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Abstract
Although the field of computer vision has grown signifi-
cantly due to the advent of convolutional neural networks
(CNNs), electronic analysis of historical documents has
experienced scant research and development attention.
Recently, however, computer vision has matured to the
point where it can be applied to outperform existing, spe-
cialized tools for document analysis. This paper demon-
strates empirically how state-of-the-art results can be pro-
duced by implementing, training, and evaluating generic
computer vision models on historical document segmen-
tation tasks. We show the generality of our approach to
document analysis and explain how innovation in this do-
main can arise from combining generic building blocks
for computer vision.

1 Introduction
Image segmentation is the process of partitioning an im-
age by assigning a label or class to each of its pixels to
represent the image meaningfully [7]. For example, an
automated driving system may find it helpful to label ob-
jects in its environment, such as street signs and pedes-
trians, to assist with the driving process. Other examples
of image segmentation may exist in content-based image
retrieval systems [4], medical imaging [21], object detec-
tion [6], surveillance [19], generating data visualizations
from hand-drawn sketches [29], and biometric security
systems [11].

This paper explores methods and tools for image seg-

mentation, specifically in the context of paper documents
with handwritten records prior to the twentieth century.
For the previously mentioned applications of image seg-
mentation, there are many distinguishing features (such as
color and brightness) between different objects. In histori-
cal documents, however, there is little/no color or contrast
differences between parts of the document.

Instead, historical documents typically only exhibit
logical differences that can be inferred from markings
on the page, which are created inconsistently between
records over time and are often degraded [16]. The seg-
mentation of paper documents thus often necessitates dif-
ferent methods than the segmentation of other types of
data. Moreover, the range of desired analysis on paper
documents is extremely expansive, so it is important to
consider the specific dataset we used in this paper and the
problem that our analysis addresses.

This paper builds upon earlier work on dhSegment [3],
which hypothesized that generic computer vision mod-
els could effectively perform document segmentation. We
expand upon the dhSegement approach by (1) evaluating
generic computer vision models other than the ResNet50-
based [9] model used in dhSegment and (2) exploring
what other models help advance this domain further us-
ing images found in the Slave Societies Digital Archive
(SSDA)[1]. We hypothesize that the success of ResNet50
in classification tasks demonstrates its utility as a success-
ful generic building block for constructing segmentation
models compared to other common convolutional neural
networks (CNNs).

The remainder of this paper is organized as follows:
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Section 2 motivates and summarizes our technical ap-
proach; Section 3 summarizes work related to various
types of significant CNNs used in our analysis; Section
4 describes adaptations to model architectures that we ap-
plied to enable CNNs to operate on segmentation tasks;
Section 5 describes how we compared the ResNet-based
dhSegment [3] to other CNN-based models by reviewing
the experimental dataset, establishing a proof-of-concept
and baseline for success, and elaborating on how exper-
imental models are implemented and trained; Section 6
compares the results of training between similar models
and between all of the best models, as well as analyzes
trends that occurred during the training process; and Sec-
tion 7 presents concluding remarks.

2 Motivation and Summary of Our
Technical Approach

The motivation for this paper stems from the Slave Soci-
eties Digital Archive (SSDA) hosted at Vanderbilt Univer-
sity [1] that includes over 700,000 digital images drawn
from ∼2,000 unique volumes dating from the sixteenth
through twentieth centuries that document the lives of an
estimated four to six million individuals. Slave societies
are defined as civilizations where slave labor and/or trade
was an essential part of their economies, politics, and lives
as a whole. The SSDA preserves documents related to
African people and their descendants in slave societies,
mostly in the Iberian New World.

The majority of the documents in the SSDA are
Catholic Church documents, which mandated the baptism
of African slaves and their descendants. With baptisms
comes eligibility for marriage and burial with the Catholic
Church. Since the Catholic Church is a centralized, hier-
archical organization, there is significant consistency be-
tween documents created in different parts of the world
and at different periods in time.

Although the quality and the layout of documents may
be different between record keepers, a base set of facts
(such as ) names, locations, dates, and the names of fam-
ily members [1]) remains consistent throughout the doc-
uments. These common facts between documents create
a structure that lends itself to algorithmic analysis rather
than needing to analyze each of 700,000 images manu-

ally. It is not yet feasible, however, to simply extract the
characters from the page using optical character recog-
nition (OCR) technology [16] and then analyze the text.
Instead, this information must be derived from other fea-
tures to analyze the SSDA archive meaningfully.

