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Abstract

Component technologies are increasingly being used to develop and deploy distrib-
uted real-time and embedded (DRE) systems. To enhance flexibility and perfor-
mance, developers of DRE systems need middleware mechanisms that decouple
component logic from the binding of a component to an application, i.e., they
need support for dynamic updating of component implementations in response
to changing modes and operational contexts. This paper presents three contribu-
tions to R€D on dynamic component updating. First, it describes an inventory
tracking system (ITS) as a representative DRE system case study to motivate
the challenges and requirements of updating component implementations dynam-
ically. Second, it describes how our Swap CIAO middleware supports dynamic up-
dating of component implementations via extensions to the server portion of the
Lightweight CORBA Component Model. Third, it presents the results of experi-
ments that systematically evaluate the performance of SwapCIAQO in the context
of our ITS case study. Our results show that SwapCIAO improves the flexibil-
ity and performance of DRE systems, without affecting the client programming
model or client/server interoperability.

1 Introduction

Component middleware is increasingly being used to develop and deploy next-
generation distributed real-time and embedded (DRE) systems, such as ship-
board computing environments [1], inventory tracking systems [2], avionics mis-
sion computing systems [3], and intelligence, surveillance and reconnaissance
systems [4]. These DRE systems must adapt to changing modes, operational
contexts, and resource availabilities to sustain the execution of critical missions.
However, conventional middleware platforms, such as J2EE, CCM, and .NET,
are not yet well-suited for these types of DRE systems since they do not facilitate
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the separation of quality of service (QoS) policies from application functional-
ity [5].

To address limitations of conventional middleware, QoS-enabled component
middleware, such as CIAO [6], Qedo [7], and PRiSm [8], explicitly separates
QoS aspects from application functionality, thereby yielding systems that are
less brittle and costly to develop, maintain, and extend [6]. Our earlier work on
QoS-enabled component middleware has focused on (1) identifying patterns for
composing component-based middleware [9,10], (2) applying reflective middle-
ware [11] techniques to enable mechanisms within the component-based middle-
ware to support different QoS aspects [12], (3) configuring real-time aspects [6]
within component middleware to support DRE systems, and (4) developing
domain-specific modeling languages that provide design-time capabilities to de-
ploy and configure component middleware applications [13]. This paper extends
our prior work by evaluating middleware techniques for updating component
implementations dynamically and transparently (i.e., without incurring system
downtime) to optimize system behavior under diverse operating contexts and
mode changes.

Our dynamic component updating techniques have been integrated into Swap-
CIAQO, which is a QoS-enabled component middleware framework that enables
application developers to create multiple implementations of a component and
update (i.e. “swap”) them dynamically. SwapCIAO extends CIAO, which is an
open-source® implementation of the OMG Lightweight CCM [14], Deployment
and Configuration (D&C) [15], and Real-time CORBA [16] specifications. Side-
bar 1 outlines the features of Lightweight CCM relevant to this paper.

The key capabilities that SwapCIAO adds to CTAO include (1) mechanisms
for updating component implementations dynamically without incurring system
downtime and (2) mechanisms that transparently redirect clients of an exist-
ing component to the new updated component implementation. As discussed
in this paper, key technical challenges associated with providing these capabili-
ties involve updating component implementations without incurring significant
overhead or losing invocations that are waiting for or being processed by the
component.

The remainder of this paper is organized as follows: Section 2 describes the
structure and functionality of an inventory tracking system, which is a DRE
system case study that motivates the need for dynamic component implementa-
tion updating; Section 2.2 describes the key design challenges in provisioning the
dynamic component implementation updating capability in QoS-enabled com-
ponent middleware systems; Section 3 describes the design of SwapCIAQO, which
provides dynamic component implementation updating capability for Light-
weight CCM; Section 4 analyzes the results from experiments that systematically
evaluate the performance of SwapCIAO for various types of DRE applications
in our ITS case study; Section 5 compares SwapCIAO with related work; and
Section 6 presents concluding remarks.

