

» Describes component
Interconnections

-----------------------------

—

[ ' H
o W '

L Fa; =y ! ' H

eD._.‘.ltlli%ﬁax:ﬁ:c«.tq.q.-|.-|.-|.-|.-|.-|._______ J

X

nameDBHost

WLGBUm
[ WLGENm ]

<monolithiclmpl> [...]
<deployRequirement>
<name>Planner</name>
<resourceType>Planner</resourceType>
<property><name>vendor</name>
<value>
<type> <kind>tk_string</kind> </type>
<value> <string>My Planner Vendor</string>
</value>
</property>
</deployRequirement> [... Requires VxWorks ...]
</monolithiclmpl>

<connection> <name>Effector</name>
<internalEndpoint>
<portName>Ready</portName>
<instance href="#Planner"/>
</internalEndpoint>
<internalEndpoint>
<portName>Refresh</portName>
<instance href="#Effector"/>
</internalEndpoint>
</connection>

PICML supports better expression of domain intent & “correct-by-construction”




Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space
to known variations in the software solution space

"'i: 5

Teams

v oD pP

Logjstide owder R SS _ -
EndUse = = ‘ "B
Development T, \. 7 j laluas .
' % 1 Coalition
Support LN Partners
Systems ==

36



Challenge 2: The Configuration Aspect

ULS systems are characterized by a large configuration space
that maps known variations in the application requirements space
to known variations in the software solution space

in args

Co—
operation()

OBJECT
(SERVANT)

Hook for

marshaling out args + return value 'I[_}|100rk for t
strategy demuxing
[Hook for the event strategy
demuxing strategy

D
&

Hook fotr_(;tze vl (Hook for the
;:no;nnaegce:nent concurrency
menage —_Strategy

0S KERNEL 0S KERNEL
Hook for the
underlying
transport
strategy

os /o SUBSYSTEM

0s /o SUBSYSTEM

NETWORK INTERFACES NETWORK INTERFACES

NETWORK




Configuration Aspect Problems

Middleware developers Application developers
 Documentation & capability e Must understand middleware
synchronization constraints, rules, & semantics
e Semantic constraints, design rules,  Increases accidental complexity
& Qf(_)S evtz_;lluatlon of specific « Different middleware uses different
EztS 22’2 !gelajdrl‘ael.: !,g.lf.j”?lcln SWC . Cconi Configuration meChanismS
;CE_SVC_CDdﬂf} - h o
z::: SI_r.::b svc.conf.::cml,.v 1.1 Z00Z/08/23 ° e'g'
i:c;tic id;idu;nced Resource_Factory" MinOSOft' . . . .
paramsz"—ORBReact_urType seiact_mt— nﬂ XML Conflgurathn Fl|eS
ORBReactorMaskSignals O - ®
ORBFlushingStrategy blocking" /= | nees )
zstatic id=I:'Client_Strategv_Fac:turv" J
EXCLUSIVE -ORBCHiontConnectiontiandler 4
RW_" f':}—" erver_Strate actory" = =
{5;::amsd;;'::sotll?Cn_nsct:urlt'er?g;'t:h:;ad‘iper— o ‘Esii“ XML PrOperty Fl|eS
ACE_Sue_Confs J AVA

CIAO/CCM provides ~500
configuration options

38




SEM Tool Approach for Configuration Aspect

Approach:

*Develop an Options Configuration Modeling Language (OCML) to
encode design rules & ensure semantic consistency of option

configurations
*OCML is used by — - Option
i - a Configuration
—Middleware developers to . Language Model

design the configuration model

—Application developers to
configure the middleware for a
specific application

* OCML metamodel is platform- 1 | _Application L
i ‘g A | Options Model S
independent il
- HL.. Apphcation
' Devel
* OCML models are platform- FT—— eveloper
SpeCifiC | Configuration File

OCML helps to ensure design conformance




Applying OCML to CIAO+TAO

» Middleware developers specify
» Configuration space
« Constraints

« OCML generates config model

HewlptionSet o=
ewliptiont el [Opberel  Aspect{Aspect

T Hasre: M

ORE_Defaull_Resource  Server_Srategy

¥ Sarvar_Stratopy

T Hame [Sewm_swew_ ap

ORBConcureancy

'i-.-ul

thread- par.connachion

ORBThreadParCol

nnaclionTimeaou -

>

& Fnum e

I ewiprorGet
= W Cheri_Susteny
Ial 0RBCheriCe
14l URBCereur
el ORDPioikeLs
Tl ORDTheadk
Tal ORETianepe
CIRE_Deladl_Fin
s vRBECormec
el ORBConnec
el ORBCornec
Ial ORBCormme:
(REF kb
1af URBMusedC
Fielaiion-Siet