The ultimate goal of our project is to develop a model
for computationally creating family trees based on the im-
ages in the SSDA. Using each record of baptisms, mar-
riages, and deaths, it may be possible to match the names,
locations, and dates to create a story that follows the
genealogical progression of the descendants of African
slaves in the Iberian New World. Ideally, this tool could
be used by a descendant of African slaves who knows (or
can infer) the name of an ancestor who appears in these
documents, opening up a new chapter of his or her ances-
tral history that would not have been uncovered otherwise.

We performed this analysis via several steps described
below, starting with separating the records from each im-
age. Every image in the SSDA contains at least one
record, as well as empty page space and extraneous parts
of the image that provide no useful information (such
as parts of a table or the fingers of people who scanned
the document). It was therefore necessary to isolate the
records as blocks of text from the SSDA images to ana-
lyze the data efficiently.

Figure 1 shows two example images found in the
SSDA [2] that exemplify many difficulties in the quality
of historical document data. These images often display
extraneous objects, such as fingers and glimpses of the
surface that the book is resting on. Likewise, there are
differences in lighting and page orientation between these
two pages. Moreover, smudging and bleed-through be-
tween pages are also clearly evident.

OCR technology is not sufficiently advanced to di-
rectly glean character information from such degraded
images [16], so another approach must be applied to
match names. Our approach treated written names as pat-
terns and matched them with other names that appear sim-
ilar, thereby addressing the idiosyncrasies of handwriting
between different record keepers. Moreover, after match-
ing the records by name, a family tree structure may begin
to emerge that helps unlock the ancestral history of mil-
lions of people around the world.

The first phase of our approach—separating records
from the rest of their images—requires using image seg-
mentation. While segmentation technology has improved
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Figure 1: Sample Images from the SSDA.

significantly in recent years, research involving the seg-
mentation of documents has been less expansive. How-
ever, the dhSegment [3] model and toolkit demonstrate
promising success in this domain using generic computer
vision models rather than segmentation-specific docu-
ment processing tools.

3 Related Work on CNNs
Image processing is a ubiquitous field with extreme varia-
tion between different types of images and tasks. A signif-
icant number of segmentation methods therefore exist that
can be applied for any given task. This section gives an
overview of relevant related work, focusing primarily on
segmentation using CNN architectures and then discusses
how we adapted these methods for use in our segmenta-
tion tasks to analyze documents from the SSDA.

One of the first CNNs that appeared in academic litera-
ture was AlexNet [5, 17]. AlexNet’s main innovation was
its more efficient training, which reduced costs and in-
creased the amount of data learned. Some techniques pi-
oneered in AlexNet included using Rectified Linear Units
(ReLUs) as activation layers, customized and optimized
graphics processing unit (GPU) algorithms for convolu-
tions and training, and pooling outputs together [17].

Building on AlexNet was the Visual Geometry Group
(VGG) [23], whose model incorporated the smallest pos-
sible convolutions to the earliest layers of the model, al-
lowing for quicker training than its predecessors. Con-
volutions enabled the creation of feature maps from in-
put data [28], using the smallest possible convolutions
to simplify the determination of convolution parameters.
Smaller convolutions generally yield more efficient cre-
ation of useful feature maps.

Another significant model is GoogLeNet [26], which
reduced parameter count and resource usage while train-
ing to transition from densely-connected networks to
sparsely-connected networks. However, the underlying
hardware for modern computations is inefficient when
working with sparse calculations. A key contribution of
GoogLeNet paper, therefore, was approximating sparse
structures with existing dense components, allowing bet-
ter results with less expensive networks.

A highly significant model is ResNet [10], which pro-
vided breakthroughs in training extremely deep networks

3



by adding skip connections between layers. These skip
connections allow the training of the model to ensure that
skipped layers perform meaningful tasks, creating a more
efficient training process. This approach advanced the
field of computer vision significantly.

DenseNet [13] uses the same principle as ResNet to
add skip connections between layers. DenseNet, how-
ever, adds one layer to every subsequent layer rather than
adding connections between every other (or third) layer.
Likewise, DenseNet uses fewer convolutional filters per
layer due to the large amount of information passed be-
tween layers. The analysis of DenseNet in [13] shows
that low-level features from early layers are still used by
layers closer to the end of the model, which poses ques-
tions about how low-level features can be combined with
higher-level features.