3 SwapCIAO and CIAO are available from www.dre.vanderbilt.edu/CIAQ.



Sidebar 1: Overview of Lightweight CCM

The OMG Lightweight CCM [14] specification standardizes the development, con-
figuration, and deployment of component-based applications. Applications devel-
oped with Lightweight CCM are not tied to any particular language, platform,
or network. Components in Lightweight CCM are implemented by ezecutors and
collaborate with other components via ports, including (1) facets, which define an
interface that accepts point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-point method interface
provided by another component, and (3) event sources/sinks, which indicate a will-
ingness to exchange typed messages with one or more components.

Assemblies of components in Lightweight CCM are deployed and configured via
the OMG D&C [15] specification, which manages the deployment of an application
on nodes in a target environment. The information about the component assemblies
and the target environment in which the components will be deployed are captured
in the form of XML descriptors defined by the D&C specification. A standard
deployment framework parses XML assembly descriptors and deployment plans,
extracts connection information from them, and establishes the connections between
component ports. In the context of this paper, a connection refers to the high-level
binding between an object reference and its target component, rather than a lower-
level transport connection.

2 Case Study to Motivate Dynamic Component Updating
Requirements

To examine SwapCIAQ’s capabilities in the context of a representative DRE
system, we developed an inventory tracking system (ITS), which is a warehouse
management infrastructure that monitors and controls the flow of goods and
assets within a storage facility. Users of an ITS include couriers (such as UPS,
DHL, and Fedex), airport baggage handling systems, and retailers (such as Wal-
mart and Target). This section describes (1) the structure/functionality of our
ITS case study and (2) the key requirements that SwapCIAO dynamic compo-
nent updating framework had to address. Naturally, SwapCIAQO’s capabilities
can be applied to many DRE systems — we focus on the ITS case study in this
paper to make our design discussions and performance experiments concrete.

2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods
in a timely and reliable manner. For example, an ITS should enable human
operators to configure warehouse storage organization criteria, maintain the in-
ventory throughout a highly distributed system (which may span organizational
and national boundaries), and track warehouse assets using decentralized oper-
ator consoles. In conjunction with colleagues at Siemens [17], we have developed
the ITS shown in Figure 1 using SwapCIAO. This figure shows how our ITS
consists of the following three subsystems:
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— Warehouse management, whose high-level functionality and decision-
making components calculate the destination locations of goods and delegate
the remaining details to other ITS subsystems. In particular, the warehouse
management subsystem does not provide capabilities like route calculation
for transportation or reservation of intermediate storage units.

— Material flow control, which handles all the details (such as route cal-
culation, transportation facility reservation, and intermediate storage reser-
vation) needed to transport goods to their destinations. The primary task
of this subsystem is to execute the high-level decisions calculated by the
warehouse management subsystem.

— Warehouse hardware, which deals with physical devices (such as sensors)
and transportation units (such as conveyor belts, forklifts, and cranes).

2.2 Requirements for Dynamic Component Updates

Throughout the lifetime of an ITS, new physical devices may be added to support
the activities in the warehouse. Likewise, new models of existing physical devices
may be added to the warehouse, as shown in Figure 2. This figure shows the
addition of a new conveyor belt that handles heavier goods in a warehouse. The
ITS contains many software controllers, which collectively manage the entire
system. For example, a software controller component manages each physical
device controlled by the warehouse hardware subsystem. When a new device is
introduced, a new component implementation must be loaded dynamically into
the ITS. Likewise, when a new version of a physical device arrives, the component
that controls this device should be updated so the software can manage the new
version. ITS vendors are responsible for providing these new implementations.

