Applying a Real-time CORBA ORB for Avionics Mission Computing

Douglas C. Schmidt
schmidt@cs.wustl.edu

Washington University, St. Louis
www.cs.wustl.edu/~schmidt/TAO4.ps.gz

Sponsors
Boeing and CDI/GDIS
Mission Computing Design Requirements and Forces

- Integrate real-time scheduling/dispatching in ORB and I/O subsystem for Boeing military aircraft product families
 - i.e., Harrier (AV/8b), F-15, and F/A-18
- Provide all applications with real-time capabilities
 - Both method-oriented and event-oriented applications
- Meet deterministic and statistical QoS requirements
 - i.e., minimize latency, context switching, priority inversion, and non-determinism
Motivation for CORBA for Mission Computing

- Benefits
 - Simplify distribution by automating
 * Object location and activation
 * Parameter marshaling
 * Demultiplexing
 * Error handling
 - Provide foundation for higher-level services

www.cs.wustl.edu/~schmidt/corba.html
The ACE ORB (TAO)

- TAO Overview
 - A real-time, high-performance ORB
 - Leverages ACE
 * Runs on POSIX, Win32, RTOSs

- Related work
 - U. RI, Mitre
 - QuO at BBN

www.cs.wustl.edu/~schmidt/TAO.html
The ADAPTIVE Communication Environment (ACE)

- **ACE Overview**
 - Concurrent OO networking framework
 - Ported to C++ and Java
 - Runs on RTOSs, POSIX, and Win32

- **Related work**
 - x-Kernel
 - SysV STREAMS

www.cs.wustl.edu/~schmidt/ACE.html
ACE Statistics

- ACE contain > 135,000 lines of C++
 - Over 15 person-years of effort
- Ported to UNIX, Win32, MVS, and embedded platforms
 - e.g., VxWorks, LynxOS, pSoS
- Large user community
 - www.cs.wustl.edu/~schmidt/ACE-users.html
- Currently used by dozens of companies
 - Bellcore, Boeing, Ericsson, Kodak, Lockheed, Lucent, Motorola, SAIC, Siemens, StorTek, etc.
- Supported commercially
 - www.riverace.com
Applying TAO to Avionics Mission Computing

- **Domain Challenges**
 - Periodic deterministic (and some statistical) real-time deadlines
 - COTS infrastructure
 - Open systems

- **Related work**
 - Deng, Liu, and J. Sun ’96
 - Gopalakrishnan and Parulkar ’96
 - Wolfe et al. ’96

www.cs.wustl.edu/~schmidt/oopsla.ps.gz

Solution Approach

- Integrate RT dispatcher into ORB endsystem
- Support multiple request scheduling strategies
 * e.g., RMS, EDF, and MUF
- Requests ordered *across* thread priorities by OS dispatcher
- Requests ordered *within* priorities based on data dependencies and importance
Server Request Reception Use-case

1: I/O subsystem receives incoming client request
2: Run-time scheduler determines priority of request
3: Request queued and dequeued according to priority/rate
4: Request dequeued by thread with suitable OS priority
5: Request dispatched to servant

Synopsis
- I/O subsystem uses port numbers to demux requests to queues and RT threads per rate group
- A Reactor demuxes/dispatches requests for each rate group
Event Channel Reception Use-case

- **Synopsis**
 - Event Channel threads handle event *importance* and *dependencies*
 - I/O subsystem and ORB Core handle *priorities*
ORB Latency and Priority Inversion Experiments

- Vary ORBs, hold OS constant
- Methodology
 - 1 high-priority client
 - 1..n low-priority clients
 - Server uses thread-per-priority
 * Highest real-time priority for high-priority client
 * Lowest real-time priority for low-priority clients

Client

Requests

Ultra 2

www.cs.wustl.edu/~schmidt/RT-perf.ps.gz

ORB Core

Object Adapter

Servants

I/O SUBSYSTEM

Server

ATM Switch
ORB Latency and Priority Inversion Results

- **Synopsis of results**
 - TAO’s latency is lowest
 - TAO avoids priority inversion
 i.e., high-priority client always has lowest latency
 - Overhead stems from *concurrency* and *connection* architecture
 e.g., synchronization and context switching
ORB Jitter Results

- **Definition**
 - Variance from average latency

- **Synopsis of results**
 - TAO’s jitter is lowest and most consistent
 - CORBAplus’ jitter is highest and most variable

Douglas C. Schmidt

High-performance, Real-time ORBs

Washington University, St. Louis
User-level and Kernel-level Locking Overhead

TAO is carefully designed to minimize memory allocation and locking.
Real-time OS/ORB Performance Experiments

- Vary OS, hold ORBs constant
- Methodology
 - 1 high-priority client
 - 1..n low-priority clients
 - Server uses thread-per-priority
 * Highest real-time priority for high-priority client
 * Lowest real-time priority for low-priority clients

Washington University, St. Louis
Real-time OS/ORB Performance Results

Synopsis of results

- RTOS’s provide lowest latency
- RTOS’s minimize priority inversion
- ORB (TAO) provides low latency and avoids priority inversion
 - *i.e.*, high priority client always has lowest latency
Real-time OS/ORB Jitter Results

- **Definition**
 - Standard deviation from average latency

- **Synopsis of results**
 - Some RTOS’s provide low jitter
 - ORB (TAO) doesn’t introduce jitter

Douglas C. Schmidt
High-performance, Real-time ORBs

Real-time OS/ORB Jitter Results

- **Definition**
 - Standard deviation from average latency

- **Synopsis of results**
 - Some RTOS’s provide low jitter
 - ORB (TAO) doesn’t introduce jitter
Real-time OS/ORB CPU Utilization Experiments

- Vary ORBs, hold OS constant
- Methodology
 - 1 client thread
 - 2 server threads
 * 1 thread services client
 * 1 thread factors prime numbers

Washington University, St. Louis
Real-time OS/ORB CPU Utilization Results

- Synopsis of results
 - RTOS’s provide highest effective utilization
 - ORB (TAO) processing uses ~20% of the CPU
Concluding Remarks

- TAO is currently used at Boeing for avionics mission computing
 - Initial flight dates are mid-summer 1998
- Extensive benchmarks demonstrate it is possible to meet stringent performance goals with real-time CORBA
 - *e.g.*, for Boeing, target latency for CORBA oneway operations is 150 μsecs for 100 MHz PowerPC running over MVME 177 boards
- Technology transfer to commercial vendors via OMG RT SIG and DARPA Quorom program