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1 Introduction

Developing extensible communication software that effec-
tively utilizes concurrency on parale platforms is a com-
plex task. Despite dramatic increases in network and host
performance, the design and implementation of communica
tion software remains a challenging problem. Moreover,
the growing heterogeneity of hardware/software architec-
tures and diversity of operating system platforms often make
it hard to directly reuse existing agorithms, detailed designs,
interfaces, or implementations[1].

Two promising techniques for aleviating communication
software complexity are design patterns and object-oriented
frameworks. Design patterns capture the static and dy-
namic structures and collaborations among components in
successful solutions to problems that arise when building
software [2]. They help to enhance software quality by ad-
dressing fundamental challenges in large-scale system de-
velopment. These challenges include communication of ar-
chitectural knowledge among developers, accommodating
new design paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and exten-
sihility; and avoiding devel opment traps and pitfallsthat are
usually learned only by experience.

An object-oriented communication framework is an inte-
grated collection of components that cooperate to define a
reusable architecture for a family of related communication
systems [3]. A framework provide a set of “semi-complete”
applicationsthat automate common communi cation software
tasks (such as event demultiplexing, event handler dispatch-
ing, connection establishment, routing, configuration of ap-
plication services, and concurrency control [4]).

Theemerging focuson design patternsand communication
frameworksin the obj ect-oriented community offerssoftware
developers both alanguage of discourse and a set of directly
reusable software components for capturing the essence of
successful architectures, components, policies, services, and
programming mechanisms. Once expressed in the pattern

form, reusable communication frameworks can be recast in
new contexts to facilitate the widespread reuse of software
architectures, detailed designs, algorithms, and implementa-
tions.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines how patterns and frameworks have been
applied to create a reusable object-oriented software archi-
tecture for high-performance application-level Gat eways;
Section 3 outlines the components in a reusable communi-
cation software framework used to build application-level
Gat eways; Section 4 examines the design patterns that
form the basisfor the framework and Gat eways; Section 5
comparesthese patternswiththose described in related work;
and Section 6 presents concluding remarks.

2 A Reusable Object-Oriented Soft-
ware Architecture for Application-
level Gateways

This paper presents a case study illustrating how design pat-
terns and frameworks are being applied in practice to facil-
itate widespread reuse of software experience in production
communication systems. Patterns aid the development of
reusable components and frameworks in these systems by
capturing the structure and collaboration of participantsin a
software architecture at a higher level than (1) source code
and (2) object-oriented design models that focus on indi-
vidual objectsand classes. Thus, patterns enable widespread
reuseof softwarearchitecture, evenwhen reuseof a gorithms,
implementations, interfaces, or detailed designsis not feasi-
ble [1]. Likewise, frameworks can be viewed as concrete
redizations of design patterns that facilitate direct reuse of
designand code. The particular system described in this case
study is a reusable object-oriented software architecture for
high-performance application-level Gat eways.

21 System Overview

An application-level Gat eway routes messages between
Peer s in a communication system (shown in Figure 1).
The Gat eway serves as a Mediator [5] that decouples co-
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Figure 1: The Structure and Collaboration of Peers and the
Gateway

operating componentsin a software system and allowsthem
to interact without having direct dependencies on each other
[6]. Messages routed through a Gat eway typicaly contain
payloads such as commands, status messages, and bulk data
exchanged by Peer s. These payloads are encapsulated in
routing messages.

This paper presents the object-oriented architecture and
design of application-level Gat eways intermsof thestrate-
gic design patternsand framework components used to guide
their construction. Strategic design patterns have an exten-
siveimpact on the software architecture for solutionsin apar-
ticular domain. For example, the Router pattern described in
Section 4.4 decoupl es input mechanisms from output mech-
anisms to ensure that message processing is not disrupted or
postponed indefinitely when a Gat eway experiences con-
gestion or failure. This pattern greatly simplifies the design
and quality of servicein single-threaded Gat eway's that use
connection-oriented protocols such as TCP/IP or IPX/SPX.
Application-level Gat eway aso utilize many tactical pat-
terns (such as Factories and Iterators [5]). Tactical patterns
have arelatively localized impact on a software architecture
compared with strategi ¢ patterns (which have more sweeping
implications on software architecture).

Dueto stringent requirementsfor reliability, performance,
and extensibility, application-level Gat eways serve as ex-
cellent exemplars for presenting the structure, participants,
and consequences of design patterns that appear in many
communication software systems. Figure 2 illustrates the
structure, associations, and internal and externa collabo-
rations among objects within a reusable software architec-
ture for application-level Gat eways.® This architecture

1Relationshipsbetween componentsareillustrated throughout this paper
using Booch notation [7]. In these figures solid clouds indicate objects;
nesting indicates composition relationships between objects; and undirected
edgesindicate some type of link exists between two objects. Dashed clouds
indicate classes; directed edges indicate inheritance relationships between
classes; and an undirected edgewith asmall circleat oneendindicateseither

is based on extensive experience developing connection-
oriented Gat eways for various commercial and academic
projects.