1 L ORDChe
¢ [d ORBCHw
Tal UABCereee
14l DRBCom
el DRBCone
L OROCom
Tl ORECens
faf OREFL
Tl ORBMu
Tl DRBFrol
1d ORETHee
Tl ORETean
Seever_Shategy
4l DABConcur
Tl ORDTheadk

s3zenazinaszslrascecloznaa

mEE R R

¢ 9

& Integer

Ifu &

fif & i
m'“__ x: ORBConnectionCachePurgePercentage

JORBConnectionPurgingStrategy

& Integer

CONFIGURATION»
<PROCESSOR >
<HAME-OCP Pl
<CONFIGURATI:
<HOME»

<ID>

<

<DI!

<HOME_TYPE> BM__OPEN_ED_COMPONENT < HOME_TYFE»
<GROUF_ID> 20 <~/GROUF_ID>
<ITEM_ID> &
<NAME5  BM_ OPEN_ED_COMFONENT </ NAME>

<~ID>
<COMPONENT >
ID:

</ 1Dy

</DISTRIBUTION>
<EVENT_SUPPLIER>

<HAME>

ORBConnectionCacheMax

ON_PASS»
22 </ITEM_ID>

<GROUP_ID>200<-GROUP_ID>
<ITEM_ID:220<~ITEM_ID»
<NAME>WATPOINT_PROXV< NAME>

STRIBUTION>
<DIST_WRITE>
<PROZY>
<ID>
<GROUF_ID>200<~GROUP_ID>
<ITEM_ID»>221<~ITEM_ID>
<HAME>WAYPOINT < HAME >
<103
</PROEY >
</DIST_WRITE>

Jrn
* Return the last time the client sent a request associated
* session, as the number of ms since midnight, Jan 1, 1970
* GMT. Actions your application takes, such as get or set

* value associated with session, do not affect access time.
*/

public long getlastAccessedTime() {
return (this.lastAccessedTime);

T

Jx
* Update the accessed time information for this session.
* Method is called by context when request comes in for a
* session, even if the application does not reference it.

74

public void accessQ {

this. lastAccessedTime =

-thisAccessedTime;

3

<EVENT_SET>
EVENT

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf




Applying OCML to CIAO+TAO

P v . '
—t r.UIJHLjUJ'FJ[LIJ' J\'ﬂ

: ImplRepoServicePart 0
Bl ORB_Canfiguration_Options
Com i

]

TradingServicePort |0

»l—q_»j
T

] NameSerdicePot |0
B Service_Canfiguratar_File TradingServicel OR

EI|ent_Strategy_Flactory ImplRepoS ervicelOR
Resource_Factories

Server_Shateqy Factory MameS ervicel IR

J

» Application developers provide
a model of desired options &
their values, e.g.,

* Network resources -

. A mentioned earlier, environment variables have a limited use in TAD ORE configuration. The currently supported environment variables are
Py C O n C u rre n Cy & CO n n e Ctl O n ligted below, They are uged to specify the 10R and port numbers for thiee of TAD's ORE services,

In general, setting environment variables is not particularly portable or corvenient, which is why ugers can also set these options via
m an a e m e nt Str at e I e S command-ing optiohs. The example shown below demonstrates a deployment zcenario where the client and Maming Service run on the
g g zame host:

% NameSerwice.exe -0BEEndpoint iiep://localhost:lZ345
% client_exe -0BEInitRBef NameService=iiop:/flocalhost:1Z345"

An explanation of theze command-ine options appears below,

Create Close

@ www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf




Applying OCML to CIAO+TAO

EHES?L&EEHCFIlﬂrEEd_PEE_LDHHEﬁLanfg?ﬁLGDH_
ACE _Svc_Confs

o b =

oy b $Id: svo.conf.xml,.w 1.1 20027087273
22023:049 nanhor Exp § ==

o S

<static id="Advanced_Resource_Factory"
params="-ORBReactorType select_mt -
ORBReactorMaskSignals O -
ORBFlushingStrateqy blocking" /=