SqueezeNet [14] is another project that sought
AlexNet-level accuracy with their network, but with much
less space utilization. The SqueezeNet team recognized
that convolutions operating on every input channel use
large amounts of space, so they created 1x1 convolutions
to squeeze all the input channels into larger convolutions
that required fewer parameters. They also used compres-
sion techniques, such as Deep Compression [8], to further
compact their model while still maintaining accuracy.

4 Our Approach: Applying CNNs
for Image Segmentation

Our work in this paper adapts CNNs for segmentation via
the U-Net [22] architecture. This architecture leverages
the encoder-decoder architecture [15], which uses convo-
lutional layers to encode low-resolution maps of funda-
mental features in images and subsequently decodes the
feature maps to labels for each pixel using upsampling
operations, such as pooling and deconvolution [27]. U-
Net extends the encoder-decoder architecture by adding
skip connections between corresponding downsampling
and upsampling layers.

During the decoding process, U-Net combines upsam-
pled data with data that is never fully convolved. This
approach maintains information about high-level features
in a given image, which allows the model to combine
low-level knowledge (such as how to classify pixels) with

high-level data (such as where these pixels may be located
in the image). The U-Net architecture significantly ad-
vanced the field of image segmentation.

A relevant approach specifically focused on the domain
of historical document segmentation is called dhSeg-
ment [3]. The dhSegment architecture applies common
deep learning architectures and standard image process-
ing techniques to perform pixel-wise segmentation via
a model similar to U-Net. However, dhSegment uses a
ResNet50 [9] model as the encoder and utilizes standard
upsampling and concatenation of encoder features as its
decoder. A key insight from the dhSegment paper is that
a highly successful model for document segmentation can
be build via a generic, pre-trained encoder-decoder struc-
ture. This model can be trained on a variety of different
tasks regarding document segmentation, such as page ex-
traction, layout analysis, and line detection.

The tasks that can be performed on documents is quite
expansive. The dhSegment team therefore applied many
different types of image processing techniques to fur-
ther improve the accuracy of their model. Examples of
the techniques they applied include threshholding [20] or
shape vectorization (which performs a reduction of de-
tected regions into polygonal shapes).

The dhSegment image processing techniques are stan-
dard processes that do not require machine learning anal-
yses. Therefore, the task-specific application of post-
processing techniques on a general model provide a gen-
eralizable tool for document segmentation that requires
little training, but instead requires domain knowledge to
construct accurate results using simple processing tech-
niques on its output. The success of dhSegment’s use of
only generic deep learning models as building blocks is
impressive, so the rest of this paper evaluates the viabil-
ity of applying similar generic building blocks to segment
historical documents, such as those found in the SSDA.

5 Implementation and Training of
the ResNet-based Model

This section describes how we evaluated the ResNet-
based dhSegment [3] architecture to other CNN-based
models. We first review our experimental dataset, then
establish a proof-of-concept and baseline for success, and
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finally explain how we implemented and trained the ex-
perimental models.

5.1 Overview of the Dataset
The dataset used for our analysis in this paper is based on
the SSDA and contains a collection of documents consist-
ing of the baptismal records of people of color from the
Iglesia de San Agustı́n in Ceiba Mocha, Cuba from 1872
to 1892 [2]. Each image in the dataset is a photograph of
a page that contains one or more records. As shown in
Figure 1, these images also contain extraneous informa-
tion, such as a hand holding the page flat or a table that
the record book is resting on.

Images in the SSDA dataset are labeled such that the
two categories of records to extract are different colors
from the rest of the image, including the blank page space,
table, and other extraneous information. Although this
data archive is available publicly on the SSDA website,
there are no labels for the data. A dataset of approxi-
mately 100 images was created to train and evaluate the
performance of a model.

5.2 dhSegment
We applied the pre-trained dhSegment model to form a
baseline measure of success by which we can evaluate
other models. The dhSegment model implementation
and can be found on GitHub [3]. This model is imple-
mented as an application programming interface (API)
wrapped around a deep learning model built with Tensor-
Flow and Keras. Since the dhSegment model was trained
for document-specific segmentation tasks, its pre-trained
weights allow for quick and efficient training.