2.2 Impact of Patterns and Frameworks on
Software Reuse

After building a range of communication systems, it be-
came clear that the software architecture of application-level
Gat eways was largdly independent of the protocols used
to route messages to Peer s. This redization enabled the
components depicted in Figure 2 to be reused on many com-
muni cation software projects. The ability to reuse these com-
ponents so widely stems from two factors:

1. Understanding the strategic design patterns within the
domain of communi cati on software— Some of these pat-
terns have been documented individualy in the patterns
literature (such as the Reactor [8], Connector [9], and
the Acceptor [10]). Section 4 describes severa of these
patternsin terms of an integrated system of design pat-
terns that characterize the structure and collaboration
of communication software patterns in the context of
application-level Gat eways.

2. Implementing an obj ect-oriented framework that imple-
ments these common patterns — The systems described
in this paper were implemented with the ADAPTIVE
Communication Environment (ACE) software [4]. The
ACE framework implements a collection of design pat-
terns that recur when building concurrent and reactive
[8] communication software. ACE provides arich set
of reusable C++ wrappers, class categories, and frame-
works that perform common communication software
tasks (such as event demultiplexing, event handler dis-
patching, connection establishment, routing, dynamic
configuration of application services, and concurrency
control).

The design patternsand framework components described
in this paper have been used extensively throughout large-
scale telecommunication and eectronic medical imaging
projects [1, 11], as well as on academic research projects
[4]. Both the patterns and the ACE components evolved
continuously over timeviaa continua process of “round trip
gestalt” [7].

3 An Object-Oriented Framework for
the Gateway

This section describes how various communication compo-
nents in the ACE framework were reused and extended to
implement the application-level Gat eway architecture. Fol-
[owing thisoverview, Section 4 examinesthefamily of design
patternsthat underly these reusable components.

acomposition or uses relation between two classes; and a dashed directed
edge indicates template instantiation.
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Figure 2: The Object-Oriented Gat eway Software Archi-
tecture

3.1 Applying ACE Components to the Gate-
way

The primary ACE components used in the Gat eway
include the React or [8], which encapsulates the UNIX
sel ect eventdemultiplexingsystemcall; SOCK St r eam
SCOCK Connect or, and SOCK Accept or [11], which
encapsul ate the socket network programming interface; and
Map Manager and Message Queue [4], which manage
communi cation messages efficiently. These components and
their use in the Gat eway are described bel ow.

e Reactor: TheReact or [8] isareusable object-oriented
event demultiplexing mechanism based on the Reactor pat-
tern (outlined in Section 4.1). It channels al externa event
stimuli inaGat eway to asingle demultiplexingpoint. This
permits single-threaded Gat eways to wait on events han-
dles, demultiplex events, and dispatch event handlers effi-
ciently. An event indicates to a Gat eway that something
significant has occurred (e.g., the arrival of anew connection
or work request). The primary source of Gat eway eventsis
routing messages that encapsul ate various payloads (such as
commands, status messages, and bulk data). The React or
provides a coarse-grained form of concurrency control for
asingle-threaded Gat eway. It seridizes the invocation of
event handlers at the level of event demultiplexing and dis-
patching within a process. Thiseliminatesthe need for addi-
tiona synchronization mechanisms within a Gat eway and
al so minimizes context switching.

e Input Channel and Output Channel: These classes
implement the Router pattern (described in Section 4.4).
Both classes inherit from a common ancestor: base class
Channel (shown in Figure 3). This enables them to com-
municate with Peer s viaan ACE SOCK St r eam object
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Figure 3: Channel Inheritance Hierarchy

provided by the Channel baseclass. | nput Channel s
are responsible for routing incoming messages to their des-
tination(s). The React or notifiesan | nput Channel
when it detects an event on that channel’s SOCK St r eam
endpoint. Thel nput Channel thenreceivesandframesa
routing message from that endpoint, consults the Rout i ng
Tabl e to determine the set of Qut put Channel des
tinations for the message, and asks the selected Qut put
Channel s to forward the message to the appropriate Peer
destination(s).

An Qut put Channel isresponsiblefor reliably deliv-
ering routing messages to their destinations. It implementsa
flow control mechanism to buffer bursts of routing messages
that cannot be sent immediately dueto transi ent network con-
gestion or lack of buffer space at a receiver. Flow control
ensures that a source Peer does not send data faster than a
destination Peer can buffer and process the data. For in-
stance, if adestination Peer runsout of buffer space the un-
derlying TCP protocol instructs the associated Gat eway’s
Qut put Channel to stop producing messages until the
destination Peer consumes the data.

A reusable ACE Message Queue object chains to-
gether unsent messages in the order they must be deliv-
ered when flow control mechanisms permit. Once the flow
control window opens up, the React or cals back to the
handl e_event method of the Cut put Channel . This
signals the channd to start draining the Message Queue
by sending messages to the Peer . If flow control occurs
again thissequence of stepsisrepeated until all messages are
delivered.