<static id="Client_Strateqy_Factory"

params="-0ORBTransportMuxStrateqgy
EXCLUSIYE -ORBClientConnectionHandler
RW" /=

<static id="Server_Strategy_Factory"
params="-0ORBConcurrency thread-per-
connection" />

« OCML constraint checker flags ~ |/4cE_svec_conf>
Incompatible options & then

» Synthesizes XML descriptors
for middleware configuration

» Generates documentation for __
middleware configuration

 Validates the configurations Yy eyvey

y oIy

NETWORK

[ TCP S Cink 1SN ESsL
OCML automates activities that are very tedious & error-prone to do manually



Challenge 3: Planning Aspect

System integrators must make appropriate deployment decisions,
Identifying nodes in target environment where packages will be deployed

COMPONENT REPOSITORY

: ?.:D Target Manager

A
Configures and Installs Packa:

/ Gets the Configured Package Man|ages
Gets Resource Avallabmty
Repository Admintrator \ l

‘ Planner

. 1 .
Accesses Via URL Creates the Deployment Plan Determlne Curre_nt
resource allocations
on target platforms

/Select the

appropriat
e package
to deploy
on
selected

Select appropriate —
target platform to Package

deploy packages
O
Domain Admintrator
43 \Y

Node Node )
uE
Creates




Planning Aspect Problems

Ensuring deployment plans meet ULS system QoS requirements

How do you evaluate

QoS of infrastructure

before applications
are completely built?

How do you correlate QoS
requirements of packages

to resource availability?

How do you How do you ensure that

determine selected targets will

currenF resource deliver required QoS?
\allocatlons?

44




SEM Tool Approach for Planning Aspect

Approach

* Develop Component Workload Emulator (CoWorkEr) Utilization Test Suite
(CUTS) to allow architects & systems engineers to

1. Compose scenarios to

1o

exercise critical system paths Exhgggﬂent | Associate

2. Associate performance Sxperimenter Characteristis
properties with scenarios & — 9 9 Component Interaction
assign properties to L =D gﬂ@ v
components specific to paths oyt i Jitter

B | gl =25 CoWorkEr

3. Configure workload generators | = < & © 4 =
to run experiments, generate - e B
deployment plans, & measure _ {} Q e Synthesize
performance along critical [ —————— = il ey
paths N = Sl |

4. Analyze results to verify if  Feedback — — m=
deployment plan & reslts = F | Testbed - Deﬂfg’r:“em

configurations meet N
performance requirements

CUTS helps to conduct “what if” analysis on evolving systems




Emulating Computational Components in CUTS

,—.\ 1IN CPU
Trigger | Worker
[P— 1 n ' S T
sensor \r—'——-_’r——— Amr recovery effector rE—“\ i l:\d?\r’orkg ,
vent vent
T___/ planner planner \1 I Handler ) Producer
sensor configuration effector == L::(t:iaesre
Benchmark
. At To/From Test DB
Domain Layer
cl|lT " [ |l — .. | P
O -~ {70 To BenchmarkDataCollector
."8 \&eswurt_:e Pool Layer . \ A
A — . .
Bl s | « Application components are
. SN Ll
<| | | represented as Component Workload
Y
o Emulators (CoWorkErs)
GJ . s - oy .
> FHRC b M » CoWorkErs can be interconnected by
- gy the PICML tool to form operational
strings

Development Timeline

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf




Representing Computational Components in CUTS

Level of Abstraction

= ‘el

Startup Activity MemoryAllocate  DatabaseAction CPUAction DatabaseAction

o e

K

K

i

—
sensor \J—— e error recovery effector EventDrivenActivity  MemoryAllocate DatabaseAction CPUAction MemoryDeallocate  OutputEvent
[—— / planner planner \[ b
sensor configuration effector InputEvent
- <EventReactionSpecs
<InputEvent eventType="AssessmentSimEvent" count="1" />

D L - =\Waorkloads
LIRS <MemoryAction repetitions="5" operation="ALLOCATE" /=

|

| l -— -y <Databaseaction repetitions="40" /=
~. <CPUACtion repetitions="14" />
\aeswurce Pool Layer v <MemaryAction repetitions="5" operation="DEALLOCATE" />
I I P ' T : <Publicationaction repetitions="1" eventType="CommandSimEvent" dataSize="128" /-

</\Warkload:

o

</BuentReactionSpecs

L Rwﬁyer
- | » Workload Modeling Language (WML) MDE

tool defines behavior of CoWorkErs via
“work sequences”