As shown in Figure 2, a workflow manager component is connected to a
conveyor belt component using a facet/receptacle pair and an event source/sink
pair. To support this scenario, the ITS needs middleware that can satisfy the
following three requirements:
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1. Consistent and uninterrupted updates to clients. As part of the dynamic
update process, a component’s implementation is deactivated, removed, and up-
dated. To ensure that the I'TS remains consistent and uninterrupted during this
process, the middleware must ensure that (1) ongoing invocations between a
component and a client are completed and (2) new invocations from clients to
a component are blocked until its implementation has been updated. Figure 2
shows that when a conveyor belt’s component implementation is updated, pend-
ing requests from the workflow manager to the conveyor belt component to
move a new good to a storage system should be available for processing after
the implementation is updated. Section 3.1 explains how SwapCIAO supports
this requirement.

2. Efficient client-transparent dynamic component updates. After a component
is updated, the blocked invocations from clients should be redirected to the
new component implementation. This reconfiguration should be transparent to
clients, i.e., they should not need to know when the change occurred, nor should
they incur any programming effort or runtime overhead to communicate with the
new component implementation. Figure 2 shows how a client accessing an ITS
component should be redirected to the updated component transparently when
dynamic reconfiguration occurs. Section 3.2 explains how SwapCIAO supports
this requirement.

3. Efficient (re)connections of components. Components being updated may
have connections to other components through the ports they expose. The con-
nected components and the component being updated share a requires/provides
relationship by exchanging invocations through the ports. In Lightweight CCM,
these connections are established at deployment time using data provided to
the deployment framework in the form of XML descriptors. During dynamic re-
configuration, therefore, it is necessary to cache these connections so they can
be restored immediately after reconfiguration. Figure 2 shows how, during the
update of a conveyor belt component, its connections to the workflow manager



component must be restored immediately after the new updated conveyor belt
component implementation is started. Section 3.3 explains how SwapCIAO sup-
ports this requirement.

3 The SwapCIAO Dynamic Component Updating
Framework

This section describes the design of SwapCIAQO, which is a C++ framework
that extends CIAO to support dynamic component updates. Figure 3 shows the

Load Executor

g ]

Component Server \\ /
/
Upsadbie % 4
c Container \ CEahE) /
omponent g“""?}‘e"' Component Server
cIDL |B® Executor il Updatable Locate 2
Compiler . (e Component Executor Repository
i Factory Manager
CCMContext
Select
Generate Servant Executor
i Remote Host
using
“updatable” < POA
option )
Update Client
Requests Requests Client
\ . _Requests
| Middleware Bus | I~ CORBA Object
¥ " Update
Requests

Fig. 3. Dynamic Interactions in the SwapCIAO framework

following key elements in the SwapCIAO framework:
— SwapCIAQ’s component implementation language definition (CIDL) com-

piler supports the updatable option, which triggers generation of “glue code”
that (1) defines a factory interface to create new component implementa-
tions, (2) provides hooks for server application developers to choose which
component implementation to deploy, (3) creates, installs, and activates com-
ponents within a POA chosen by an application, and (4) manages the port
connections of an updatable component.

— The updatable container provides an execution environment in which compo-
nent implementations can be instantiated, removed, updated, and (re)executed.
An updatable container enhances the standard Lightweight CCM session
container [18] to support additional mechanisms through which component
creation and activation can be controlled by server application developers.

— The updatable component factory creates components and implements a
wrapper facade [10] that provides a portable interface used to implement the
Component Configurator pattern [10], which SwapCIAO uses to open and
load dynamic link libraries (DLLs) on heterogeneous run-time platforms.



— The repository manager stores component implementations. SwapCIAQ’s
updatable component factory uses the repository manager to search DLLs
and locate component implementations that require updating.

The remainder of this section describes how the SwapCIAO components in Fig-
ure 3 address the requirements presented in Section 2.2.

3.1 Providing Consistent and Uninterrupted Updates to Clients
Problem. Dynamic updates of component implementations can occur while inter-
actions are ongoing between components and their clients. For example, during
the component update process, clients can initiate new invocations on a com-
ponent — there may also be ongoing interactions between components. If these
scenarios are not handled properly by the middleware some computations can
be lost, yielding state inconsistencies.