¢ Routing Table: | nput Channel s usetheRout i ng
Tabl e to map addressing information contained in routing
messages sent by Peer s to the appropriate set of Qut put
Channel s. The Routi ng Tabl e reuses the ACE Map
Manager collection class. A Map Manager isaparam-
eterized collection that efficiently maps externa ids (e.g.,
Peer routing addresses) onto internal ids (e.g., Qut put
Channel s).



e Channe Connector and Channel Acceptor: The
Channel Connector and Channel Acceptor are
reusable Factories [5] used by the Gat eway to actively and
passively establish connectionswith Peer s and producethe
connected | nput Channel s and Qut put Channel s
described above. These components are based on the Con-
nector pattern (described in Section 4.2) and Acceptor pattern
(described in Section 4.3).

To increase system flexibility, connections can be estab-
lished in two ways:

1. Fromthe Gat eway to the Peer s —whichistypicaly
done when the Gat eway first starts up to establish the
initial system configuration of Peer s.

2. FromaPeer totheGat eway—whichistypically done
once the system is running when a new Peer wantsto
send or receive routing messages.

In alarge system severd hundred Peer s may be connected
to asingle Gat eway. To expedite connection setup initi-
ated from the Gat eway to all these Peer s, the Gat eway
uses the asynchronous connection mechanisms provided by
the Channel Connect or and itsunderlying ACE SOCK
Connect or [11]. When a SOCK Connect or connects
two socket endpointsvia TCP it producesa SOCK St r eam
object, which is used to exchange data between that Peer
and the Gat eway .

To decrease connection establishment latency, the
Gat eway’s Channel Connect or initiates al connec-
tionsasynchronoudly rather than connecting each Peer syn-
chronously. Asynchrony helps decrease connection latency
over long delay paths (such as wide-area networks (WANS)
build over satellites or long haul terrestrial links).

3.2 Motivation for Using ACE

To enhance performance and interoperability, as well as to
reuse existing tracking station software and hardware, con-
nections between the Gat eway control facility applications
and tracking stations are implemented using the TCP/IP
communication protocol suite. In particular, the Gat eway
does not higher-leve distributed object computing toolslike
CORBA [12] for itscommunicationinfrastructure. Thereare
several reasons for this decision:

¢ The performance of CORBA implementations has gen-
eraly not been optimized to eliminate key sources of
communi cation overhead for transmitting bulk dataover
high-speed, long-delay networks [11, 13]. This over-
head stems from non-optimized presentation layer con-
versions, data copying, and memory management, inef-
ficient recelver-side demultiplexing and dispatching op-
erations, synchronous stop-and-wait flow control, and
non-adaptive retransmission timer schemes.

e CORBA is not well suited to handle the peer-to-peer,
asynchronous behavior of the Gat eway. In partic-
ular, many CORBA implementations do not support

non-blocking method invocations (even for oneway
operations). The problem is that flow control mecha
nisms provided by the de facto CORBA transport proto-
col (TCP) may indefinitely block amethod that outputs
messages. TCP flow control ensures that a fast pro-
ducer does not send data faster than a slower consumer
can buffer and process the data. If the consumer runs
out of buffer space TCP instructs the producer to stop
transmitting until the consumer removes the data from
the OS buffer layer. Many versions of CORBA block a
sender when a TCP connection encounters flow control.
Therefore, it is hard to write a robust, single-threaded
application that will not hang indefinitely.

o Legacy communication applicationsand protocol stacks
do not conform to the CORBA interface nor its wire
protocol [14]. When combined with the output block-
ing problem described above, thelevel of effort required
to port legacy applications to CORBA clearly exceeds
the benefits of using asingle OO communication infras-
tructure.

Sincetheuse of CORBA wasinfeasible, the ACE framework
was combined with the design patterns described below to
build arobust, extensible, and high-performance Gat eway .

4 A System of Design Patterns for the
Gateway

A design pattern is arecurring solution to a design problem
withinaparticular domain (such as business data processing,
telecommunications, graphical user interfaces, databases, or
distributed communication software). A design pattern de-
scription typically conveysthe following information [5]:

¢ Theintent of the pattern

e Thedesign forces that motivate the pattern

¢ The solution to these forces

e Therelated classes and their rolesin the solution

o Theresponsibilitiesand dynamic collaborationsamong
classes

e The positive and negative consequences of using the
pattern

o Guidance for implementors of the pattern

o Example source code illustrating how the pattern is ap-
plied
¢ Referencesto related work.

A family of design patterns (also caled a “pattern lan-
guage’ [15] or a “pattern system” [6]) is a set of related
patterns that collaborate to solve a broader set of problems
that arise in a domain. A pattern family description illus-
trates how the constituent patterns interact to form a web of
designsolutions[6]. Figure4 illustratesthekey strategic and
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Figure 4: The Family of Patternsfor the Gat eway

tactica patternsin afamily of patterns for singled-threaded,
connection-oriented application-level Gat eways. The fol-
lowing four strategic patternsrel ated to connection-oriented,
application-level Gat eways are examined in this section:

e The Reactor pattern — decouples event demultiplexing
and event handler dispatching from services performed
in response to events;

¢ The Connector pattern — decouples active service ini-
tialization from the tasks service performed once the
serviceisinitiaized.

e The Acceptor pattern — decouples passive service ini-
tialization from the tasks performed once the service is
initialized,

o The Router pattern— decoupl esinput mechanisms from
output mechanisms to prevent blocking in a single-
threaded Gat eway.