WML programs are translated into XML
characterization files

* These files then configure CoWorkErs

Development Timeline

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf




Visualizing Critical Path Performance in CUTS

[ 2 B 2 ]
5 & ] ] g

0
SLT

l_“_\ | [

sensor U L error recovery ector

o deer o O el - -

sensor configuration efecor  TTteal_ \\\ ,,/, __,———"/‘

” ‘gzzigathfeadl;gz(m Agl@ls
Domain Layer Host Event - WLG workload Timeline Snapshots g;[‘i DDDDD
c |l [ (P | L bisdetsislay Vanderbilt Edu Command EnvDetector 4 gEnemision | g
O - EnvDetector-1 'ructzwu wwwwwwww g
."8 \aeswurce Pool Layer v i?f.?ﬁiiim g
CU [ ‘1—[ | -q—-l | l - |blsd=a lisislab.vanderbilt, \Edu Track :::3 %E?:j:;d g
- = e o
@ v RgpoerGs Layer v = m
-Q [ | (I | L blades isislab.vanderbilt Edu Command EnvDstector I B
< uuuuuuuuuuuuuuuuuuuuuuuuu =) 40 5
Y .
o  BenchmarkManagerWeb-interface (BMW)
o MDE tool generates statistics showing
< performance of actions in each CoWorkEr
* Critical paths show end-to-end performance
of mission-critical operational strings

>

Development Timeline

=

CUTS integrates nicely with continuous integration servers



Concluding Remarks

» The emergence of ULS systems
requires significant innovations &
advances in tools & platforms

* Not all technologies provide the
precision we’re accustomed to in
legacy real-time systems

« Advances in Model-driven
engineering (MDE) are needed to
address ULS systems challenges

« Significant MDE groundwork laid in g

recent DARPA programs _ %t“’;afsg::cale « Much more R&D
dishes needed for ULS
' ; systems
e e.g., recent
Software
Engineering

Institute study

CarnegicMellon

ULS systems report available at www.sei.cmu.edu/uls




	Meeting the Challenges of Ultra-Large-Scale Distributed Real-time & Embedded Systems �with QoS-enabled Middleware &� Model-Driven Engineering ���Wednesday, March 20, 2013, Middleware 2007
	Evolution in Distributed Real-time & Embedded (DRE) Systems
	Evolution of DRE Systems Development
	Evolution of DRE Systems Development
	DRE Systems: The Challenges Ahead
	Promising Solution: Model-based Software Development 
	Technology Evolution (1/4)
	Technology Evolution (2/4)
	Technology Evolution (3/4)
	Technology Evolution (3/4)
	Technology Evolution (3/4)
	Technology Evolution (4/4)
	Crossing the Chasm
	New Challenges: Ultra-Large-Scale (ULS) Systems
	Key R&D Challenges for ULS Systems
	Key R&D Challenges for ULS Systems
	Key R&D Challenges for ULS Systems
	Serialized Phasing is Common in ULS Systems
	Slide Number 19
	Complexities of Serialized Phasing
	Complexities of Serialized Phasing
	Unresolved QoS Concerns with Serialized Phasing
	Unresolved QoS Concerns with Serialized Phasing
	Unresolved QoS Concerns with Serialized Phasing
	Related ULS System Development Problems
	Related ULS System Development Problems
	Promising Approach for ULS System Challenges: �System Execution Modeling (SEM) Tools
	SEM Tool Example: Component Deployment & Configuration
	SEM Tool Example: Component Deployment & Configuration
	Challenge 1: The Packaging Aspect 
	Packaging Aspect Problems (1/2)
	Packaging Aspect Problems (2/2)
	SEM Tool Approach for Packaging Aspect 
	Example Metadata Generated by PICML
	Example Output from PICML Model
	Challenge 2: The Configuration Aspect
	Challenge 2: The Configuration Aspect
	Configuration Aspect Problems
	SEM Tool Approach for Configuration Aspect 
	Applying OCML to CIAO+TAO
	Applying OCML to CIAO+TAO
	Applying OCML to CIAO+TAO
	Challenge 3: Planning Aspect
	Planning Aspect Problems
	SEM Tool Approach for Planning Aspect
	Emulating Computational Components in CUTS
	Representing Computational Components in CUTS
	Visualizing Critical Path Performance in CUTS
	Slide Number 50