Using the built-in training method from the dhSegment
API, the model can predict the correct pixel value ∼92%
of the time. Using pixel values, however, can give a
skewed measure of performance when large portions of
the image are segmented correctly, but are not of interest.
The mean Intersection-over-Union (mIoU) is a measure
between 0 and 1 representing the ratio of the overlap of
predicted and ground truth bounding boxes to the union
of the bounding boxes, which is more reflective of suc-
cessful segmentation. In the present case, the mIoU of the
model is ∼70.7%. Given the fact that the training dataset
contains only∼80 images, this performance is impressive

and demonstrates how quickly the dhSegment architec-
ture can learn to analyze ancient documents.

After the initial round of training, our out-of-the-box
results were promising. With about 70% mIoU accuracy,
however, there was room for improvement. Due to how
the dhSegment toolbox is constructed, the ability to look
inside the model and make improvements is restricted.
Although dhSegment provides a wrapper class created
around pure Tensorflow, this wrapper lacked key function-
ality, such as built-in GPU-optimized data augmentation
and the ability to experiment with different loss functions.
We therefore constructed other generic models using the
FastAI [12] framework and evaluated their performance,
as discussed below.

5.3 FastAI
FastAIis an open-source deep learning library and an open
API for training and deploying machine learning mod-
els [12]. We applied FastAI to provide much of the cus-
tom functionality necessary to experiment and augment
the capabilities that dhSegment does not provide. For ex-
ample, FastAI can easily change the loss function of a
model during training. Another benefit of FastAI is its
ability to add data augmentation when loading the dataset
and perform it dynamically along with GPU optimiza-
tions. These additions enable relatively quick tuning of
a model’s hyperparameters that can optimize its perfor-
mance.

An important feature of FastAI is the function
‘unet learner’. This function allows a user to provide a
standard, pre-trained CNN for use as the encoder of a U-
Net model, which can then be trained and tested. Like-
wise, FastAI provides a custom implementation of cross-
connections among the encoding and decoding passes of
the U-Net so it can operate with any encoder that is pro-
vided.

A notable feature of the dhSegment architecture is its
ability to combine generic building blocks. The dhSeg-
ment team used a ResNet50 architecture for training and
evaluation, but their work demonstrated that other generic
architectures could work for similar functions. The Fas-
tAI library is compatible with any of the models available
in the torchvision [18] library, thereby enabling configu-
ration of the dhSegment architecture with any CNN as its
encoder. These torchvision models include the ones dis-
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cussed in Section 3. Moreover, the torchvision library in-
cludes many slightly different alterations of these models.
We used FastAI to construct these altered U-Net models
and evaluated their performance on the SSDA dataset.

To train and evaluate different generic building blocks
in place of a ResNet50 as the encoder of a U-Net, we
used the built-in torchvision models available in FastAI,
as outlined above. The models we chose were different
variations of ResNet, SqueezeNet, DenseNet, VGG, and
AlexNet. After the U-Net architecture was created using
these pre-trained models as the encoder, we settled on the
cross-entropy loss function [25].

In the initial round of training, we performed segmen-
tation into the three classes shown in Figure 2 (main text,
column text, and not text), which are representative of the
data used in the training and test set. In particular, an
image from the SSDA (top) and its corresponding seg-
mentation mask (bottom). The red masks represent the
main-body blocks of text, while the green masks repre-
sent column blocks of text.

We found that the training process resulted in models
that minimized the amount of “not text” that was labeled
incorrectly, rather than labeling it correctly as “main text”
or “column text.” With a larger dataset, we could have
used a weighted cross-entropy loss function to account for
the imbalance text classes, but with the limited amount
of data we elected to combine “main text” and “column
text.” We therefore performed a binary classification on
“text” or ”not text” with relatively balanced classes, so a
cross-entropy loss function was an appropriate function to
minimize.

The model’s hyperparameters were selected to be either
the default or through cross-validation schemes. We ap-
plied FastAI’s built-in function to find the optimal learn-
ing rates, ‘find lr.’ Likewise, each training epoch was
performed with the built-in ‘fine tune’ function, which
includes training defaults specifically used for transfer
learning.

The actual training process consisted of training each
model between 26 to 30 epochs and evaluating their ac-
curacy on the testing dataset at several checkpoints. This
large amount of epochs relative to the amount of training
data was performed to train each model to its best per-
formance and then observe how quickly its performance
degraded due to overfitting.