These patterns form the family of patterns underlying
the object-oriented software architecture of application-level
Gat eways described in Section 2. This paper focuses
on these strategic patterns since they are crucid to the ar-
chitecture, design, and implementation of communication
Gat eways. Moreover, these strategic patterns express de-
sign expertisethat can bereused acrossabroad range of com-
munication software. Thisfamily of patternswas discovered
based on extensive design and implementation experience
with communication systems (including on-line transaction
processing systems[16], telecommuni cation switch manage-
ment systems [1], electronic medical imaging systems [11],
and parallel communication subsystems[4]).

Due to space limitations, the strategic Gat eway patterns
are not described as thoroughly as the patterns in catalogs
such as [5, 6], nor are sample implementations provided.
Likewise, the tactical patterns shown in Figure 4 are not de-
scribed indetail either. In contrast to strategic patterns (which
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Figure5: Structureand Participantsin the Reactor Pattern

are often domain-specific and have sweeping design impli-
cations), tactical patterns are generally domain-independent
and have ardatively localized impact on asoftware architec-
ture. For instance, Iterator [5] isatactical pattern used in the
Gat eway to alow Channel s in the Routi ng Tabl e
to be processed sequentialy without violating data encap-
sulation. Although this pattern is domain-independent and
thus widely applicable, the problem it addresses does not
impact the application-level Gat eway software architec-
ture as strongly as the strategic patterns described in this
paper. Other tactical patterns used extensively throughout
the Gat eway include the following:

¢ Factory Methods—which decoupl e object creation from
object use.

¢ Iterators— which decouple sequentia access to a con-
tainer from the representation of the container.

o Adapters—which encapsulate existing procedura inter-
faces to make them object-oriented.

o Template Method — where an agorithm is written such
that some steps are supplied by a derived class.

As described below, many of these tactic patterns form the
basisfor the strategic patterns presented in this paper.

41 TheReactor Pattern

Intent: The Reactor pattern decouples event demultiplex-
ing and event handler dispatching from the services per-
formed in response to events.

Forces. The Reactor pattern resolves the following forces
that impact the design of event-driven communication soft-
warel

1. The need to demultiplex multiple types of events from
multiple sources of events efficiently within a single
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thread of control — A Reactor serializesapplication event
handling within a process at the level of event demul-
tiplexing. By using the Reactor pattern the need for
more complicated threading, synchronization, or lock-
ing within an application is often eliminated.

2. Theneed to extend application behavior without requir-
ing changes to the event dispatching framework — The
Resactor factors out the demultiplexing and dispatching
mechanisms (which are independent of an application
and thus reusable) from the event handler processing
policies (which are specific to an application).

Structureand Participants. Figure5illustratesthe struc-
ture and participants in the Reactor pattern. The React or
defines an interface for registering, removing, and dispatch-
ing Concrete Event Handl er objects. An imple-
mentation of this interface provides a set of application-
independent mechanisms. These mechanisms perform event
demultiplexing and dispatching of application-specific event
handlersin responseto events.

AnEvent Handl er specifiesan abstract interface used
by the React or to dispatch callback methods defined by
objectsthat register to handleinput, output, signal, and time-
outeventsof interest. Each Concr et e Event Handl er
selectively implements callback method(s) to process events
in an application-specific manner.

Collaborations: Figure 6 illustrates the collaborations be-
tween participants in the Reactor pattern. These collabora
tions are divided into the following two phases:

1. Initialization phase — where Concrete Event
Handl er objects are registered with the React or

2. Event handling phase — where methods on the objects
are called back to handle particular types of events.

Uses: Figure 7 outlines how the React or isused in a
Gat eway. A React or object dispatchesincoming routing
messages to the associated | nput Channel , where they
are routed to Qut put Channel s. The Reactor also en-
suresthat outgoing routing messages are eventually delivered
on flow controlled Qut put Channel s (described in Sec-
tion 4.4). In addition, the React or dispatches events that
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Figure 7: Using the Reactor Pattern inthe Gat eway

indicate the completion status of connections actively initi-
ated asynchronoudly (used by the Channel Connect or
described in Section 4.2), as well as to accept passively ini-
tiated connections (used by the Channel Accept or de-
scribed in Section 4.3).

The Reactor pattern has been used in many single-threaded
event-drivenframeworks (such asthe Motif, Interviews[17],
SystemV STREAMS[18], the ASX object-oriented commu-
nication framework [4], and implementations of DCE and
CORBA). In addition, it forms as thefoundation for the other
strategic patternsfor application-level Gat eways presented
bel ow.

4.2 TheConnector Pattern

Intent: The Connector pattern decouples active? service
initialization from the tasks performed once a serviceisini-
tialized.