Solution — Reference counting operation invocations. In SwapCIAQ, all oper-
ation invocations on a component are dispatched by the standard Lightweight
CCM portable object adapter (POA), which maintains a dispatching table that
tracks how many requests are being processed by each component in a thread.
SwapCIAO uses standard POA reference counting and deactivation mechanisms [19]
to keep track of the number of clients making invocations on a component. After
a server thread finishes processing the invocation, it decrements the reference
count in the dispatching table.

When a component is about to be removed during a dynamic update, the
POA does not deactivate the component until its reference count becomes zero,
i.e., until the last invocation on the component is processed. To prevent new
invocations from arriving at the component while it is being updated, Swap-
CIAO’s updatable container blocks new invocations for this component in the
server ORB using standard CORBA portable interceptors [20].

Applying the solution to ITS. In the ITS case study, when the conveyor belt com-
ponent implementation is being updated, the warehouse hardware system could
be issuing requests to the conveyor belt component to move goods. The updat-
able container (which runs in the same host as the conveyor belt component)
instructs the SwapCIAO middleware to block those requests. After the requests
are blocked by SwapCIAQ, the updatable container’s POA deactivates the con-
veyor belt component only when all requests it is processing are completed, i.e,
when its reference count drops to zero.

3.2 Ensuring Efficient Client-transparent Dynamic Component
Updates

Problem. As shown in the Figure 3, many clients can access a component

whose implementation is undergoing updates during the dynamic reconfigura-

tion process. In Lightweight CCM, a client holds an object reference to a com-

ponent. After a component implementation is updated, old object references

are no longer valid. The dynamic reconfiguration of components needs to be



transparent to clients, however, so that clients using old references to access
updated component do not receive “invalid reference” exceptions. Such excep-
tions would complicate client application programming and increase latency by
incurring additional round-trip messages, which could unduly perturb the QoS
of component-based DRE systems.

Solution — Use servant activators to redirect clients to update components trans-
parently. Figure 4 shows how SwapCIAO redirects clients transparently to an
updated component implementation. During the component updating process,
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Fig. 4. Transparent Component Object Reference Update in SwapCIAO

the old component implementation is removed. When a client makes a request on
the old object reference after a component has been removed, the POA associ-
ated with the updatable container intercepts the request via a servant activator.
This activator is a special type of intercepter that can dynamically create a
component implementation if it is not yet available to handle the request. Since
the component has been removed, the POA’s active object map will have no
corresponding entry, so the servant activator will create a new component im-
plementation dynamically.

SwapCIAO stores information in the POA’s active object map to handle
client requests efficiently. It also uses CORBA-compliant mechanisms to activate
servants via unique user id’s that circumvent informing clients of the updated
implementation. This design prevents extra network round-trips to inform clients
about an updated component’s implementation.

Applying the solution to ITS. In the ITS case study, when the conveyor belt com-
ponent implementation is being updated, the warehouse hardware system could
be issuing requests to the conveyor belt component to move goods. After the cur-
rent conveyor belt component is removed, the servant activator in the updatable
container’s POA intercepts requests from the warehouse hardware subsystem
clients to the conveyor belt component. The servant activator then activates a
new conveyor belt component implementation and transparently redirects the



requests from the warehouse hardware subsystem to this updated implementa-
tion. SwapCIAO uses these standard CORBA mechanisms to enable different
component implementations to handle the requests from warehouse hardware
subsystem clients transparently, without incurring extra round-trip overhead or
programming effort by the clients.

3.3 Enabling (Re)connections of Components

Problem. As discussed in Sidebar 1, Lightweight CCM applications use the stan-
dard OMG Deployment and Configuration (D&C) [15] framework to parse XML
assembly descriptors and deployment plans, extract connection information from
them, and establish connections between component ports. This connection
process typically occurs during DRE system initialization. When component
implementations are updated, it is therefore necessary to record each compo-
nent’s connections to its peer components since their XML descriptors may not
be available to establish the connections again. Even if the XML is available,
reestablishing connections can incur extra round-trip message exchanges across
the network.