To train each model, we began by solely training its

Figure 2: Training Data.
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last layer in the first set of epochs. The entire model was
then unfrozen and trained. We then progressively froze
the earlier layers and continued training until either the
models overfit or ∼30 epochs were completed.

6 Analysis of Results

This section presents the results of our evaluation of dif-
ferent base encoders of the U-Net on the given segmen-
tation task. Figure 3 represents the mIoU accuracy over
each checkpoint epoch for the different ResNet models
evaluated. This accuracy was measured at epoch 5, epoch

Figure 3: ResNet-encoder Comparison.

10, and every other epoch until the model was determined
to overfit sufficiently. The resnet101 base does not overfit,
but it never fit in the first place and its relative success was
deemed as random based on visual inspection.

Figure 3 shows that the most successful models used
resnet50 and resnet18 as their encoders. The model with
resnet34 performed the worst by far, whereas the models
with resnet101 and resnet152 initially performed well, but
did not improve much. This result demonstrates how a
CNN can experience tradeoffs as a result of increasing
the number of layers.

When there are more layers in a CNN, there are more
extracted features as the result of convolutions, but the
question remains whether these features can be used effi-
ciently and effectively. As the size of the model grows, the
complexity and thus the number of parameters used also

increases. Training the models therefore requires chang-
ing more parameters, which increases the possibility of
overfitting. Overfitting was particularly prominent with
resnet101 and resnet152, as they both had high training
accuracies, but had essentially random guesses on the test-
ing set.

An interesting aspect of the tradeoff described above is
how it operated when going up from 18 layers to 50 lay-
ers. Since 18 layers are relatively few, the tendency to
overfit was lower, which allowed the model that is based
in resnet18 to become accurate quickly without deriv-
ing newer features in its layers. The model containing a
resnet34 encoder may have had too many layers such that
it overfit, but not enough layers to derive any high-level
features that may have helped its performance. Finally,
the model with a resnet50 encoder had enough parame-
ters such that it may easily overfit, but the added layers
gave an extra level of depth that allowed it to work out
deeper features and gain accuracy with more training than
resnet18 required.

Figure 4 represents the mIoU accuracy for each of the
SqueezeNet and DenseNet models evaluated. This accu-

Figure 4: SqueezeNet-encoder and DenseNet-encoder
Comparison.

racy was measured at epochs 5, 10, and every other epoch
thereafter. After learning what the targets for segmenta-
tion were, the models did not improve or worsen signifi-
cantly over many epochs.

Figure 4 shows how both variations with SqueezeNet
encoders had the best accuracy of all the out-of-the-box
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models available on FastAI. DenseNet encoders also per-
formed extremely well. Both these base encoder archi-
tectures created models that performed accurately with-
out much training, but did not significantly increase their
levels of accuracy or begin to overfit after excessive train-
ing. One explanation for why these models perform better
than ResNet is that they both have significantly fewer pa-
rameters than ResNet, which is consistent with the same
logic that allows the model based on the resnet18 encoder
to perform well.

Figure 5 represents the mIoU accuracies achieved for
the VGG and AlexNet models throughout their train-
ing. AlexNet had high accuracy in the beginning, but

Figure 5: VGG-encoder and AlexNet-encoder Compari-
son.

dropped off after training. This result did not occur due
to chance, as this happened multiple times when training
from scratch.

Figure 5 demonstrates how AlexNet required little
training to perform well, while VGG did not change its
performance even after training extensively. AlexNet is a
successful—yet relatively early—CNN that is composed
of few layers compared to the CNNs that were created
since. It is much smaller and has fewer parameters, which
helps explain how it quickly identified the important fea-
tures in training, but also how further training allowed for
overfitting since it lacked the depth required to make com-
plex features.

Figure 6 displays the same data between the best of
each type of model. The testing accuracy for the best

Figure 6: Inter-model Comparison.

from each model type. Two types of ResNet models were
included since they performed quite similarly, which is
notable and will be discussed below. This comparison of
different model types allowed easy visualization with rel-
ative accuracy and variability.

Figure 6 provides an overview of how all the types of
models compare against each other. These results show
how ResNet-based encoders provide much more variabil-
ity in the model. The model may be basing its decision-
making on features that provide different results when
slightly altered. Another notable result shown in Figure 6
is how several of the tested CNN encoders create models
that do not perform much better or worse after training
than before.