Forces:. The Connector pattern resolves the following
forces that impact the design of connection-oriented com-
munication software (particularly clients) when using lower-
level network programming interfaces (like sockets [19] and
TLI [20]):

1. The need to reuse active connection establishment code
for each new service — The Connector pattern permits
key characteristics of services (such as the concurrency
strategy or the dataformat) to evolveindependently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms

2Communication software is typified by asymmetric roles for estab-
lishing connections between clients and servers. In genera, servers (who
play a passive role) listen for clients (who play an active role) to initiate
connections.
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this separation of concerns helps reduce software cou-
pling and increases code reuse.

2. The need to make the connection establishment code
portableacross platformsthat contain different network
programminginterfaces— Thisis particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces (such as sockets
and TLI).

3. The need to actively establish connections with large
number of peers efficiently — The Connector pattern can
employ asynchrony to initiate and complete multiple
connections in non-blocking mode. By using asyn-
chrony, the Connector pattern enables applications to
actively establish connections with a large number of
peers efficiently over long-delay WANS.

4. The need to enabl e flexible service concurrency policies
—Onceaconnectionisestablished, peer applicationsuse
the connection to exchange data to perform some type
of service (eg., remote login, WWW HTML document
transfer, etc.). A service can run in asingle-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

Structureand Participants. Figure8illustratesthe struc-
ture and participants in the Connector pattern. As shown
in the figure, the participantsin this pattern leverage off the
Reactor pattern by inheriting from its Event Handl er

interface. Using the Reactor pattern enables multiple con-
nections to be actively established asynchronously within a
singlethread of control.
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Figure 9: Object Interaction Diagram for the Connector Pat-
tern

TheConnect or isafactory that assembles theresources
necessary to create, connect, and activateaservicehandler. In
addition, it implements the strategy for establishing connec-
tionswith Peer s asynchronoudly. It is parameterized by a
particular typeof PEER CONNECTORand SVC HANDLER.
The PEER CONNECTOR supplies the underlying transport
mechanism (such as C++ wrappers for sockets or TLI) used
to actively establish theconnection asynchronously. TheSVC
HANDL ER specifies an abstract interface for defining a ser-
vicethat communicates with aconnected Peer . Moreover, a
SVC HANDLERis parameterized by aPEER STREAMend-
point. The Connect or connects this endpoint to its Peer
when a connection is established successfully. Note that by
inheriting from Event Handl er, a SVC HANDLER can
register withaReact or inorder to demultiplex datawithin
asingle event-driven thread of control.

Parameterized types are used to decouple the Connector
pattern’s connection establishment strategy from the type of
service and the type of connection mechanism. Develop-
ers produce Concr et e Connect or s by supplying argu-
ments for these types. This enables the wholesale replace-
ment of thesetypes, without affecting the Connector pattern’s
connection establishment strategy.

Collaborations:  The collaborations among participantsin
the Connector pattern are divided into three phases:

1. Connection initiation phase — which actively connects
one or more Svc Handl er s with their peers. Con-
nections can either be initiated synchronously or asyn-
chronoudly. The Connect or determines the strategy
for actively establishing connections.

2. Service initialization phase — which activates a Svc
Handl er by cdling its open method when the con-
nection associated with it completes successfully. The



open method of theSvc Handl er performsservice-
specific initialization.

3. Service processing phase — which performs the
application-specific service processing using the data
exchanged between the Svc Handl er and its con-
nected peer. Depending on the open method of Svc
Handl er, this phase may employ the Reactor pattern
(or some other type of concurrency mechanisms such
as Active Objects [21]) to process incoming events.
For example, when commands arrive at a Comrand
Handl er inthe Gat eway, the React or dispatches
Event Handl er s toframethecommands, determine
outgoing routes, and deliver the commands to their des-
tinations.

Figure 9 illustrates the collaboration among participants in
the Connector pattern using asynchronous connection estab-
lishment.

Uses: The Gat eway uses the Connector pattern to sim-
plify the task of connecting to a large number of Peers.
During Gat eway initialization, a list of Peer port ad-
dresses are read from a configuration file. These addresses
are bound to dynamically created Channel s (which inherit
from Svc Handl er). All connections are then initiated
asynchronously and the connections are completed in pard-
lel.

Figure 10 illustrates the rel ationship between participants
in the Connector pattern after four connections have been
established. Three other connections that have not yet
completed are owned by the Connect or. As shown in
this figure, the Connect or maintains a table of the three
Channel s whose connections are pending completion. As
connections complete, the Connect or removes the con-
nected Channel from itstable and activates it. Once ac-
tivated, | nput Channel s register themselves with the
React or. Henceforth, when routing messages arrive,
I nput Channel s receive and forward them to Cut put
Channel s, which deliver the messages to their destina-
tions (these activities are described in Section 4.4). | nput
Channel s and Qut put Channel s are objects residing
in the Gat eway. In contrast, the origina source and the
intended destination(s) of routing messages reside on other
hosts across the network.