Solution — Caching component connections Figure 5 shows how SwapCIAO
handles component connections during the component update process. During
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Fig. 5. Enabling (Re)connections of Components in SwapCIAO

the component updating process, SwapCIAO caches component connections to
any of its peer component ports. SwapCIAO automatically handles the case
where the updated component is a facet and the connected component is a
receptacle. Since the receptacle could make requests on the facet while the com-
ponent implementation is being updated, SwapCIAO uses the mechanisms de-
scribed in Section 3.1 to deactivate the facets properly, so that no invocations
are dispatched to the component. When the new component is activated, the
facets are reactivated using the SwapCIAQ’s POA servant activator mechanism
discussed in Section 3.2. For event source and event sinks, if the component



being updated is the publisher, SwapCIAO caches the connections of all the
connected consumers. When the updated component implementation is reacti-
vated, its connections are restored from the cache. As a result, communication
can be started immediately, without requiring extra network overhead.

Applying the solution to ITS. In the ITS, a conveyor belt component in the
warehouse hardware subsystem is connected to many sensors that assist the con-
veyor belt in tracking goods until they reach a storage system. When a conveyor
belt component is updated, its connections to sensor components are cached be-
fore deactivation. When the updated conveyor belt component implementation
is reactivated, the cached connections are restored and communication with the
sensors can start immediately and all requests blocked during the update process
will then be handled.

4 Empirical Results

This section presents the design and results of experiments that empirically eval-
uate how well SwapCIAQO’s dynamic component updating framework described
in Section 3 addresses the requirements discussed in Section 2.2. We focus on
the performance and predictability of SwapCIAQO’s component updating mech-
anisms provided by version 0.4.6 of SwapCIAQ. All experiments used a single
850 MHz CPU Intel Pentium III with 512 MB RAM, running the RedHat Linux
7.1 distribution, which supports kernel-level multi-tasking, multi-threading, and
symmetric multiprocessing. The benchmarks ran in the POSIX real-time thread
scheduling class [21] to increase the consistency of our results by ensuring the
threads created during the experiment were not preempted arbitrarily during
their execution.

Figure 6 shows key component interactions in the ITS case study shown
in Figure 1 that motivated the design of these benchmarks using SwapCIAQ.
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Fig. 6. Component Interaction in the ITS
As shown in this figure, the workflow manager component of the material flow
control subsystem is connected to the conveyor belt and forklift transportation
units of the warehouse hardware subsystem. We focus on the scenario where the



workflow manager contacts the conveyor belt component using the move_item()
operation to instruct the conveyor belt component to move an item from a source
(such as a loading dock) to a destination (such as a warehouse storage location).
The move_item() operation takes source and destination locations as its input
arguments. When the item is moved to its destination successfully, the conveyor
belt component informs the workflow manager using the finished_moving()
event operation. The conveyor belt component is also connected to various sensor
components, which determine if items fall off the conveyor belt. It is essential that
the conveyor belt component not lose connections to these sensor components
when component implementation updates occur.

During the component updating process, workflow manager clients experi-
ence some delay. Our benchmarks reported below measure the delay and jitter
(which is the variation of the delay) that workflow manager clients experience
when invoking operations on conveyor belt component during the component
update process. They also measure how much of the total delay is incurred by
the various activities that SwapCIAO performs when updating a component
implementation. In our experiments, all components were deployed on the same
machine to alleviate the impact of network overhead in our experimental results.

The core CORBA benchmarking software is based on the single-threaded
version of the “TestSwapCIAQ” performance test distributed with CIAO.* This
benchmark creates a session for a single client to communicate with a single
component by invoking a configurable number of move_item() operations. The
conveyor belt component is connected to the sensor components using event
source/sink ports.

Section 3.3 describes how caching and reestablishing connections to peer com-
ponents are important steps in the component updating process. We therefore
measured the scalability of SwapCIAO when an updated component has upto
16 peer components using event source/sink ports. The tests can be configured
to use either the standard Lightweight CCM session containers or SwapCIAQO’s
updatable containers (described in Section 3). TestSwapCIAO uses the default
configuration of TAO, which uses a reactive concurrency model to collect replies.