Our finding that SqueezeNet and DenseNet encoders
performed better than the other models for a majority of
the training and evaluation process indicates the need for
further research into these architectures and their appli-
cability in document analysis. It is noteworthy that the
SqueezeNet output shown on the in Figure 7 appears more
block-based than the ResNet, which helps explain how
SqueezeNet can encapsulate blocks of text with success.
This figure shows the real (left) and predicted (right) out-
put of a test set image for both squeezenet1 1 (top) and
resnet50 (bottom) encoder-based models. By visual in-
spection, the SqueezeNet based model encapsulates the
logic of where text blocks may occur better than the
ResNet-based model.
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Figure 7: SqueezeNet and ResNet Outputs

7 Concluding Remarks
Conventional pre-trained CNNs are not well suited to per-
form segmentation on historical documents, such as the
Slave Societies Digital Archives (SSDA) used as the ba-
sis for our research presented in this paper. Relatively lit-
tle literature examines document segmentation since the
rise in popularity of CNNs. Some research, however, is
beginning to push the envelope.

For example, the dhSegment paper and library provide
a promising approach and toolkit for segmentating histori-
cal documents. The dhSegment authors demonstrated the
feasibility of general computer vision models and stan-
dard post-processing techniques by inserting a ResNet50
encoder into the U-Net architecture and outperforming
specifically dedicated systems built for document seg-
mentation. Our research expanded upon their approach
by training and evaluating other general-use computer vi-
sion models as the encoders in the U-Net architecture.

The key lessons learned we gleaned from this research
are summarized below:

• Deep learning may outperform mature, classi-
cal methods of document analysis. The lack of
ubiquity of a single or subset of classical meth-
ods used for image-based document analysis demon-
strates that the existing tools are not robust enough.
Deep learning is a relatively new technique, but it is
already making significant progress in creating suc-
cessful document analysis [5].

• Generic deep learning techniques—rather than
specialized document analysis systems—are suc-
cessful in historical document segmentation. The
advent of the dhSegment toolbox [3] showed that
the combination of generic deep learning building
blocks, ResNet, and U-Net architectures, yielded
promising results demonstrating that a CNN can la-
bel historical documents sufficiently well.

• Other unspecialized deep learning building
blocks have the potential to improve on dhSeg-
ment’s original architecture. Our results showed
that other generic CNN-based architectures, specifi-
cally using SqueezeNet [14] and DenseNet [13], out-
performed ResNet50 on our specific dataset. This re-
sult is not definitive due to the limited size and scope
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of the data used, but it is nonetheless an interesting
outcome.

• With a relatively small amount of data, we were
able to train and evaluate several CNNs, such as
other ResNets, SqueezeNet, DenseNet, and more.
Our initial hypothesis that a ResNet50 encoder
would perform the best on segmentation tasks rather
than other generic building blocks was not supported
by our empirical evidence. Due to the lack of di-
versity within the dataset and the small number of
images analyzed, our results are not conclusive that
any of these given models work better than ResNet.
However, we demonstrate that other models like
SqueezeNet and DenseNet perform better on our
specialized dataset and should be considered targets
for further research in the context of document seg-
mentation.

• Due to confounding issues (such as the extrane-
ous objects and page bleed-through shown in Fig-
ure 1), more research must be conducted to ad-
vance this domain of analysis. While this paper
does not provide a comprehensive model that com-
pletely solves the first phase of the eventual family
tree problem, it does provide the foundation for fu-
ture attempts of this problem and many others that
lie adjacent to it. In particular, our results empiri-
cally evaluate potential analyses that help to further
the success of historical document segmentation.

Our future work consists of exploring the performance
of these architectures on larger datasets and incorporating
them into a toolbox with the post-processing techniques
mentioned by the dhSegment team. Likewise, we are ex-
ploring the intricacies of the training process concerning
the variability seen in training the ResNet models and the
lack thereof within the training of the DenseNet models
and others. Finally, the use of the transformer-based mul-
tidimensional long-short-term-memory [24] (which is an-
other type of artificial intelligence model) is a promising
technique for document analysis that we are exploring.

Additional Information
Parts of this chapter were previously published in the
Master’s thesis by the same author: Evan Segaul. ”Evalu-

ation of Generic Deep Learning Building Blocks for Seg-
mentation of 19th Century Documents,” 2021, [Unpub-
lished Master’s thesis]. Vanderbilt University. Available
from: https://ir.vanderbilt.edu/handle/1803/16673.
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