In addition to establishing connections, a Gat eway can
use the Connect or in conjunction with the React or to
ensurethat connectionsarerestarted when errors occur. This
enhances the Gat eway'’s fault tolerance by ensuring that
channels are automatically reinitiated when they disconnect
unexpectedly (e.g., if aPeer crashesor an excessive amount
of data is queued a an Qut put Channel due to net-
work congestion). If a connection fails unexpectedly, an
exponential -backoff a gorithm can beimplemented using the
React or torestart the connection efficiently.

4.3 The Acceptor Pattern
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CONNECTIONS

Figure 10: Using the Connector Pettern in the Gat eway
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Intent: TheAcceptor pattern decouplespassive serviceini-
tialization from the tasks performed once the service is ini-
tialized.

Forces: TheAcceptor pattern resolvesthefollowingforces
that impact the design of connection-oriented communica-
tion software (particularly servers) when using lower-level
network programming interfaces (like sockets [19] and TLI
[20]):

1. Theneedtoreusepassive connection establishment code
for each new service — The Acceptor pattern permits
key characteristics of services (such asthe concurrency
strategy or the dataformat) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.

2. The need to make the connection establishment code
portableacross platformsthat contain different network
programming interfaces — Parameterizing the Accep-
tor's mechanisms for accepting connections and per-
forming services helps to improve portability by allow-
ing the wholesale replacement of these mechanisms.
This makes the connection establishment code portable
acrossplatformsthat contai n different network program-
ming interfaces (such as sockets but not TLI, or vice
versa).

3. Theneed to enabl e flexible service concurrency policies
—Onceaconnectionisestablished, peer applicationsuse
the connection to exchange data to perform some type
of service (eg., remote login, WWW HTML document
transfer, etc.). A service can run in asingle-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

4. The need to ensure that a passive-mode I/O handleis
not accidentallyused toread or writedata—By strongly
decoupling the Connect or fromthe Svc Handl er
passive-mode listener endpoints cannot accidentally be
used incorrectly (e.g., to try to read or write data on
a passive-mode listener socket used to accept connec-
tions).

The Acceptor pattern is the “dual” of the Connector pat-
tern described in Section 4.2. Unlike the Connector pattern
(which establishes connections actively), the Acceptor pat-
tern establishes connections passively.

Structure and Participants: Figure 11 illustrates the
structure and participantsin the Acceptor pattern. This pat-
tern leverages off the Reactor pattern’s React or to pas-
sively establish multiple connections within a single thread
of control. The Accept or implements the strategy for
establishing connections with Peer s. It is parameterized
by concrete types that conform to the interfaces of the for-
mal template arguments SVC HANDLER (which performs a
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Figure12: Object Interaction Diagram for the Acceptor Pat-
tern

service in conjunction with a connected Peer ) and PEER
ACCEPTOR (which is the underlying mechanism used to
passively establish the connection). The Svc Handl er
shown in Figure 11 is a concrete type that defines the in-
terface for an application-specific service. It inherits from
Event Handl er (shown in Figure 5), which alows it to
be dispatched by the React or when connection events oc-
cur. Inaddition, Svc Handl er isparameterized by aPEER
STREAMendpoint. The Accept or associates thisendpoint
withitsPeer when a connection is established successfully.
As with the Connector pattern, parameterized types are
used to enhance portability since the Acceptor pattern’s con-
nection establishment strategy is independent of the type of
serviceand thetypeof |PC mechanism. Programmers supply
concrete arguments for these typesto producea Concr et e
Accept or . Notethat a similar degree of decoupling could
be achieved via inheritance and dynamic binding by using
the Abstract Factory or Factory Method patternsdescribed in
[5]. Parameterized typeswere used to implement this pattern
since they improve run-time efficiency at the expense of ad-
ditional compile-timeand link-timetime and space overhead.

Collaboration: Figure 12 illustrates the collaboration
among participants in the Acceptor pattern. These collab-
orations are divided into three phases:

1. Endpoint initialization phase—which creates a passive-
mode endpoint (encapsulated by PEER ACCEPTOR)
that isboundto a network address (such asan | P address
and port number). The passive-mode endpoint listens
for connection requests from peers. This endpoint is
registered with the React or, which then goes into
an event loop waiting on that endpoint for connection
requeststo arrive from peers.

2. Service activation phase — Since an Accept or in-
herits from an Event Handl er the React or can
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dispatch the Accept or’s handl e_event method
when connection events arrive.  When connections
arrive, the React or calls back to the Accept or’s
handl e_event method. This Template Method [5]
performs the Accept or 'sSvc Handl er activation
strategy. This strategy assembles the resources neces-
sary to create anew Concrete Svc Handl er ob-
ject, accept the connection into this object, and activate
theSvc Handl er by callingitsopen method.

3. Service processing phase — once activated, the Svc
Handl er processesincoming event messages arriving
onthePEER STREAM A Svc Handl er will process
incoming event messages using the Reactor pattern or
some other form of concurrent event handling such as
the Active Object pattern [21]. The concurrency strat-
egy used by aSvc Handl er is defined by itsopen
method.