4.1 Measuring SwapCIAQO’s Updatable Container Overhead for
Normal Operations

Rationale. Section 3 described how SwapCIAQO extends Lightweight CCM and
CIAO to support dynamic component updates. DRE systems do not always re-
quire dynamic component updating, however. It is therefore useful to compare
the overhead of SwapCIAQ’s updatable container versus the standard Light-
weight CCM session container under normal operations (i.e., without any up-
dates) to evaluate the tradeoffs associated with this feature.

Methodology. This experiment was run with two variants: one using the Swap-
CIAO updatable container and the other using the standard CIAO session con-
tainer. In both experiemnts, we used high-resolution timer probes to measure

4 The source code for TestSwapCIAOD is available at www.dre.vanderbilt.edu/~jai/
TAO/CIAO/performance-tests/SwapCIAQ.



the latency of move_item() operation from the workflow manager component
to the conveyor belt component. Since SwapCIAO caches and restores a com-
ponent’s connections to its peer components, we varied the number of sensor
components connected to the conveyor belt and then collected latency data with
2,4, 8, and 16 ports to determine whether SwapCIAO incurred any overhead
with additional ports during normal operating mode. The TestSwapCIAQ client
made 200,000 invocations of move_item() operation to collect the data shown
in Figure 7.
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Fig. 7. Overhead of SwapCIAQ’s Updatable Container

Analysis of results. Figure 7 shows the comparitive latencies experienced by the
workflow manager client when making invocations on conveyor belt component
created with the session container versus the updatable container. These results
indicate that no appreciable overhead is incurred by SwapCIAQO’s updatable
container for normal operations that do not involve dynamic swapping.

The remainder of this section uses the results in Figure 7 as the baseline
processing delay to evaluate the delay experienced by workflow manager clients
when dynamic updating of a conveyor belt component occurs.

4.2 Measuring SwapCIAQO’s Updatable Container Overhead for
Updating Operations

Rationale. Evaluating the efficiency, scalability, and predictability of Swap-
CIAQ’s component updating mechanisms described in Section 3.2 and Sec-
tion 3.3 is essential to understand the tradeoffs associated with updatable con-
tainers. SwapCIAQO’s component update time includes (1) the remowval time,
which is the time SwapCIAO needs to remove the existing component from
service, (2) the creation time, which is the time SwapCIAO needs to create and
install a new component, and (3) the reconnect time, which is the time Swap-
CTAO needs to restore a component’s port connections to its peer components.

Methodology. Since the number of port connections a component has affects how
quickly it can be removed and installed, we evaluated SwapCIAQO’s component

update time by varying the number of ports and measuring the component’s:
— Remowal time, which was measured by adding timer probes to SwapCIAQ’s

CCM_0Object: :remove() operation, which deactivates the component ser-
vant, disassociates the executor from the servant, and calls ccm_passivate ()
on the component.



— Creation time, which was measured by adding timer probes to SwapCIAQ’s
PortableServer: :ServantActivator: :incarnate () operation, which cre-
ates and installs a new component, as described in Section 3.2.

— Reconnect time, which was measured by adding timer probes to CCM_Object: :
ccm_activate (), which establishes connections to ports.

We measured the times outlined above whenever a component update occurs
during a move_item() call for 200,000 iterations and then calculated the results
presented below.
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Analysis of creation time. Figure 8 shows the minimum, average, and maximum
latencies, as well as the 99% latency percentile, incurred by SwapCIAQ’s servant
activator to create a new component, as the number of ports vary from 2, 4, 8,
and 16. This figure shows that latency grows linearly as the number of ports ini-
tialized by PortableServer::ServantActivator::incarnate() increases. It
also shows that SwapCIAQ’s servant activator spends a uniform amount of time
creating a component and does not incur significant overhead when this process
is repeated 200,000 times. SwapCIAQ’s creation mechanisms described in Sec-
tion 3.2 are therefore efficient, predictable, and scalable in ensuring efficient
client-transparent dynamic component updates.

Analysis of reconnect time. Figure 9 shows the minimum, average, and maximum
latencies, as well as 99% latency percentile, incurred by SwapCIAQ’s reconnect
mechanisms to restore a new component’s connections, as the number of ports
vary from 2, 4, 8, and 16. As shown in the figure, the reconnect time increases
linearly with the number of ports per component. These results indicate that
SwapCIAQ’s reconnect mechanisms described in Section 3.3 provide efficient
(re)connection of components and do not incur any additional roundtrip delays
by propagating exceptions or sending GIOP LOCATE_FORWARD messages to re-
store connections to components.
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Analysis of removal time. Figure 10 shows the time used by SwapCIAQO’s re-
moval mechanisms to cache a component’s connections and remove the com-
ponent from service, as a function of the number of its connected ports. This
removal time increases linearly with the number of ports, which indicates that
SwapCIAOQO performs a constant amount of work to manage the connection infor-
mation for each port. SwapCIAQO’s removal mechanisms described in Section 3.1
are therefore able to provide consistent and uninterrupted updates to clients.

4.3 Measuring the Update Latency Experienced by Clients
Rationale. Section 3.2 describes how SwapCIAQO’s component creation mecha-
nisms are transparent to clients, efficient, and predictable in performing client-
transparent dynamic component updates. Section 4.2 showed that SwapCIAQO’s
standard POA mechanisms and the servant activator create new component
implementations efficiently and predictably. We now determine whether Swap-
CIAO incurs any overhead — other than the work performed by the SwapCIAQ’s
component creation mechanisms — that significantly affects client latency.

Methodology. The incarnation delay is defined as the period of time experi-
enced by a client when (1) its operation request arrives at a server ORB af-
ter SwapCIAO has removed the component and (2) it receives the reply after
SwapCIAO creates the component, restores the component’s connections to peer
components, and allows the updated component to process the client’s request.
The incarnation delay therefore includes the creation time, reconnect time, and
processing delay (which is the time a new component needs to process the op-
eration request and send a reply to the client). To measure incarnation delay,
we (1) removed a component and (2) started a high-resolution timer when the
client invokes a request on the component. We repeated the above experiment
for 200,000 invocations and measured the latency experienced by the client for
each invocation. We also varied the number of ports between 2, 4, 8, and 16 as
described in Section 4.2 to measure the extent to which SwapCIAQO’s component
creation process is affected by the number of ports connected to a component.



Analysis of results. Figure 11 shows the delay experienced by a client as Swap-
CIAO creates a component with a varying number of connections to process
client requests. By adding the delays in Figure 8, Figure 9, and Figure 7 and
comparing them with the delays in Figure 11, we show how the incarnation delay
is roughly equal to the sum of the creation time, reconnect time, and process-
ing delay, regardless of whether the client invokes an operation on a updating
component with ports ranging from 2, 4, 8, to 16.

These results validate our claim in Section 3.2 that SwapCIAO provides
component updates that are transparent to clients. In particular, if SwapCIAQ’s
servant activator did not transparently create the component and process the
request, the client’s delay incurred obtaining a new object reference would be
larger than the sum of the creation time, reconnect time, and the processing
delay. We therefore conclude that SwapCIAO provides efficient and predictable
client transparent updates.

5 Related Work

This section compares our R&D efforts on SwapCIAO with related work ranging
from offline updates to hot standby and application-specific techniques.