Uses: Figurel3illustrateshow the Acceptor patternisused
by the Gat eway. The Gat eway uses this pattern when it
plays the passive connection role. In this case, the Peer s
connect to Gat eway, which uses the Acceptor pattern to
decoupletheactivity of connecting passively fromtherouting
service provided once the connection is established.

Theintent and general architecture of the Acceptor pattern
isalsofoundinnetwork server management toolslikei net d
[19] and | i st en [20]. Thesetoolsutilizeamaster acceptor
process that listens for connections on a set of communica
tion ports. Each port is associated with a communication-
related service (such as the standard Internet servicesf t p,
t el net, dayti me, and echo). When a service request
arrives on amonitored port, the acceptor process accepts the
request and dispatches an appropriate pre-registered handler
that performs the service.
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Figure 14: Structure and Participantsin the Router Pattern

44 TheRouter Pattern

Intent: The Router pattern decouples multiple sources of
input from multiple sources of output to prevent blocking in
asingle-threaded Gat eway.

Forces. This pattern resolves the following force that
impacts the design of single-threaded connection-oriented
Gat eways.

1. The need to prevent misbehaving connections from dis-
rupting the quality of service for well-behaved connec-
tions— It is paramount that Gat eway message routing
isnot disrupted or postponed indefinitely when conges-
tion or failure occurs on incoming and outgoing links.
For example, if outgoing connections flow control due
to network congestion or Peer failure, the Gat eway
must not perform blocking send operationson any sin-
gle channel. Otherwise, messages on other channels
could not be sent or received and the end-to-end quality
of service provided to Peer s would degrade.

2. The need to allow different concurrency strategies for
Input and Output Channels — although this paper fo-
cuses on single-threaded Gat eways there are dterna
tive concurrency strategies such as (1) spawning a sep-
arate thread for every | nput Channel and Qut put
Channel , (2) spawning a thread for each Qut put
Channel but multiplexingal | nput Channel s in
a single thread, or (3) using a pool of pre-spawned
threads. Different strategies are appropriate under dif-
ferent situations, depending on factors such as the num-
ber of CPUs, context switching overhead, and number
of Peers. By decoupling | nput Channel s from
Qut put Channel s the Router pattern alows vari-
ousconcurrency strategiesto be configured flexibly into
aGat eway.

Structure and Participants: Figure 14 illustrates the
structure and participants in the Router pattern. As with
the Connector pattern, the Router pattern uses a React or



to alow multiple events on different connections to be de-
multiplexed within a single thread of control. The | nput
Channel s and Qut put Channel s inherit indirectly
from Event Handl er. This enables the React or to
dispatch their handl e_event methods when messages ar-
rive and flow control conditions subside, respectively. An
I nput Channel usesaRouting Tabl e to map rout-
ing messages onto oneor moreCut put Channel s. Since
the | nput Channel s are separate from the Qut put
Channel s their implementations may vary independently.
Thisdecoupling isimportant sinceit allows different concur-
rency strategiesto be used for input and output.

Although TCP connections are bi-directiona, data sent
from Peer tothe Gat eway use a different connection than
data sent from the Gat eway to the Peer . There are sev-
eral advantages to separating input connections from output
connections in this manner. Firgt, it simplifies the construc-
tion of Gat eway Routi ng Tabl es. Second, it allows
more flexibility in connection configuration and concurrency
strategies. Finaly, it enhances reliability if errors occur on a
connection (since | nput and Qut put Channel s can be
reconnected independently).

Collaborations. Figure 15 illustrates the collaboration
among participants in the Router pattern. These collabo-
rations may be divided into three phases:

1. Input processing — in this phase | nput Channel s
use non-blocking 1/0 to incrementally reassemble in-
coming TCP segments into compl ete routing messages,

2. Route sdlection — in this phase | nput Channel s
consult a Routi ng Tabl e to sdect the Cut put
Channel s responsible for sending the routing mes-
Sages,

3. Output processing —in this phase the selected Qut put
Channel s transmit the routing messages to their des-
tination(s) without blocking the process.

Uses: Figurel6illustrateshow the Router patternisusedin
theGat eway. | nput Channel andQut put Channel
processing routes messages within a singlethread of control
by using the React or object. The use of single-threading
eliminates the overhead of synchronization (since access to
shared objects likethe Rout i ng Tabl e need not be seri-
alized) and context switching (since message routing occurs
in asinglethread).

The primary chalenge of building a reliable, single-
threaded, connection-oriented Gat eway revolves around
avoiding blocking I/O. This is necessary to reiably man-
ageflow control on Qut put Channel s. If theGat eway
were to block indefinitely when sending on a congested
connections incoming messages could not be routed, even
if those messages were destined for non-flow controlled
Qut put Channel s.

Figure 16 illustrates the sequence of collaborations be-
tween Router pattern participants in a single-threaded
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Figure15: Object Interaction Diagram for the Router Pattern

Gat eway. First, | nput and Qut put Channel descrip-
tors are set into non-blocking mode after the Connect or

activates them. Message are subsequently received in frag-
mentsby | nput Channel s. Whenanl nput Channel

successfully receives and frames an entire message it uses
the Rout i ng Tabl e to determine the appropriate set of
Qut put Channel s. It then passes the message to these
Qut put Channel s, which try to send the message to the
destination Peer .