Offtine techniques. Component updating has often been done via offline tech-
niques, where applications are stopped to perform the update and restarted
with the new implementation. For example, in [22] when a node is reconfigured,
other nodes that require service from the target node are blocked completely,
unnecessarily delaying services that are not being reconfigured. To minimize
system interruption, [23] uses a centralized configuration manager, that over-
sees the interactions among components. The centralized configuration manager
becomes the single point of failure and also a bottleneck for communication
among components. Such techniques can be overly rigid and inefficient for cer-
tain types of DRE applications, such as online trading services and inventory
tracking systems, where downtime is costly. To address these limitations, Swap-
CIAO updates component implementations dynamically by (1) queuing requests
from other components during the component update and (2) transparently redi-
recting those requests to the updated implementation, thereby enabling uninter-
rupted online component updates.

Hot standby techniques. Another component updating technique uses online
backup implementations, called “hot standbys.” In this approach, when a com-
ponent needs updating, requests to it will be transferred to the backup, dur-
ing which the main implementation is updated [24]. Although this solution is
common, it can be complex and resource-intensive. In particular, when adding
backup implementations to resource-constrained DRE systems, such as satellite
and avionics mission computing systems, it can be unduly expensive and compli-
cated to keep the backup implementation updated and to reroute requests to this
standby when the main implementation is being updated. To address these limi-
tations, SwapCIAO does not run a backup implementation and instead updates



implementations dynamically. Although requests to the target component are
queued during the update, no round-trip overhead is incurred to redirect client
requests from one node to another. Moreover, queued requests in SwapCIAO are
redirected transparently to the updated implementation once it is activated.

Application-specific techniques. Another technique employs application-specific
modifications to handle component updates. For example, [25] introduces a com-
ponent configurator that performs reconfiguration at the application level. As
a result, application developers must implement a configurator for each com-
ponent. Moreover, handling connections among components is hard since there
is no central entity managing information about the overall DRE system struc-
ture. To address these issues, SwapCIAQ leverages patterns (such as Reference
Counting and Dispatching [19], Wrapper Facade [10] and Component Configu-
rator [10]) and frameworks (such as Portable Interceptors [20] and ACE Service
Configurator [26]) to implement the dynamic component updating capability in
the middleware. Application developers are therefore able to focus on their com-
ponent implementations, rather than wrestling with complex mechanisms needed
to add dynamic component updating capabilities into their applications.

6 Concluding Remarks

This paper describes the design and implementation of SwapCIAO, which is
a QoS-enabled component middleware framework based on Lightweight CCM
that supports dynamic component updating. SwapCIAQ is designed to handle
dynamic operating conditions by updating component implementations that are
optimized for particular run-time characteristics. The lessons learned while de-
veloping SwapCIAQO and applying it to the ITS case study include:

— Standard Lightweight CCM interfaces can be extended slightly to develop
a scalable and flexible middleware infrastructure that supports dynamic
component updating. In particular, SwapCIAQ’s extensions require mini-
mal changes to the standard Lightweight CCM server programming model.
Moreover, its client programming model and client/server interoperability
were unaffected by the server extensions. Developers of client applications
in our ITS case study were therefore shielded entirely from SwapCIAQ’s
component updating extensions.

— By exporting component implementations as DLLs, SwapCIAQO simplifies
the task of updating components by enabling their implementations to be
linked into the address space of a server late in its lifecycle, i.e., during the
deployment and reconfiguration phases. These capabilities enabled develop-
ers in the ITS case study to create multiple component implementations
rapidly and update dynamically in response to changing modes and opera-
tional contexts.

— SwapCIAO adds insignificant overhead to each dynamic component updating
request. It can therefore be used even for normal operations in ITS appli-
cations that do not require dynamic component updating. Moreover, due to



the predictability and transparency provided by SwapCIAQ, it can be used
efficiently when operating conditions trigger mode changes.

Our future work will focus on developing selection algorithms [27] that can

automatically choose the most suitable component implementation to update in
a particular operating condition. We will implement these selection algorithms
and validate them in the context of DRE systems, such as our ITS case study. To
enhance the autonomic properties of DRE systems, we are developing a moni-
toring framework within SwapCIAO that (1) observes the performance of differ-
ent components, (2) identifies when performance is not within the desired QoS
bounds, and (3) automatically updates component implementations using our
selection algorithms.
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