To avoid blocking, all send operaions in Qut put
Channel s must check to see flow control is enabled. If
not, an entire message can be sent successfully (depicted by
the Qut put Channel in the upper right-hand corner of
Figure 16). The Router pattern must use a different strategy,
however, when a send encounters a flow controlled con-
nection (depicted by the Qut put Channel in the lower
right-hand corner of Figure 16).

To handle flow control, the Qut put Channel inserts
the message it istrying to send into its Message Queue.
It then instructs the React or to call back to the Qut put
Channel when the flow control conditions abate, and re-
turns to the main event loop. When it is possible to try to
send again, the React or dispatchesthehandl e_event
method on the Qut put Channel , which then retries the
operation. This sequence of steps may be repeated multiple
times until the entire message is transmitted successfully.

Note that the Gat eway aways returns control to itsmain
event loop immediately after every I/O operation, regardless
of whether it sent or received an entire message. Thisisthe
essence of the Router pattern —it never blockson any single
1/O channd.

5 Reated Work

[5, 6, 22] identify, name, and catalog many fundamental
object-oriented design patterns. This section examines how
the patterns described in this paper relate to other patternsin
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the literature.

The Reactor pattern is related to the Observer pattern [5].
In the Observer pattern, multiple dependents are updated au-
tomatically when a subject changes. In the Reactor pattern,
a single handler is dispatched automatically when an event
occurs. Thus, For each event the Reactor dispatches a sin-
gle handler (though there can be multiple sources of events).
The Reactor pattern also provides a Facade [5]. The Fa
cade pattern presents an interface that shields applications
from complex object relationships within a subsystem. The
Reactor pattern shields applications from complex mecha-
nisms that perform event demultiplexing and event handler
dispatching.

The mechanism the Reactor uses to dispatch Event
Handl er s issimilar to the Factory Calback pattern [23].
The intent of both patterns is to decoupling event reception
from event processing. The primary different isthat the Fac-
tory Callback is a creational pattern, whereas the Reactor
dispatching is a behavioral pattern.

The Connector pattern is a variation of the Template
Method and Factory Method patterns [5]. In the Template
Method pattern, an algorithmis written such that some steps
are supplied by a derived class. In the Factory Method pat-
tern, amethod in asubclass creates an associate that performs
aparticular task, but the task is decoupled from the protocol
used to create the task. The Connector pattern is a Factory
that use Template Methods to create, connect, and activate
handlers for communication channels. In the Connector pat-
tern, theconnect method implementsa standard algorithm
for initiating a connection and activating a handler when the
connectionisestablished. Theintent of the Connector pattern
issimilar to the Client/Dispatcher/Server pattern described in
[6]. They both are concerned with separating active connec-
tion establishment from the subsequent service. The primary
difference is that the Connector pattern addresses both syn-
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chronous and asynchronous connection establishment.

The Acceptor pattern can aso be viewed as a variation of
the Template Method and Factory Method patterns [5]. The
Acceptor pattern isaconnection factory that uses atemplate
method (handl e_event ) to create handlers for communi-
cation channels. The handl e_event method implements
the algorithm that passively listens for connection requests,
then creates and activates a handler when the connection is
established. The handler performs a service using data ex-
changed on the connection. Thus, the service is decoupled
from the network programming interface and the transport
protocol used to establish the connection.

The Router pattern is a specialization of the Gateway pat-
ternin[6]. The Gateway pattern decoupl es cooperating com-
ponents of a software system and allows them to interact
without having direct dependencies among each other. The
Router pattern decouples the mechanisms used to process
input messages from the mechanisms used to process output
mechanisms to prevent blocking. In addition, this pattern
allows the use of different concurrency strategies for input
and output channels.

6 Concluding Remarks

This paper describes a system of design patterns and frame-
work components used to build high-performance commu-
nication Gat eways. The design patterns presented in this
paper capture the collaboration between framework compo-
nents that perform common communication software tasks
(such as event demultiplexing, event handler dispatching,
connection establishment, routing, configuration of applica
tion services, and concurrency control). Thefamily of design
patterns and the ACE framework components described in
this paper have been reused by the author and his colleagues
inanumber of production communication software systems.

In general, our experience applying reuse strategies based
on design patterns and frameworks has been positive. For
instance, the ability to document the intent, structure, and
behavior of components in the ACE framework in terms
of patterns has significantly reduced software devel opment
effort for projectswhereit hasbeen applied. Anin-depthdis-
cussion of our experiences and | essons|earned using patterns
appeared in[2].

The object-oriented ACE components described in
this paper are fredy avalable via the WWW a
http://ww. cs. wstl.edu/ ~schm dt/ACE. htm .
Thisdistribution contai ns compl ete source code, documenta-
tion, and exampl e test driversfor the C++ components devel -
oped as part of the ADAPTIVE project [4] a the University
of California, Irvine and Washington University.
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